Age | Commit message (Collapse) | Author |
|
Doing some extended tests and polishing the man page update for
MADV_POPULATE_(READ|WRITE), I realized that we end up converting also
SIGBUS (via -EFAULT) to -EINVAL, making it look like yet another
madvise() user error.
We want to report only problematic mappings and permission problems that
the user could have know as -EINVAL.
Let's not convert -EFAULT arising due to SIGBUS (or SIGSEGV) to -EINVAL,
but instead indicate -EFAULT to user space. While we could also convert
it to -ENOMEM, using -EFAULT looks more helpful when user space might
want to troubleshoot what's going wrong: MADV_POPULATE_(READ|WRITE) is
not part of an final Linux release and we can still adjust the behavior.
Link: https://lkml.kernel.org/r/20210726154932.102880-1-david@redhat.com
Fixes: 4ca9b3859dac ("mm/madvise: introduce MADV_POPULATE_(READ|WRITE) to prefault page tables")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduce "memfd_secret" system call with the ability to create memory
areas visible only in the context of the owning process and not mapped not
only to other processes but in the kernel page tables as well.
The secretmem feature is off by default and the user must explicitly
enable it at the boot time.
Once secretmem is enabled, the user will be able to create a file
descriptor using the memfd_secret() system call. The memory areas created
by mmap() calls from this file descriptor will be unmapped from the kernel
direct map and they will be only mapped in the page table of the processes
that have access to the file descriptor.
Secretmem is designed to provide the following protections:
* Enhanced protection (in conjunction with all the other in-kernel
attack prevention systems) against ROP attacks. Seceretmem makes
"simple" ROP insufficient to perform exfiltration, which increases the
required complexity of the attack. Along with other protections like
the kernel stack size limit and address space layout randomization which
make finding gadgets is really hard, absence of any in-kernel primitive
for accessing secret memory means the one gadget ROP attack can't work.
Since the only way to access secret memory is to reconstruct the missing
mapping entry, the attacker has to recover the physical page and insert
a PTE pointing to it in the kernel and then retrieve the contents. That
takes at least three gadgets which is a level of difficulty beyond most
standard attacks.
* Prevent cross-process secret userspace memory exposures. Once the
secret memory is allocated, the user can't accidentally pass it into the
kernel to be transmitted somewhere. The secreremem pages cannot be
accessed via the direct map and they are disallowed in GUP.
* Harden against exploited kernel flaws. In order to access secretmem,
a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new privileged uiserspace process to perform
secrets exfiltration using ptrace.
The file descriptor based memory has several advantages over the
"traditional" mm interfaces, such as mlock(), mprotect(), madvise(). File
descriptor approach allows explicit and controlled sharing of the memory
areas, it allows to seal the operations. Besides, file descriptor based
memory paves the way for VMMs to remove the secret memory range from the
userspace hipervisor process, for instance QEMU. Andy Lutomirski says:
"Getting fd-backed memory into a guest will take some possibly major
work in the kernel, but getting vma-backed memory into a guest without
mapping it in the host user address space seems much, much worse."
memfd_secret() is made a dedicated system call rather than an extension to
memfd_create() because it's purpose is to allow the user to create more
secure memory mappings rather than to simply allow file based access to
the memory. Nowadays a new system call cost is negligible while it is way
simpler for userspace to deal with a clear-cut system calls than with a
multiplexer or an overloaded syscall. Moreover, the initial
implementation of memfd_secret() is completely distinct from
memfd_create() so there is no much sense in overloading memfd_create() to
begin with. If there will be a need for code sharing between these
implementation it can be easily achieved without a need to adjust user
visible APIs.
The secret memory remains accessible in the process context using uaccess
primitives, but it is not exposed to the kernel otherwise; secret memory
areas are removed from the direct map and functions in the
follow_page()/get_user_page() family will refuse to return a page that
belongs to the secret memory area.
Once there will be a use case that will require exposing secretmem to the
kernel it will be an opt-in request in the system call flags so that user
would have to decide what data can be exposed to the kernel.
Removing of the pages from the direct map may cause its fragmentation on
architectures that use large pages to map the physical memory which
affects the system performance. However, the original Kconfig text for
CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can
improve the kernel's performance a tiny bit ..." (commit 00d1c5e05736
("x86: add gbpages switches")) and the recent report [1] showed that "...
although 1G mappings are a good default choice, there is no compelling
evidence that it must be the only choice". Hence, it is sufficient to
have secretmem disabled by default with the ability of a system
administrator to enable it at boot time.
Pages in the secretmem regions are unevictable and unmovable to avoid
accidental exposure of the sensitive data via swap or during page
migration.
Since the secretmem mappings are locked in memory they cannot exceed
RLIMIT_MEMLOCK. Since these mappings are already locked independently
from mlock(), an attempt to mlock()/munlock() secretmem range would fail
and mlockall()/munlockall() will ignore secretmem mappings.
However, unlike mlock()ed memory, secretmem currently behaves more like
long-term GUP: secretmem mappings are unmovable mappings directly consumed
by user space. With default limits, there is no excessive use of
secretmem and it poses no real problem in combination with
ZONE_MOVABLE/CMA, but in the future this should be addressed to allow
balanced use of large amounts of secretmem along with ZONE_MOVABLE/CMA.
A page that was a part of the secret memory area is cleared when it is
freed to ensure the data is not exposed to the next user of that page.
The following example demonstrates creation of a secret mapping (error
handling is omitted):
fd = memfd_secret(0);
ftruncate(fd, MAP_SIZE);
ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
[1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/
[akpm@linux-foundation.org: suppress Kconfig whine]
Link: https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Hagen Paul Pfeifer <hagen@jauu.net>
Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tycho Andersen <tycho@tycho.ws>
Cc: Will Deacon <will@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I. Background: Sparse Memory Mappings
When we manage sparse memory mappings dynamically in user space - also
sometimes involving MAP_NORESERVE - we want to dynamically populate/
discard memory inside such a sparse memory region. Example users are
hypervisors (especially implementing memory ballooning or similar
technologies like virtio-mem) and memory allocators. In addition, we want
to fail in a nice way (instead of generating SIGBUS) if populating does
not succeed because we are out of backend memory (which can happen easily
with file-based mappings, especially tmpfs and hugetlbfs).
While MADV_DONTNEED, MADV_REMOVE and FALLOC_FL_PUNCH_HOLE allow for
reliably discarding memory for most mapping types, there is no generic
approach to populate page tables and preallocate memory.
Although mmap() supports MAP_POPULATE, it is not applicable to the concept
of sparse memory mappings, where we want to populate/discard dynamically
and avoid expensive/problematic remappings. In addition, we never
actually report errors during the final populate phase - it is best-effort
only.
fallocate() can be used to preallocate file-based memory and fail in a
safe way. However, it cannot really be used for any private mappings on
anonymous files via memfd due to COW semantics. In addition, fallocate()
does not actually populate page tables, so we still always get pagefaults
on first access - which is sometimes undesired (i.e., real-time workloads)
and requires real prefaulting of page tables, not just a preallocation of
backend storage. There might be interesting use cases for sparse memory
regions along with mlockall(MCL_ONFAULT) which fallocate() cannot satisfy
as it does not prefault page tables.
II. On preallcoation/prefaulting from user space
Because we don't have a proper interface, what applications (like QEMU and
databases) end up doing is touching (i.e., reading+writing one byte to not
overwrite existing data) all individual pages.
However, that approach
1) Can result in wear on storage backing, because we end up reading/writing
each page; this is especially a problem for dax/pmem.
2) Can result in mmap_sem contention when prefaulting via multiple
threads.
3) Requires expensive signal handling, especially to catch SIGBUS in case
of hugetlbfs/shmem/file-backed memory. For example, this is
problematic in hypervisors like QEMU where SIGBUS handlers might already
be used by other subsystems concurrently to e.g, handle hardware errors.
"Simply" doing preallocation concurrently from other thread is not that
easy.
III. On MADV_WILLNEED
Extending MADV_WILLNEED is not an option because
1. It would change the semantics: "Expect access in the near future." and
"might be a good idea to read some pages" vs. "Definitely populate/
preallocate all memory and definitely fail on errors.".
2. Existing users (like virtio-balloon in QEMU when deflating the balloon)
don't want populate/prealloc semantics. They treat this rather as a hint
to give a little performance boost without too much overhead - and don't
expect that a lot of memory might get consumed or a lot of time
might be spent.
IV. MADV_POPULATE_READ and MADV_POPULATE_WRITE
Let's introduce MADV_POPULATE_READ and MADV_POPULATE_WRITE, inspired by
MAP_POPULATE, with the following semantics:
1. MADV_POPULATE_READ can be used to prefault page tables just like
manually reading each individual page. This will not break any COW
mappings. The shared zero page might get mapped and no backend storage
might get preallocated -- allocation might be deferred to
write-fault time. Especially shared file mappings require an explicit
fallocate() upfront to actually preallocate backend memory (blocks in
the file system) in case the file might have holes.
2. If MADV_POPULATE_READ succeeds, all page tables have been populated
(prefaulted) readable once.
3. MADV_POPULATE_WRITE can be used to preallocate backend memory and
prefault page tables just like manually writing (or
reading+writing) each individual page. This will break any COW
mappings -- e.g., the shared zeropage is never populated.
4. If MADV_POPULATE_WRITE succeeds, all page tables have been populated
(prefaulted) writable once.
5. MADV_POPULATE_READ and MADV_POPULATE_WRITE cannot be applied to special
mappings marked with VM_PFNMAP and VM_IO. Also, proper access
permissions (e.g., PROT_READ, PROT_WRITE) are required. If any such
mapping is encountered, madvise() fails with -EINVAL.
6. If MADV_POPULATE_READ or MADV_POPULATE_WRITE fails, some page tables
might have been populated.
7. MADV_POPULATE_READ and MADV_POPULATE_WRITE will return -EHWPOISON
when encountering a HW poisoned page in the range.
8. Similar to MAP_POPULATE, MADV_POPULATE_READ and MADV_POPULATE_WRITE
cannot protect from the OOM (Out Of Memory) handler killing the
process.
While the use case for MADV_POPULATE_WRITE is fairly obvious (i.e.,
preallocate memory and prefault page tables for VMs), one issue is that
whenever we prefault pages writable, the pages have to be marked dirty,
because the CPU could dirty them any time. while not a real problem for
hugetlbfs or dax/pmem, it can be a problem for shared file mappings: each
page will be marked dirty and has to be written back later when evicting.
MADV_POPULATE_READ allows for optimizing this scenario: Pre-read a whole
mapping from backend storage without marking it dirty, such that eviction
won't have to write it back. As discussed above, shared file mappings
might require an explciit fallocate() upfront to achieve
preallcoation+prepopulation.
Although sparse memory mappings are the primary use case, this will also
be useful for other preallocate/prefault use cases where MAP_POPULATE is
not desired or the semantics of MAP_POPULATE are not sufficient: as one
example, QEMU users can trigger preallocation/prefaulting of guest RAM
after the mapping was created -- and don't want errors to be silently
suppressed.
Looking at the history, MADV_POPULATE was already proposed in 2013 [1],
however, the main motivation back than was performance improvements --
which should also still be the case.
V. Single-threaded performance comparison
I did a short experiment, prefaulting page tables on completely *empty
mappings/files* and repeated the experiment 10 times. The results
correspond to the shortest execution time. In general, the performance
benefit for huge pages is negligible with small mappings.
V.1: Private mappings
POPULATE_READ and POPULATE_WRITE is fastest. Note that
Reading/POPULATE_READ will populate the shared zeropage where applicable
-- which result in short population times.
The fastest way to allocate backend storage (here: swap or huge pages) and
prefault page tables is POPULATE_WRITE.
V.2: Shared mappings
fallocate() is fastest, however, doesn't prefault page tables.
POPULATE_WRITE is faster than simple writes and read/writes.
POPULATE_READ is faster than simple reads.
Without a fd, the fastest way to allocate backend storage and prefault
page tables is POPULATE_WRITE. With an fd, the fastest way is usually
FALLOCATE+POPULATE_READ or FALLOCATE+POPULATE_WRITE respectively; one
exception are actual files: FALLOCATE+Read is slightly faster than
FALLOCATE+POPULATE_READ.
The fastest way to allocate backend storage prefault page tables is
FALLOCATE+POPULATE_WRITE -- except when dealing with actual files; then,
FALLOCATE+POPULATE_READ is fastest and won't directly mark all pages as
dirty.
v.3: Detailed results
==================================================
2 MiB MAP_PRIVATE:
**************************************************
Anon 4 KiB : Read : 0.119 ms
Anon 4 KiB : Write : 0.222 ms
Anon 4 KiB : Read/Write : 0.380 ms
Anon 4 KiB : POPULATE_READ : 0.060 ms
Anon 4 KiB : POPULATE_WRITE : 0.158 ms
Memfd 4 KiB : Read : 0.034 ms
Memfd 4 KiB : Write : 0.310 ms
Memfd 4 KiB : Read/Write : 0.362 ms
Memfd 4 KiB : POPULATE_READ : 0.039 ms
Memfd 4 KiB : POPULATE_WRITE : 0.229 ms
Memfd 2 MiB : Read : 0.030 ms
Memfd 2 MiB : Write : 0.030 ms
Memfd 2 MiB : Read/Write : 0.030 ms
Memfd 2 MiB : POPULATE_READ : 0.030 ms
Memfd 2 MiB : POPULATE_WRITE : 0.030 ms
tmpfs : Read : 0.033 ms
tmpfs : Write : 0.313 ms
tmpfs : Read/Write : 0.406 ms
tmpfs : POPULATE_READ : 0.039 ms
tmpfs : POPULATE_WRITE : 0.285 ms
file : Read : 0.033 ms
file : Write : 0.351 ms
file : Read/Write : 0.408 ms
file : POPULATE_READ : 0.039 ms
file : POPULATE_WRITE : 0.290 ms
hugetlbfs : Read : 0.030 ms
hugetlbfs : Write : 0.030 ms
hugetlbfs : Read/Write : 0.030 ms
hugetlbfs : POPULATE_READ : 0.030 ms
hugetlbfs : POPULATE_WRITE : 0.030 ms
**************************************************
4096 MiB MAP_PRIVATE:
**************************************************
Anon 4 KiB : Read : 237.940 ms
Anon 4 KiB : Write : 708.409 ms
Anon 4 KiB : Read/Write : 1054.041 ms
Anon 4 KiB : POPULATE_READ : 124.310 ms
Anon 4 KiB : POPULATE_WRITE : 572.582 ms
Memfd 4 KiB : Read : 136.928 ms
Memfd 4 KiB : Write : 963.898 ms
Memfd 4 KiB : Read/Write : 1106.561 ms
Memfd 4 KiB : POPULATE_READ : 78.450 ms
Memfd 4 KiB : POPULATE_WRITE : 805.881 ms
Memfd 2 MiB : Read : 357.116 ms
Memfd 2 MiB : Write : 357.210 ms
Memfd 2 MiB : Read/Write : 357.606 ms
Memfd 2 MiB : POPULATE_READ : 356.094 ms
Memfd 2 MiB : POPULATE_WRITE : 356.937 ms
tmpfs : Read : 137.536 ms
tmpfs : Write : 954.362 ms
tmpfs : Read/Write : 1105.954 ms
tmpfs : POPULATE_READ : 80.289 ms
tmpfs : POPULATE_WRITE : 822.826 ms
file : Read : 137.874 ms
file : Write : 987.025 ms
file : Read/Write : 1107.439 ms
file : POPULATE_READ : 80.413 ms
file : POPULATE_WRITE : 857.622 ms
hugetlbfs : Read : 355.607 ms
hugetlbfs : Write : 355.729 ms
hugetlbfs : Read/Write : 356.127 ms
hugetlbfs : POPULATE_READ : 354.585 ms
hugetlbfs : POPULATE_WRITE : 355.138 ms
**************************************************
2 MiB MAP_SHARED:
**************************************************
Anon 4 KiB : Read : 0.394 ms
Anon 4 KiB : Write : 0.348 ms
Anon 4 KiB : Read/Write : 0.400 ms
Anon 4 KiB : POPULATE_READ : 0.326 ms
Anon 4 KiB : POPULATE_WRITE : 0.273 ms
Anon 2 MiB : Read : 0.030 ms
Anon 2 MiB : Write : 0.030 ms
Anon 2 MiB : Read/Write : 0.030 ms
Anon 2 MiB : POPULATE_READ : 0.030 ms
Anon 2 MiB : POPULATE_WRITE : 0.030 ms
Memfd 4 KiB : Read : 0.412 ms
Memfd 4 KiB : Write : 0.372 ms
Memfd 4 KiB : Read/Write : 0.419 ms
Memfd 4 KiB : POPULATE_READ : 0.343 ms
Memfd 4 KiB : POPULATE_WRITE : 0.288 ms
Memfd 4 KiB : FALLOCATE : 0.137 ms
Memfd 4 KiB : FALLOCATE+Read : 0.446 ms
Memfd 4 KiB : FALLOCATE+Write : 0.330 ms
Memfd 4 KiB : FALLOCATE+Read/Write : 0.454 ms
Memfd 4 KiB : FALLOCATE+POPULATE_READ : 0.379 ms
Memfd 4 KiB : FALLOCATE+POPULATE_WRITE : 0.268 ms
Memfd 2 MiB : Read : 0.030 ms
Memfd 2 MiB : Write : 0.030 ms
Memfd 2 MiB : Read/Write : 0.030 ms
Memfd 2 MiB : POPULATE_READ : 0.030 ms
Memfd 2 MiB : POPULATE_WRITE : 0.030 ms
Memfd 2 MiB : FALLOCATE : 0.030 ms
Memfd 2 MiB : FALLOCATE+Read : 0.031 ms
Memfd 2 MiB : FALLOCATE+Write : 0.031 ms
Memfd 2 MiB : FALLOCATE+Read/Write : 0.031 ms
Memfd 2 MiB : FALLOCATE+POPULATE_READ : 0.030 ms
Memfd 2 MiB : FALLOCATE+POPULATE_WRITE : 0.030 ms
tmpfs : Read : 0.416 ms
tmpfs : Write : 0.369 ms
tmpfs : Read/Write : 0.425 ms
tmpfs : POPULATE_READ : 0.346 ms
tmpfs : POPULATE_WRITE : 0.295 ms
tmpfs : FALLOCATE : 0.139 ms
tmpfs : FALLOCATE+Read : 0.447 ms
tmpfs : FALLOCATE+Write : 0.333 ms
tmpfs : FALLOCATE+Read/Write : 0.454 ms
tmpfs : FALLOCATE+POPULATE_READ : 0.380 ms
tmpfs : FALLOCATE+POPULATE_WRITE : 0.272 ms
file : Read : 0.191 ms
file : Write : 0.511 ms
file : Read/Write : 0.524 ms
file : POPULATE_READ : 0.196 ms
file : POPULATE_WRITE : 0.434 ms
file : FALLOCATE : 0.004 ms
file : FALLOCATE+Read : 0.197 ms
file : FALLOCATE+Write : 0.554 ms
file : FALLOCATE+Read/Write : 0.480 ms
file : FALLOCATE+POPULATE_READ : 0.201 ms
file : FALLOCATE+POPULATE_WRITE : 0.381 ms
hugetlbfs : Read : 0.030 ms
hugetlbfs : Write : 0.030 ms
hugetlbfs : Read/Write : 0.030 ms
hugetlbfs : POPULATE_READ : 0.030 ms
hugetlbfs : POPULATE_WRITE : 0.030 ms
hugetlbfs : FALLOCATE : 0.030 ms
hugetlbfs : FALLOCATE+Read : 0.031 ms
hugetlbfs : FALLOCATE+Write : 0.031 ms
hugetlbfs : FALLOCATE+Read/Write : 0.030 ms
hugetlbfs : FALLOCATE+POPULATE_READ : 0.030 ms
hugetlbfs : FALLOCATE+POPULATE_WRITE : 0.030 ms
**************************************************
4096 MiB MAP_SHARED:
**************************************************
Anon 4 KiB : Read : 1053.090 ms
Anon 4 KiB : Write : 913.642 ms
Anon 4 KiB : Read/Write : 1060.350 ms
Anon 4 KiB : POPULATE_READ : 893.691 ms
Anon 4 KiB : POPULATE_WRITE : 782.885 ms
Anon 2 MiB : Read : 358.553 ms
Anon 2 MiB : Write : 358.419 ms
Anon 2 MiB : Read/Write : 357.992 ms
Anon 2 MiB : POPULATE_READ : 357.533 ms
Anon 2 MiB : POPULATE_WRITE : 357.808 ms
Memfd 4 KiB : Read : 1078.144 ms
Memfd 4 KiB : Write : 942.036 ms
Memfd 4 KiB : Read/Write : 1100.391 ms
Memfd 4 KiB : POPULATE_READ : 925.829 ms
Memfd 4 KiB : POPULATE_WRITE : 804.394 ms
Memfd 4 KiB : FALLOCATE : 304.632 ms
Memfd 4 KiB : FALLOCATE+Read : 1163.359 ms
Memfd 4 KiB : FALLOCATE+Write : 933.186 ms
Memfd 4 KiB : FALLOCATE+Read/Write : 1187.304 ms
Memfd 4 KiB : FALLOCATE+POPULATE_READ : 1013.660 ms
Memfd 4 KiB : FALLOCATE+POPULATE_WRITE : 794.560 ms
Memfd 2 MiB : Read : 358.131 ms
Memfd 2 MiB : Write : 358.099 ms
Memfd 2 MiB : Read/Write : 358.250 ms
Memfd 2 MiB : POPULATE_READ : 357.563 ms
Memfd 2 MiB : POPULATE_WRITE : 357.334 ms
Memfd 2 MiB : FALLOCATE : 356.735 ms
Memfd 2 MiB : FALLOCATE+Read : 358.152 ms
Memfd 2 MiB : FALLOCATE+Write : 358.331 ms
Memfd 2 MiB : FALLOCATE+Read/Write : 358.018 ms
Memfd 2 MiB : FALLOCATE+POPULATE_READ : 357.286 ms
Memfd 2 MiB : FALLOCATE+POPULATE_WRITE : 357.523 ms
tmpfs : Read : 1087.265 ms
tmpfs : Write : 950.840 ms
tmpfs : Read/Write : 1107.567 ms
tmpfs : POPULATE_READ : 922.605 ms
tmpfs : POPULATE_WRITE : 810.094 ms
tmpfs : FALLOCATE : 306.320 ms
tmpfs : FALLOCATE+Read : 1169.796 ms
tmpfs : FALLOCATE+Write : 933.730 ms
tmpfs : FALLOCATE+Read/Write : 1191.610 ms
tmpfs : FALLOCATE+POPULATE_READ : 1020.474 ms
tmpfs : FALLOCATE+POPULATE_WRITE : 798.945 ms
file : Read : 654.101 ms
file : Write : 1259.142 ms
file : Read/Write : 1289.509 ms
file : POPULATE_READ : 661.642 ms
file : POPULATE_WRITE : 1106.816 ms
file : FALLOCATE : 1.864 ms
file : FALLOCATE+Read : 656.328 ms
file : FALLOCATE+Write : 1153.300 ms
file : FALLOCATE+Read/Write : 1180.613 ms
file : FALLOCATE+POPULATE_READ : 668.347 ms
file : FALLOCATE+POPULATE_WRITE : 996.143 ms
hugetlbfs : Read : 357.245 ms
hugetlbfs : Write : 357.413 ms
hugetlbfs : Read/Write : 357.120 ms
hugetlbfs : POPULATE_READ : 356.321 ms
hugetlbfs : POPULATE_WRITE : 356.693 ms
hugetlbfs : FALLOCATE : 355.927 ms
hugetlbfs : FALLOCATE+Read : 357.074 ms
hugetlbfs : FALLOCATE+Write : 357.120 ms
hugetlbfs : FALLOCATE+Read/Write : 356.983 ms
hugetlbfs : FALLOCATE+POPULATE_READ : 356.413 ms
hugetlbfs : FALLOCATE+POPULATE_WRITE : 356.266 ms
**************************************************
[1] https://lkml.org/lkml/2013/6/27/698
[akpm@linux-foundation.org: coding style fixes]
Link: https://lkml.kernel.org/r/20210419135443.12822-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
has_pinned 32bit can be packed in the MMF_HAS_PINNED bit as a noop
cleanup.
Any atomic_inc/dec to the mm cacheline shared by all threads in pin-fast
would reintroduce a loss of SMP scalability to pin-fast, so there's no
future potential usefulness to keep an atomic in the mm for this.
set_bit(MMF_HAS_PINNED) will be theoretically a bit slower than WRITE_ONCE
(atomic_set is equivalent to WRITE_ONCE), but the set_bit (just like
atomic_set after this commit) has to be still issued only once per "mm",
so the difference between the two will be lost in the noise.
will-it-scale "mmap2" shows no change in performance with enterprise
config as expected.
will-it-scale "pin_fast" retains the > 4000% SMP scalability performance
improvement against upstream as expected.
This is a noop as far as overall performance and SMP scalability are
concerned.
[peterx@redhat.com: pack has_pinned in MMF_HAS_PINNED]
Link: https://lkml.kernel.org/r/YJqWESqyxa8OZA+2@t490s
[akpm@linux-foundation.org: coding style fixes]
[peterx@redhat.com: fix build for task_mmu.c, introduce mm_set_has_pinned_flag, fix comments]
Link: https://lkml.kernel.org/r/20210507150553.208763-4-peterx@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
has_pinned cannot be written by each pin-fast or it won't scale in SMP.
This isn't "false sharing" strictly speaking (it's more like "true
non-sharing"), but it creates the same SMP scalability bottleneck of
"false sharing".
To verify the improvement, below test is done on 40 cpus host with
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz (must be with
CONFIG_GUP_TEST=y):
$ sudo chrt -f 1 ./gup_test -a -m 512 -j 40
Where we can get (average value for 40 threads):
Old kernel: 477729.97 (+- 3.79%)
New kernel: 89144.65 (+-11.76%)
On a similar condition with 256 cpus, this commits increases the SMP
scalability of pin_user_pages_fast() executed by different threads of the
same process by more than 4000%.
[peterx@redhat.com: rewrite commit message, add parentheses against "(A & B)"]
Link: https://lkml.kernel.org/r/20210507150553.208763-3-peterx@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
try_grab_compound_head() is used to grab a reference to a page from
get_user_pages_fast(), which is only protected against concurrent freeing
of page tables (via local_irq_save()), but not against concurrent TLB
flushes, freeing of data pages, or splitting of compound pages.
Because no reference is held to the page when try_grab_compound_head() is
called, the page may have been freed and reallocated by the time its
refcount has been elevated; therefore, once we're holding a stable
reference to the page, the caller re-checks whether the PTE still points
to the same page (with the same access rights).
The problem is that try_grab_compound_head() has to grab a reference on
the head page; but between the time we look up what the head page is and
the time we actually grab a reference on the head page, the compound page
may have been split up (either explicitly through split_huge_page() or by
freeing the compound page to the buddy allocator and then allocating its
individual order-0 pages). If that happens, get_user_pages_fast() may end
up returning the right page but lifting the refcount on a now-unrelated
page, leading to use-after-free of pages.
To fix it: Re-check whether the pages still belong together after lifting
the refcount on the head page. Move anything else that checks
compound_head(page) below the refcount increment.
This can't actually happen on bare-metal x86 (because there, disabling
IRQs locks out remote TLB flushes), but it can happen on virtualized x86
(e.g. under KVM) and probably also on arm64. The race window is pretty
narrow, and constantly allocating and shattering hugepages isn't exactly
fast; for now I've only managed to reproduce this in an x86 KVM guest with
an artificially widened timing window (by adding a loop that repeatedly
calls `inl(0x3f8 + 5)` in `try_get_compound_head()` to force VM exits, so
that PV TLB flushes are used instead of IPIs).
As requested on the list, also replace the existing VM_BUG_ON_PAGE() with
a warning and bailout. Since the existing code only performed the BUG_ON
check on DEBUG_VM kernels, ensure that the new code also only performs the
check under that configuration - I don't want to mix two logically
separate changes together too much. The macro VM_WARN_ON_ONCE_PAGE()
doesn't return a value on !DEBUG_VM, so wrap the whole check in an #ifdef
block. An alternative would be to change the VM_WARN_ON_ONCE_PAGE()
definition for !DEBUG_VM such that it always returns false, but since that
would differ from the behavior of the normal WARN macros, it might be too
confusing for readers.
Link: https://lkml.kernel.org/r/20210615012014.1100672-1-jannh@google.com
Fixes: 7aef4172c795 ("mm: handle PTE-mapped tail pages in gerneric fast gup implementaiton")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jan Kara <jack@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
While reviewing [1] I came across commit d3378e86d182 ("mm/gup: check
page posion status for coredump.") and noticed that this patch is broken
in two ways. First it doesn't really prevent hwpoison pages from being
dumped because hwpoison pages can be marked asynchornously at any time
after the check. Secondly, and more importantly, the patch introduces a
ref count leak because get_dump_page takes a reference on the page which
is not released.
It also seems that the patch was merged incorrectly because there were
follow up changes not included as well as discussions on how to address
the underlying problem [2]
Therefore revert the original patch.
Link: http://lkml.kernel.org/r/20210429122519.15183-4-david@redhat.com [1]
Link: http://lkml.kernel.org/r/57ac524c-b49a-99ec-c1e4-ef5027bfb61b@redhat.com [2]
Link: https://lkml.kernel.org/r/20210505135407.31590-1-mhocko@kernel.org
Fixes: d3378e86d182 ("mm/gup: check page posion status for coredump.")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Aili Yao <yaoaili@kingsoft.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix ~94 single-word typos in locking code comments, plus a few
very obvious grammar mistakes.
Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com
Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When pages are longterm pinned, we must migrated them out of movable zone.
The function that migrates them has a hidden loop with goto. The loop is
to retry on isolation failures, and after successful migration.
Make this code better by moving this loop to the caller.
Link: https://lkml.kernel.org/r/20210215161349.246722-13-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In __get_user_pages_locked() i counts number of pages which should be
long, as long is used in all other places to contain number of pages, and
32-bit becomes increasingly small for handling page count proportional
values.
Link: https://lkml.kernel.org/r/20210215161349.246722-12-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We should not pin pages in ZONE_MOVABLE. Currently, we do not pin only
movable CMA pages. Generalize the function that migrates CMA pages to
migrate all movable pages. Use is_pinnable_page() to check which pages
need to be migrated
Link: https://lkml.kernel.org/r/20210215161349.246722-10-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
PF_MEMALLOC_NOCMA is used ot guarantee that the allocator will not
return pages that might belong to CMA region. This is currently used
for long term gup to make sure that such pins are not going to be done
on any CMA pages.
When PF_MEMALLOC_NOCMA has been introduced we haven't realized that it
is focusing on CMA pages too much and that there is larger class of
pages that need the same treatment. MOVABLE zone cannot contain any
long term pins as well so it makes sense to reuse and redefine this flag
for that usecase as well. Rename the flag to PF_MEMALLOC_PIN which
defines an allocation context which can only get pages suitable for
long-term pins.
Also rename: memalloc_nocma_save()/memalloc_nocma_restore to
memalloc_pin_save()/memalloc_pin_restore() and make the new functions
common.
[rppt@linux.ibm.com: fix renaming of PF_MEMALLOC_NOCMA to PF_MEMALLOC_PIN]
Link: https://lkml.kernel.org/r/20210331163816.11517-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20210215161349.246722-6-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It is still possible that we pin movable CMA pages if there are
isolation errors and cma_page_list stays empty when we check again.
Check for isolation errors, and return success only when there are no
isolation errors, and cma_page_list is empty after checking.
Because isolation errors are transient, we retry indefinitely.
Link: https://lkml.kernel.org/r/20210215161349.246722-5-pasha.tatashin@soleen.com
Fixes: 9a4e9f3b2d73 ("mm: update get_user_pages_longterm to migrate pages allocated from CMA region")
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When migration failure occurs, we still pin pages, which means that we
may pin CMA movable pages which should never be the case.
Instead return an error without pinning pages when migration failure
happens.
No need to retry migrating, because migrate_pages() already retries 10
times.
Link: https://lkml.kernel.org/r/20210215161349.246722-4-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When pages are isolated in check_and_migrate_movable_pages() we skip
compound number of pages at a time. However, as Jason noted, it is not
necessary correct that pages[i] corresponds to the pages that we
skipped. This is because it is possible that the addresses in this
range had split_huge_pmd()/split_huge_pud(), and these functions do not
update the compound page metadata.
The problem can be reproduced if something like this occurs:
1. User faulted huge pages.
2. split_huge_pmd() was called for some reason
3. User has unmapped some sub-pages in the range
4. User tries to longterm pin the addresses.
The resulting pages[i] might end-up having pages which are not compound
size page aligned.
Link: https://lkml.kernel.org/r/20210215161349.246722-3-pasha.tatashin@soleen.com
Fixes: aa712399c1e8 ("mm/gup: speed up check_and_migrate_cma_pages() on huge page")
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reported-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "prohibit pinning pages in ZONE_MOVABLE", v11.
When page is pinned it cannot be moved and its physical address stays
the same until pages is unpinned.
This is useful functionality to allows userland to implementation DMA
access. For example, it is used by vfio in vfio_pin_pages().
However, this functionality breaks memory hotplug/hotremove assumptions
that pages in ZONE_MOVABLE can always be migrated.
This patch series fixes this issue by forcing new allocations during
page pinning to omit ZONE_MOVABLE, and also to migrate any existing
pages from ZONE_MOVABLE during pinning.
It uses the same scheme logic that is currently used by CMA, and extends
the functionality for all allocations.
For more information read the discussion [1] about this problem.
[1] https://lore.kernel.org/lkml/CA+CK2bBffHBxjmb9jmSKacm0fJMinyt3Nhk8Nx6iudcQSj80_w@mail.gmail.com
This patch (of 14):
In order not to fragment CMA the pinned pages are migrated. However, they
are migrated to ZONE_MOVABLE, which also should not have pinned pages.
Remove __GFP_MOVABLE, so pages can be migrated to zones where pinning is
allowed.
Link: https://lkml.kernel.org/r/20210215161349.246722-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20210215161349.246722-2-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit 5a52c9df62b4 ("uprobe: use FOLL_SPLIT_PMD instead of
FOLL_SPLIT") and commit ba925fa35057 ("s390/gmap: improve THP splitting")
FOLL_SPLIT has not been used anymore. Remove the dead code.
Link: https://lkml.kernel.org/r/20210330203900.9222-1-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add an unpin_user_page_range_dirty_lock() API which takes a starting page
and how many consecutive pages we want to unpin and optionally dirty.
To that end, define another iterator for_each_compound_range() that
operates in page ranges as opposed to page array.
For users (like RDMA mr_dereg) where each sg represents a contiguous set
of pages, we're able to more efficiently unpin pages without having to
supply an array of pages much of what happens today with
unpin_user_pages().
Link: https://lkml.kernel.org/r/20210212130843.13865-4-joao.m.martins@oracle.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rather than decrementing the head page refcount one by one, we walk the
page array and checking which belong to the same compound_head. Later on
we decrement the calculated amount of references in a single write to the
head page. To that end switch to for_each_compound_head() does most of
the work.
set_page_dirty() needs no adjustment as it's a nop for non-dirty head
pages and it doesn't operate on tail pages.
This considerably improves unpinning of pages with THP and hugetlbfs:
- THP
gup_test -t -m 16384 -r 10 [-L|-a] -S -n 512 -w
PIN_LONGTERM_BENCHMARK (put values): ~87.6k us -> ~23.2k us
- 16G with 1G huge page size
gup_test -f /mnt/huge/file -m 16384 -r 10 [-L|-a] -S -n 512 -w
PIN_LONGTERM_BENCHMARK: (put values): ~87.6k us -> ~27.5k us
Link: https://lkml.kernel.org/r/20210212130843.13865-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm/gup: page unpining improvements", v4.
This series improves page unpinning, with an eye on improving MR
deregistration for big swaths of memory (which is bound by the page
unpining), particularly:
1) Decrement the head page by @ntails and thus reducing a lot the
number of atomic operations per compound page. This is done by
comparing individual tail pages heads, and counting number of
consecutive tails on which they match heads and based on that update
head page refcount. Should have a visible improvement in all page
(un)pinners which use compound pages
2) Introducing a new API for unpinning page ranges (to avoid the trick
in the previous item and be based on math), and use that in RDMA
ib_mem_release (used for mr deregistration).
Performance improvements: unpin_user_pages() for hugetlbfs and THP
improves ~3x (through gup_test) and RDMA MR dereg improves ~4.5x with the
new API. See patches 2 and 4 for those.
This patch (of 4):
Add a helper that iterates over head pages in a list of pages. It
essentially counts the tails until the next page to process has a
different head that the current. This is going to be used by
unpin_user_pages() family of functions, to batch the head page refcount
updates once for all passed consecutive tail pages.
Link: https://lkml.kernel.org/r/20210212130843.13865-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20210212130843.13865-2-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When we do coredump for user process signal, this may be an SIGBUS signal
with BUS_MCEERR_AR or BUS_MCEERR_AO code, which means this signal is
resulted from ECC memory fail like SRAR or SRAO, we expect the memory
recovery work is finished correctly, then the get_dump_page() will not
return the error page as its process pte is set invalid by
memory_failure().
But memory_failure() may fail, and the process's related pte may not be
correctly set invalid, for current code, we will return the poison page,
get it dumped, and then lead to system panic as its in kernel code.
So check the poison status in get_dump_page(), and if TRUE, return NULL.
There maybe other scenario that is also better to check the posion status
and not to panic, so make a wrapper for this check, Thanks to David's
suggestion(<david@redhat.com>).
[akpm@linux-foundation.org: s/0/false/]
[yaoaili@kingsoft.com: is_page_poisoned() arg cannot be null, per Matthew]
Link: https://lkml.kernel.org/r/20210322115233.05e4e82a@alex-virtual-machine
Link: https://lkml.kernel.org/r/20210319104437.6f30e80d@alex-virtual-machine
Signed-off-by: Aili Yao <yaoaili@kingsoft.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Aili Yao <yaoaili@kingsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm/hugetlb: follow_hugetlb_page() improvements", v2.
While looking at ZONE_DEVICE struct page reuse particularly the last
patch[0], I found two possible improvements for follow_hugetlb_page()
which is solely used for get_user_pages()/pin_user_pages().
The first patch batches page refcount updates while the second tidies up
storing the subpages/vmas. Both together bring the cost of slow variant
of gup() cost from ~87.6k usecs to ~5.8k usecs.
libhugetlbfs tests seem to pass as well gup_test benchmarks with hugetlbfs
vmas.
This patch (of 2):
follow_hugetlb_page() once it locks the pmd/pud, checks all its N subpages
in a huge page and grabs a reference for each one. Similar to gup-fast,
have follow_hugetlb_page() grab the head page refcount only after counting
all its subpages that are part of the just faulted huge page.
Consequently we reduce the number of atomics necessary to pin said huge
page, which improves non-fast gup() considerably:
- 16G with 1G huge page size
gup_test -f /mnt/huge/file -m 16384 -r 10 -L -S -n 512 -w
PIN_LONGTERM_BENCHMARK: ~87.6k us -> ~12.8k us
Link: https://lkml.kernel.org/r/20210128182632.24562-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20210128182632.24562-2-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge misc updates from Andrew Morton:
- a few random little subsystems
- almost all of the MM patches which are staged ahead of linux-next
material. I'll trickle to post-linux-next work in as the dependents
get merged up.
Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
mm: cleanup kstrto*() usage
mm: fix fall-through warnings for Clang
mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
mm:backing-dev: use sysfs_emit in macro defining functions
mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
mm: use sysfs_emit for struct kobject * uses
mm: fix kernel-doc markups
zram: break the strict dependency from lzo
zram: add stat to gather incompressible pages since zram set up
zram: support page writeback
mm/process_vm_access: remove redundant initialization of iov_r
mm/zsmalloc.c: rework the list_add code in insert_zspage()
mm/zswap: move to use crypto_acomp API for hardware acceleration
mm/zswap: fix passing zero to 'PTR_ERR' warning
mm/zswap: make struct kernel_param_ops definitions const
userfaultfd/selftests: hint the test runner on required privilege
userfaultfd/selftests: fix retval check for userfaultfd_open()
userfaultfd/selftests: always dump something in modes
userfaultfd: selftests: make __{s,u}64 format specifiers portable
...
|
|
Kernel-doc markups should use this format:
identifier - description
Fix some issues on mm files:
1) The definition for get_user_pages_locked() doesn't follow it. Also,
it expects a short descrpition at the header, followed by a long one,
after the parameters. Fix it.
2) Kernel-doc requires that a kernel-doc markup to be immediately below
the function prototype, as otherwise it will rename it. So, move
get_pfnblock_flags_mask() description to the right place.
3) Make invalidate_mapping_pagevec() to also follow the expected
kernel-doc format.
While here, fix a few minor English syntax issues, as suggested
by Matthew:
will used -> will be used
similar with -> similar to
Link: https://lkml.kernel.org/r/80e85dddc92d333bc2159ee8a2294921612e8745.1605521731.git.mchehab+huawei@kernel.org
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Suggested-by: Mattew Wilcox <willy@infradead.org> [English fixes]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
These functions accomplish the same thing but have different
implementations.
unpin_user_page() has a bug where it calls mod_node_page_state() after
calling put_page() which creates a risk that the page could have been
hot-uplugged from the system.
Fix this by using put_compound_head() as the only implementation.
__unpin_devmap_managed_user_page() and related can be deleted as well in
favour of the simpler, but slower, version in put_compound_head() that has
an extra atomic page_ref_sub, but always calls put_page() which internally
contains the special devmap code.
Move put_compound_head() to be directly after try_grab_compound_head() so
people can find it in future.
Link: https://lkml.kernel.org/r/0-v1-6730d4ee0d32+40e6-gup_combine_put_jgg@nvidia.com
Fixes: 1970dc6f5226 ("mm/gup: /proc/vmstat: pin_user_pages (FOLL_PIN) reporting")
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
CC: Joao Martins <joao.m.martins@oracle.com>
CC: Jonathan Corbet <corbet@lwn.net>
CC: Dan Williams <dan.j.williams@intel.com>
CC: Dave Chinner <david@fromorbit.com>
CC: Christoph Hellwig <hch@infradead.org>
CC: Jane Chu <jane.chu@oracle.com>
CC: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
CC: Michal Hocko <mhocko@suse.com>
CC: Mike Kravetz <mike.kravetz@oracle.com>
CC: Shuah Khan <shuah@kernel.org>
CC: Muchun Song <songmuchun@bytedance.com>
CC: Vlastimil Babka <vbabka@suse.cz>
CC: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Long ago there wasn't a FOLL_LONGTERM flag so this DAX check was done by
post-processing the VMA list.
These days it is trivial to just check each VMA to see if it is DAX before
processing it inside __get_user_pages() and return failure if a DAX VMA is
encountered with FOLL_LONGTERM.
Removing the allocation of the VMA list is a significant speed up for many
call sites.
Add an IS_ENABLED to vma_is_fsdax so that code generation is unchanged
when DAX is compiled out.
Remove the dummy version of __gup_longterm_locked() as !CONFIG_CMA already
makes memalloc_nocma_save(), check_and_migrate_cma_pages(), and
memalloc_nocma_restore() into a NOP.
Link: https://lkml.kernel.org/r/0-v1-5551df3ed12e+b8-gup_dax_speedup_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit 70e806e4e645 ("mm: Do early cow for pinned pages during
fork() for ptes") pages under a FOLL_PIN will not be write protected
during COW for fork. This means that pages returned from
pin_user_pages(FOLL_WRITE) should not become write protected while the pin
is active.
However, there is a small race where get_user_pages_fast(FOLL_PIN) can
establish a FOLL_PIN at the same time copy_present_page() is write
protecting it:
CPU 0 CPU 1
get_user_pages_fast()
internal_get_user_pages_fast()
copy_page_range()
pte_alloc_map_lock()
copy_present_page()
atomic_read(has_pinned) == 0
page_maybe_dma_pinned() == false
atomic_set(has_pinned, 1);
gup_pgd_range()
gup_pte_range()
pte_t pte = gup_get_pte(ptep)
pte_access_permitted(pte)
try_grab_compound_head()
pte = pte_wrprotect(pte)
set_pte_at();
pte_unmap_unlock()
// GUP now returns with a write protected page
The first attempt to resolve this by using the write protect caused
problems (and was missing a barrrier), see commit f3c64eda3e50 ("mm: avoid
early COW write protect games during fork()")
Instead wrap copy_p4d_range() with the write side of a seqcount and check
the read side around gup_pgd_range(). If there is a collision then
get_user_pages_fast() fails and falls back to slow GUP.
Slow GUP is safe against this race because copy_page_range() is only
called while holding the exclusive side of the mmap_lock on the src
mm_struct.
[akpm@linux-foundation.org: coding style fixes]
Link: https://lore.kernel.org/r/CAHk-=wi=iCnYCARbPGjkVJu9eyYeZ13N64tZYLdOB8CP5Q_PLw@mail.gmail.com
Link: https://lkml.kernel.org/r/2-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com
Fixes: f3c64eda3e50 ("mm: avoid early COW write protect games during fork()")
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: "Ahmed S. Darwish" <a.darwish@linutronix.de> [seqcount_t parts]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Leon Romanovsky <leonro@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Add a seqcount between gup_fast and copy_page_range()", v4.
As discussed and suggested by Linus use a seqcount to close the small race
between gup_fast and copy_page_range().
Ahmed confirms that raw_write_seqcount_begin() is the correct API to use
in this case and it doesn't trigger any lockdeps.
I was able to test it using two threads, one forking and the other using
ibv_reg_mr() to trigger GUP fast. Modifying copy_page_range() to sleep
made the window large enough to reliably hit to test the logic.
This patch (of 2):
The next patch in this series makes the lockless flow a little more
complex, so move the entire block into a new function and remove a level
of indention. Tidy a bit of cruft:
- addr is always the same as start, so use start
- Use the modern check_add_overflow() for computing end = start + len
- nr_pinned/pages << PAGE_SHIFT needs the LHS to be unsigned long to
avoid shift overflow, make the variables unsigned long to avoid coding
casts in both places. nr_pinned was missing its cast
- The handling of ret and nr_pinned can be streamlined a bit
No functional change.
Link: https://lkml.kernel.org/r/0-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com
Link: https://lkml.kernel.org/r/1-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In order to write another lockless page-table walker, we need
gup_get_pte() exposed. While doing that, rename it to
ptep_get_lockless() to match the existing ptep_get() naming.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201126121121.036370527@infradead.org
|
|
When FOLL_PIN is passed to __get_user_pages() the page list must be put
back using unpin_user_pages() otherwise the page pin reference persists
in a corrupted state.
There are two places in the unwind of __gup_longterm_locked() that put
the pages back without checking. Normally on error this function would
return the partial page list making this the caller's responsibility,
but in these two cases the caller is not allowed to see these pages at
all.
Fixes: 3faa52c03f44 ("mm/gup: track FOLL_PIN pages")
Reported-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/0-v2-3ae7d9d162e2+2a7-gup_cma_fix_jgg@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Properly take the mmap_lock before calling into the GUP code from
get_dump_page(); and play nice, allowing the GUP code to drop the
mmap_lock if it has to sleep.
As Linus pointed out, we don't actually need the VMA because
__get_user_pages() will flush the dcache for us if necessary.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200827114932.3572699-7-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Fix ELF / FDPIC ELF core dumping, and use mmap_lock properly in there", v5.
At the moment, we have that rather ugly mmget_still_valid() helper to work
around <https://crbug.com/project-zero/1790>: ELF core dumping doesn't
take the mmap_sem while traversing the task's VMAs, and if anything (like
userfaultfd) then remotely messes with the VMA tree, fireworks ensue. So
at the moment we use mmget_still_valid() to bail out in any writers that
might be operating on a remote mm's VMAs.
With this series, I'm trying to get rid of the need for that as cleanly as
possible. ("cleanly" meaning "avoid holding the mmap_lock across
unbounded sleeps".)
Patches 1, 2, 3 and 4 are relatively unrelated cleanups in the core
dumping code.
Patches 5 and 6 implement the main change: Instead of repeatedly accessing
the VMA list with sleeps in between, we snapshot it at the start with
proper locking, and then later we just use our copy of the VMA list. This
ensures that the kernel won't crash, that VMA metadata in the coredump is
consistent even in the presence of concurrent modifications, and that any
virtual addresses that aren't being concurrently modified have their
contents show up in the core dump properly.
The disadvantage of this approach is that we need a bit more memory during
core dumping for storing metadata about all VMAs.
At the end of the series, patch 7 removes the old workaround for this
issue (mmget_still_valid()).
I have tested:
- Creating a simple core dump on X86-64 still works.
- The created coredump on X86-64 opens in GDB and looks plausible.
- X86-64 core dumps contain the first page for executable mappings at
offset 0, and don't contain the first page for non-executable file
mappings or executable mappings at offset !=0.
- NOMMU 32-bit ARM can still generate plausible-looking core dumps
through the FDPIC implementation. (I can't test this with GDB because
GDB is missing some structure definition for nommu ARM, but I've
poked around in the hexdump and it looked decent.)
This patch (of 7):
dump_emit() is for kernel pointers, and VMAs describe userspace memory.
Let's be tidy here and avoid accessing userspace pointers under KERNEL_DS,
even if it probably doesn't matter much on !MMU systems - especially given
that it looks like we can just use the same get_dump_page() as on MMU if
we move it out of the CONFIG_MMU block.
One small change we have to make in get_dump_page() is to use
__get_user_pages_locked() instead of __get_user_pages(), since the latter
doesn't exist on nommu. On mmu builds, __get_user_pages_locked() will
just call __get_user_pages() for us.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200827114932.3572699-1-jannh@google.com
Link: http://lkml.kernel.org/r/20200827114932.3572699-2-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
As suggested by Dan Carpenter, fortify unpin_user_pages() just a bit,
against a typical caller mistake: check if the npages arg is really a
-ERRNO value, which would blow up the unpinning loop: WARN and return.
If this new WARN_ON() fires, then the system *might* be leaking pages (by
leaving them pinned), but probably not. More likely, gup/pup returned a
hard -ERRNO error to the caller, who erroneously passed it here.
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Link: https://lkml.kernel.org/r/20200917065706.409079-1-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
gup prohibits users from calling get_user_pages() with FOLL_PIN. But it
allows users to call get_user_pages() with FOLL_LONGTERM only. It seems
insensible.
Since FOLL_LONGTERM is a stricter case of FOLL_PIN, we should prohibit
users from calling get_user_pages() with FOLL_LONGTERM while not with
FOLL_PIN.
mm/gup_benchmark.c used to be the only user who did this improperly.
But it has been fixed by moving to use pin_user_pages().
[akpm@linux-foundation.org: fix CONFIG_MMU=n build]
Link: https://lkml.kernel.org/r/CA+G9fYuNS3k0DVT62twfV746pfNhCSrk5sVMcOcQ1PGGnEseyw@mail.gmail.com
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200819110100.23504-1-song.bao.hua@hisilicon.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It seems likely this block was pasted from internal_get_user_pages_fast,
which is not passed an mm struct and therefore uses current's. But
__get_user_pages_locked is passed an explicit mm, and current->mm is not
always valid. This was hit when being called from i915, which uses:
pin_user_pages_remote->
__get_user_pages_remote->
__gup_longterm_locked->
__get_user_pages_locked
Before, this would lead to an OOPS:
BUG: kernel NULL pointer dereference, address: 0000000000000064
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
CPU: 10 PID: 1431 Comm: kworker/u33:1 Tainted: P S U O 5.9.0-rc7+ #140
Hardware name: LENOVO 20QTCTO1WW/20QTCTO1WW, BIOS N2OET47W (1.34 ) 08/06/2020
Workqueue: i915-userptr-acquire __i915_gem_userptr_get_pages_worker [i915]
RIP: 0010:__get_user_pages_remote+0xd7/0x310
Call Trace:
__i915_gem_userptr_get_pages_worker+0xc8/0x260 [i915]
process_one_work+0x1ca/0x390
worker_thread+0x48/0x3c0
kthread+0x114/0x130
ret_from_fork+0x1f/0x30
CR2: 0000000000000064
This commit fixes the problem by using the mm pointer passed to the
function rather than the bogus one in current.
Fixes: 008cfe4418b3 ("mm: Introduce mm_struct.has_pinned")
Tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Reported-by: Harald Arnesen <harald@skogtun.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
(Commit message majorly collected from Jason Gunthorpe)
Reduce the chance of false positive from page_maybe_dma_pinned() by
keeping track if the mm_struct has ever been used with pin_user_pages().
This allows cases that might drive up the page ref_count to avoid any
penalty from handling dma_pinned pages.
Future work is planned, to provide a more sophisticated solution, likely
to turn it into a real counter. For now, make it atomic_t but use it as
a boolean for simplicity.
Suggested-by: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently to make sure that every page table entry is read just once
gup_fast walks perform READ_ONCE and pass pXd value down to the next
gup_pXd_range function by value e.g.:
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
...
pudp = pud_offset(&p4d, addr);
This function passes a reference on that local value copy to pXd_offset,
and might get the very same pointer in return. This happens when the
level is folded (on most arches), and that pointer should not be
iterated.
On s390 due to the fact that each task might have different 5,4 or
3-level address translation and hence different levels folded the logic
is more complex and non-iteratable pointer to a local copy leads to
severe problems.
Here is an example of what happens with gup_fast on s390, for a task
with 3-level paging, crossing a 2 GB pud boundary:
// addr = 0x1007ffff000, end = 0x10080001000
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
pud_t *pudp;
// pud_offset returns &p4d itself (a pointer to a value on stack)
pudp = pud_offset(&p4d, addr);
do {
// on second iteratation reading "random" stack value
pud_t pud = READ_ONCE(*pudp);
// next = 0x10080000000, due to PUD_SIZE/MASK != PGDIR_SIZE/MASK on s390
next = pud_addr_end(addr, end);
...
} while (pudp++, addr = next, addr != end); // pudp++ iterating over stack
return 1;
}
This happens since s390 moved to common gup code with commit
d1874a0c2805 ("s390/mm: make the pxd_offset functions more robust") and
commit 1a42010cdc26 ("s390/mm: convert to the generic
get_user_pages_fast code").
s390 tried to mimic static level folding by changing pXd_offset
primitives to always calculate top level page table offset in pgd_offset
and just return the value passed when pXd_offset has to act as folded.
What is crucial for gup_fast and what has been overlooked is that
PxD_SIZE/MASK and thus pXd_addr_end should also change correspondingly.
And the latter is not possible with dynamic folding.
To fix the issue in addition to pXd values pass original pXdp pointers
down to gup_pXd_range functions. And introduce pXd_offset_lockless
helpers, which take an additional pXd entry value parameter. This has
already been discussed in
https://lkml.kernel.org/r/20190418100218.0a4afd51@mschwideX1
Fixes: 1a42010cdc26 ("s390/mm: convert to the generic get_user_pages_fast code")
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: <stable@vger.kernel.org> [5.2+]
Link: https://lkml.kernel.org/r/patch.git-943f1e5dcff2.your-ad-here.call-01599856292-ext-8676@work.hours
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge emailed patches from Peter Xu:
"This is a small series that I picked up from Linus's suggestion to
simplify cow handling (and also make it more strict) by checking
against page refcounts rather than mapcounts.
This makes uffd-wp work again (verified by running upmapsort)"
Note: this is horrendously bad timing, and making this kind of
fundamental vm change after -rc3 is not at all how things should work.
The saving grace is that it really is a a nice simplification:
8 files changed, 29 insertions(+), 120 deletions(-)
The reason for the bad timing is that it turns out that commit
17839856fd58 ("gup: document and work around 'COW can break either way'
issue" broke not just UFFD functionality (as Peter noticed), but Mikulas
Patocka also reports that it caused issues for strace when running in a
DAX environment with ext4 on a persistent memory setup.
And we can't just revert that commit without re-introducing the original
issue that is a potential security hole, so making COW stricter (and in
the process much simpler) is a step to then undoing the forced COW that
broke other uses.
Link: https://lore.kernel.org/lkml/alpine.LRH.2.02.2009031328040.6929@file01.intranet.prod.int.rdu2.redhat.com/
* emailed patches from Peter Xu <peterx@redhat.com>:
mm: Add PGREUSE counter
mm/gup: Remove enfornced COW mechanism
mm/ksm: Remove reuse_ksm_page()
mm: do_wp_page() simplification
|
|
With the more strict (but greatly simplified) page reuse logic in
do_wp_page(), we can safely go back to the world where cow is not
enforced with writes.
This essentially reverts commit 17839856fd58 ("gup: document and work
around 'COW can break either way' issue"). There are some context
differences due to some changes later on around it:
2170ecfa7688 ("drm/i915: convert get_user_pages() --> pin_user_pages()", 2020-06-03)
376a34efa4ee ("mm/gup: refactor and de-duplicate gup_fast() code", 2020-06-03)
Some lines moved back and forth with those, but this revert patch should
have striped out and covered all the enforced cow bits anyways.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge gate page refcount fix from Dave Hansen:
"During the conversion over to pin_user_pages(), gate pages were missed.
The fix is pretty simple, and is accompanied by a new test from Andy
which probably would have caught this earlier"
* emailed patches from Dave Hansen <dave.hansen@linux.intel.com>:
selftests/x86/test_vsyscall: Improve the process_vm_readv() test
mm: fix pin vs. gup mismatch with gate pages
|
|
Gate pages were missed when converting from get to pin_user_pages().
This can lead to refcount imbalances. This is reliably and quickly
reproducible running the x86 selftests when vsyscall=emulate is enabled
(the default). Fix by using try_grab_page() with appropriate flags
passed.
The long story:
Today, pin_user_pages() and get_user_pages() are similar interfaces for
manipulating page reference counts. However, "pins" use a "bias" value
and manipulate the actual reference count by 1024 instead of 1 used by
plain "gets".
That means that pin_user_pages() must be matched with unpin_user_pages()
and can't be mixed with a plain put_user_pages() or put_page().
Enter gate pages, like the vsyscall page. They are pages usually in the
kernel image, but which are mapped to userspace. Userspace is allowed
access to them, including interfaces using get/pin_user_pages(). The
refcount of these kernel pages is manipulated just like a normal user
page on the get/pin side so that the put/unpin side can work the same
for normal user pages or gate pages.
get_gate_page() uses try_get_page() which only bumps the refcount by
1, not 1024, even if called in the pin_user_pages() path. If someone
pins a gate page, this happens:
pin_user_pages()
get_gate_page()
try_get_page() // bump refcount +1
... some time later
unpin_user_pages()
page_ref_sub_and_test(page, 1024))
... and boom, we get a refcount off by 1023. This is reliably and
quickly reproducible running the x86 selftests when booted with
vsyscall=emulate (the default). The selftests use ptrace(), but I
suspect anything using pin_user_pages() on gate pages could hit this.
To fix it, simply use try_grab_page() instead of try_get_page(), and
pass 'gup_flags' in so that FOLL_PIN can be respected.
This bug traces back to the very beginning of the FOLL_PIN support in
commit 3faa52c03f44 ("mm/gup: track FOLL_PIN pages"), which showed up in
the 5.7 release.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Fixes: 3faa52c03f44 ("mm/gup: track FOLL_PIN pages")
Reported-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Cc: Jann Horn <jannh@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[akpm@linux-foundation.org: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After the cleanup of page fault accounting, gup does not need to pass
task_struct around any more. Remove that parameter in the whole gup
stack.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Link: http://lkml.kernel.org/r/20200707225021.200906-26-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Here're the last pieces of page fault accounting that were still done
outside handle_mm_fault() where we still have regs==NULL when calling
handle_mm_fault():
arch/powerpc/mm/copro_fault.c: copro_handle_mm_fault
arch/sparc/mm/fault_32.c: force_user_fault
arch/um/kernel/trap.c: handle_page_fault
mm/gup.c: faultin_page
fixup_user_fault
mm/hmm.c: hmm_vma_fault
mm/ksm.c: break_ksm
Some of them has the issue of duplicated accounting for page fault
retries. Some of them didn't do the accounting at all.
This patch cleans all these up by letting handle_mm_fault() to do per-task
page fault accounting even if regs==NULL (though we'll still skip the perf
event accountings). With that, we can safely remove all the outliers now.
There's another functional change in that now we account the page faults
to the caller of gup, rather than the task_struct that passed into the gup
code. More information of this can be found at [1].
After this patch, below things should never be touched again outside
handle_mm_fault():
- task_struct.[maj|min]_flt
- PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN]
[1] https://lore.kernel.org/lkml/CAHk-=wj_V2Tps2QrMn20_W0OJF9xqNh52XSGA42s-ZJ8Y+GyKw@mail.gmail.com/
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200707225021.200906-25-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: Page fault accounting cleanups", v5.
This is v5 of the pf accounting cleanup series. It originates from Gerald
Schaefer's report on an issue a week ago regarding to incorrect page fault
accountings for retried page fault after commit 4064b9827063 ("mm: allow
VM_FAULT_RETRY for multiple times"):
https://lore.kernel.org/lkml/20200610174811.44b94525@thinkpad/
What this series did:
- Correct page fault accounting: we do accounting for a page fault
(no matter whether it's from #PF handling, or gup, or anything else)
only with the one that completed the fault. For example, page fault
retries should not be counted in page fault counters. Same to the
perf events.
- Unify definition of PERF_COUNT_SW_PAGE_FAULTS: currently this perf
event is used in an adhoc way across different archs.
Case (1): for many archs it's done at the entry of a page fault
handler, so that it will also cover e.g. errornous faults.
Case (2): for some other archs, it is only accounted when the page
fault is resolved successfully.
Case (3): there're still quite some archs that have not enabled
this perf event.
Since this series will touch merely all the archs, we unify this
perf event to always follow case (1), which is the one that makes most
sense. And since we moved the accounting into handle_mm_fault, the
other two MAJ/MIN perf events are well taken care of naturally.
- Unify definition of "major faults": the definition of "major
fault" is slightly changed when used in accounting (not
VM_FAULT_MAJOR). More information in patch 1.
- Always account the page fault onto the one that triggered the page
fault. This does not matter much for #PF handlings, but mostly for
gup. More information on this in patch 25.
Patchset layout:
Patch 1: Introduced the accounting in handle_mm_fault(), not enabled.
Patch 2-23: Enable the new accounting for arch #PF handlers one by one.
Patch 24: Enable the new accounting for the rest outliers (gup, iommu, etc.)
Patch 25: Cleanup GUP task_struct pointer since it's not needed any more
This patch (of 25):
This is a preparation patch to move page fault accountings into the
general code in handle_mm_fault(). This includes both the per task
flt_maj/flt_min counters, and the major/minor page fault perf events. To
do this, the pt_regs pointer is passed into handle_mm_fault().
PERF_COUNT_SW_PAGE_FAULTS should still be kept in per-arch page fault
handlers.
So far, all the pt_regs pointer that passed into handle_mm_fault() is
NULL, which means this patch should have no intented functional change.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200707225021.200906-1-peterx@redhat.com
Link: http://lkml.kernel.org/r/20200707225021.200906-2-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is a well-defined migration target allocation callback. Use it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1596180906-8442-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
new_non_cma_page() in gup.c requires to allocate the new page that is not
on the CMA area. new_non_cma_page() implements it by using allocation
scope APIs.
However, there is a work-around for hugetlb. Normal hugetlb page
allocation API for migration is alloc_huge_page_nodemask(). It consists
of two steps. First is dequeing from the pool. Second is, if there is no
available page on the queue, allocating by using the page allocator.
new_non_cma_page() can't use this API since first step (deque) isn't aware
of scope API to exclude CMA area. So, new_non_cma_page() exports hugetlb
internal function for the second step, alloc_migrate_huge_page(), to
global scope and uses it directly. This is suboptimal since hugetlb pages
on the queue cannot be utilized.
This patch tries to fix this situation by making the deque function on
hugetlb CMA aware. In the deque function, CMA memory is skipped if
PF_MEMALLOC_NOCMA flag is found.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1596180906-8442-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We have well defined scope API to exclude CMA region. Use it rather than
manipulating gfp_mask manually. With this change, we can now restore
__GFP_MOVABLE for gfp_mask like as usual migration target allocation. It
would result in that the ZONE_MOVABLE is also searched by page allocator.
For hugetlb, gfp_mask is redefined since it has a regular allocation mask
filter for migration target. __GPF_NOWARN is added to hugetlb gfp_mask
filter since a new user for gfp_mask filter, gup, want to be silent when
allocation fails.
Note that this can be considered as a fix for the commit 9a4e9f3b2d73
("mm: update get_user_pages_longterm to migrate pages allocated from CMA
region"). However, "Fixes" tag isn't added here since it is just
suboptimal but it doesn't cause any problem.
Suggested-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Link: http://lkml.kernel.org/r/1596180906-8442-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The return value of populate_vma_page_range() is consistent with
__get_user_pages(), and so is the function comment of return value.
Signed-off-by: Tang Yizhou <tangyizhou@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: http://lkml.kernel.org/r/20200720034303.29920-1-tangyizhou@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit 9e343b467c70 ("READ_ONCE: Enforce atomicity for
{READ,WRITE}_ONCE() memory accesses") it is not possible anymore to
use READ_ONCE() to access complex page table entries like the one
defined for powerpc 8xx with 16k size pages.
Define a ptep_get() helper that architectures can override instead
of performing a READ_ONCE() on the page table entry pointer.
Fixes: 9e343b467c70 ("READ_ONCE: Enforce atomicity for {READ,WRITE}_ONCE() memory accesses")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/087fa12b6e920e32315136b998aa834f99242695.1592225558.git.christophe.leroy@csgroup.eu
|