Age | Commit message (Collapse) | Author |
|
mempool are generally used for GFP_NOIO, so this wont benefit all that
much because might_alloc currently only checks GFP_NOFS. But it does
validate against mmu notifier pte zapping, some might catch some drivers
doing really silly things, plus it's a bit more meaningful in what we're
checking for here.
Link: https://lkml.kernel.org/r/20220605152539.3196045-3-daniel.vetter@ffwll.ch
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Various files have acquired spurious includes of <linux/blkdev.h> over
time. Remove them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210920123328.1399408-5-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently with integrated init page_alloc.c needs to know whether
kasan_alloc_pages() will zero initialize memory, but this will start
becoming more complicated once we start adding tag initialization
support for user pages. To avoid page_alloc.c needing to know more
details of what integrated init will do, move the unpoisoning logic
for integrated init into the HW tags implementation. Currently the
logic is identical but it will diverge in subsequent patches.
For symmetry do the same for poisoning although this logic will
be unaffected by subsequent patches.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://linux-review.googlesource.com/id/I2c550234c6c4a893c48c18ff0c6ce658c7c67056
Link: https://lore.kernel.org/r/20210602235230.3928842-3-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Various coding style tweaks to various files under mm/
[daizhiyuan@phytium.com.cn: mm/swapfile: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614223624-16055-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/sparse: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614227288-19363-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/vmscan: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614227649-19853-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/compaction: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228218-20770-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/oom_kill: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228360-21168-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/shmem: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228504-21491-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/page_alloc: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228613-21754-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/filemap: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228936-22337-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/mlock: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613956588-2453-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/frontswap: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613962668-15045-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/vmalloc: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613963379-15988-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/memory_hotplug: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613971784-24878-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/mempolicy: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613972228-25501-1-git-send-email-daizhiyuan@phytium.com.cn
Link: https://lkml.kernel.org/r/1614222374-13805-1-git-send-email-daizhiyuan@phytium.com.cn
Signed-off-by: Zhiyuan Dai <daizhiyuan@phytium.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This change uses the previously added memory initialization feature of
HW_TAGS KASAN routines for page_alloc memory when init_on_alloc/free is
enabled.
With this change, kernel_init_free_pages() is no longer called when both
HW_TAGS KASAN and init_on_alloc/free are enabled. Instead, memory is
initialized in KASAN runtime.
To avoid discrepancies with which memory gets initialized that can be
caused by future changes, both KASAN and kernel_init_free_pages() hooks
are put together and a warning comment is added.
This patch changes the order in which memory initialization and page
poisoning hooks are called. This doesn't lead to any side-effects, as
whenever page poisoning is enabled, memory initialization gets disabled.
Combining setting allocation tags with memory initialization improves
HW_TAGS KASAN performance when init_on_alloc/free is enabled.
[andreyknvl@google.com: fix for "integrate page_alloc init with HW_TAGS"]
Link: https://lkml.kernel.org/r/65b6028dea2e9a6e8e2cb779b5115c09457363fc.1617122211.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/e77f0d5b1b20658ef0b8288625c74c2b3690e725.1615296150.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Sergei Trofimovich <slyfox@gentoo.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Generic mm functions that call KASAN annotations that might report a bug
pass _RET_IP_ to them as an argument. This allows KASAN to include the
name of the function that called the mm function in its report's header.
Now that KASAN has inline wrappers for all of its annotations, move
_RET_IP_ to those wrappers to simplify annotation call sites.
Link: https://linux-review.googlesource.com/id/I8fb3c06d49671305ee184175a39591bc26647a67
Link: https://lkml.kernel.org/r/5c1490eddf20b436b8c4eeea83fce47687d5e4a4.1610733117.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rename kasan_poison_kfree() to kasan_slab_free_mempool() as it better
reflects what this annotation does. Also add a comment that explains the
PageSlab() check.
No functional changes.
Link: https://lkml.kernel.org/r/141675fb493555e984c5dca555e9d9f768c7bbaa.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/I5026f87364e556b506ef1baee725144bb04b8810
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There's the external annotation kasan_unpoison_slab() that is currently
defined as static inline and uses kasan_unpoison_range(). Open-code this
function in mempool.c. Otherwise with an upcoming change this function
will result in an unnecessary function call.
Link: https://lkml.kernel.org/r/131a6694a978a9a8b150187e539eecc8bcbf759b.1606162397.git.andreyknvl@google.com
Link: https://linux-review.googlesource.com/id/Ia7c8b659f79209935cbaab3913bf7f082cc43a0e
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add else to split mutually exclusive case and avoid some unnecessary check.
It doesn't seem to change code generation (compiler is smart), but I think
it helps readability.
[akpm@linux-foundation.org: fix comment location]
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200924111641.28922-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mempool_t pool.curr_nr could be accessed concurrently as noticed by
KCSAN,
BUG: KCSAN: data-race in mempool_free / remove_element
write to 0xffffffffa937638c of 4 bytes by task 6359 on cpu 113:
remove_element+0x4a/0x1c0
remove_element at mm/mempool.c:132
mempool_alloc+0x102/0x210
(inlined by) mempool_alloc at mm/mempool.c:399
bio_alloc_bioset+0x106/0x2c0
get_swap_bio+0x49/0x230
__swap_writepage+0x680/0xc30
swap_writepage+0x9c/0xf0
pageout+0x33e/0xae0
shrink_page_list+0x1f57/0x2870
shrink_inactive_list+0x316/0x880
shrink_lruvec+0x8dc/0x1380
shrink_node+0x317/0xd80
do_try_to_free_pages+0x1f7/0xa10
try_to_free_pages+0x26c/0x5e0
__alloc_pages_slowpath+0x458/0x1290
<snip>
read to 0xffffffffa937638c of 4 bytes by interrupt on cpu 64:
mempool_free+0x3e/0x150
mempool_free at mm/mempool.c:492
bio_free+0x192/0x280
bio_put+0x91/0xd0
end_swap_bio_write+0x1d8/0x280
bio_endio+0x2c2/0x5b0
dec_pending+0x22b/0x440 [dm_mod]
clone_endio+0xe4/0x2c0 [dm_mod]
bio_endio+0x2c2/0x5b0
blk_update_request+0x217/0x940
scsi_end_request+0x6b/0x4d0
scsi_io_completion+0xb7/0x7e0
scsi_finish_command+0x223/0x310
scsi_softirq_done+0x1d5/0x210
blk_mq_complete_request+0x224/0x250
scsi_mq_done+0xc2/0x250
pqi_raid_io_complete+0x5a/0x70 [smartpqi]
pqi_irq_handler+0x150/0x1410 [smartpqi]
__handle_irq_event_percpu+0x90/0x540
handle_irq_event_percpu+0x49/0xd0
handle_irq_event+0x85/0xca
handle_edge_irq+0x13f/0x3e0
do_IRQ+0x86/0x190
<snip>
Since the write is under pool->lock but the read is done as lockless.
Even though the commit 5b990546e334 ("mempool: fix and document
synchronization and memory barrier usage") introduced the smp_wmb() and
smp_rmb() pair to improve the situation, it is adequate to protect it
from data races which could lead to a logic bug, so fix it by adding
READ_ONCE() for the read.
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/1581446384-2131-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Many kernel-doc comments in mm/ have the return value descriptions
either misformatted or omitted at all which makes kernel-doc script
unhappy:
$ make V=1 htmldocs
...
./mm/util.c:36: info: Scanning doc for kstrdup
./mm/util.c:41: warning: No description found for return value of 'kstrdup'
./mm/util.c:57: info: Scanning doc for kstrdup_const
./mm/util.c:66: warning: No description found for return value of 'kstrdup_const'
./mm/util.c:75: info: Scanning doc for kstrndup
./mm/util.c:83: warning: No description found for return value of 'kstrndup'
...
Fixing the formatting and adding the missing return value descriptions
eliminates ~100 such warnings.
Link: http://lkml.kernel.org/r/1549549644-4903-4-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The kernel-doc for mempool_init function is missing the description of the
pool parameter. Add it.
Link: http://lkml.kernel.org/r/1532336274-26228-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
remove_element()
The argument "gfp_t flags" is not used in kasan_unpoison_element() and
remove_element(), so remove it.
Link: http://lkml.kernel.org/r/20180621070332.16633-1-baijiaju1990@gmail.com
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Allows mempools to be embedded in other structs, getting rid of a
pointer indirection from allocation fastpaths.
mempool_exit() is safe to call on an uninitialized but zeroed mempool.
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Detect frees of pointers into middle of mempool objects.
I did a one-off test, but it turned out to be very tricky, so I reverted
it. First, mempool does not call kasan_poison_kfree() unless allocation
function fails. I stubbed an allocation function to fail on second and
subsequent allocations. But then mempool stopped to call
kasan_poison_kfree() at all, because it does it only when allocation
function is mempool_kmalloc(). We could support this special failing
test allocation function in mempool, but it also can't live with kasan
tests, because these are in a module.
Link: http://lkml.kernel.org/r/bf7a7d035d7a5ed62d2dd0e3d2e8a4fcdf456aa7.1514378558.git.dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now that we have a NUMA-aware version of kmalloc_array() we can use it
instead of kmalloc_node() without an overflow check in the size
calculation.
Link: http://lkml.kernel.org/r/20170927082038.3782-6-jthumshirn@suse.de
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Damien Le Moal <damien.lemoal@wdc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Hal Rosenstock <hal.rosenstock@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mike Marciniszyn <infinipath@intel.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Rename:
wait_queue_t => wait_queue_entry_t
'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.
Start sorting this out by renaming it to 'wait_queue_entry_t'.
This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This reverts commit f9054c70d28b ("mm, mempool: only set __GFP_NOMEMALLOC
if there are free elements").
There has been a report about OOM killer invoked when swapping out to a
dm-crypt device. The primary reason seems to be that the swapout out IO
managed to completely deplete memory reserves. Ondrej was able to
bisect and explained the issue by pointing to f9054c70d28b ("mm,
mempool: only set __GFP_NOMEMALLOC if there are free elements").
The reason is that the swapout path is not throttled properly because
the md-raid layer needs to allocate from the generic_make_request path
which means it allocates from the PF_MEMALLOC context. dm layer uses
mempool_alloc in order to guarantee a forward progress which used to
inhibit access to memory reserves when using page allocator. This has
changed by f9054c70d28b ("mm, mempool: only set __GFP_NOMEMALLOC if
there are free elements") which has dropped the __GFP_NOMEMALLOC
protection when the memory pool is depleted.
If we are running out of memory and the only way forward to free memory
is to perform swapout we just keep consuming memory reserves rather than
throttling the mempool allocations and allowing the pending IO to
complete up to a moment when the memory is depleted completely and there
is no way forward but invoking the OOM killer. This is less than
optimal.
The original intention of f9054c70d28b was to help with the OOM
situations where the oom victim depends on mempool allocation to make a
forward progress. David has mentioned the following backtrace:
schedule
schedule_timeout
io_schedule_timeout
mempool_alloc
__split_and_process_bio
dm_request
generic_make_request
submit_bio
mpage_readpages
ext4_readpages
__do_page_cache_readahead
ra_submit
filemap_fault
handle_mm_fault
__do_page_fault
do_page_fault
page_fault
We do not know more about why the mempool is depleted without being
replenished in time, though. In any case the dm layer shouldn't depend
on any allocations outside of the dedicated pools so a forward progress
should be guaranteed. If this is not the case then the dm should be
fixed rather than papering over the problem and postponing it to later
by accessing more memory reserves.
mempools are a mechanism to maintain dedicated memory reserves to
guaratee forward progress. Allowing them an unbounded access to the
page allocator memory reserves is going against the whole purpose of
this mechanism.
Bisected by Ondrej Kozina.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160721145309.GR26379@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Ondrej Kozina <okozina@redhat.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: NeilBrown <neilb@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Ondrej Kozina <okozina@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently we may put reserved by mempool elements into quarantine via
kasan_kfree(). This is totally wrong since quarantine may really free
these objects. So when mempool will try to use such element,
use-after-free will happen. Or mempool may decide that it no longer
need that element and double-free it.
So don't put object into quarantine in kasan_kfree(), just poison it.
Rename kasan_kfree() to kasan_poison_kfree() to respect that.
Also, we shouldn't use kasan_slab_alloc()/kasan_krealloc() in
kasan_unpoison_element() because those functions may update allocation
stacktrace. This would be wrong for the most of the remove_element call
sites.
(The only call site where we may want to update alloc stacktrace is
in mempool_alloc(). Kmemleak solves this by calling
kmemleak_update_trace(), so we could make something like that too.
But this is out of scope of this patch).
Fixes: 55834c59098d ("mm: kasan: initial memory quarantine implementation")
Link: http://lkml.kernel.org/r/575977C3.1010905@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Kostya Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Quarantine isolates freed objects in a separate queue. The objects are
returned to the allocator later, which helps to detect use-after-free
errors.
When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.
When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator. From now on the
allocator may reuse it for another allocation. Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).
When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped. Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.
Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.
Quarantine isolates freed objects in a separate queue. The objects are
returned to the allocator later, which helps to detect use-after-free
errors.
Freed objects are first added to per-cpu quarantine queues. When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue. Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).
As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased. Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.
Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.
This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov. A number of improvements have been
suggested by Andrey Ryabinin.
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add GFP flags to KASAN hooks for future patches to use.
This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If an oom killed thread calls mempool_alloc(), it is possible that it'll
loop forever if there are no elements on the freelist since
__GFP_NOMEMALLOC prevents it from accessing needed memory reserves in
oom conditions.
Only set __GFP_NOMEMALLOC if there are elements on the freelist. If
there are no free elements, allow allocations without the bit set so
that memory reserves can be accessed if needed.
Additionally, using mempool_alloc() with __GFP_NOMEMALLOC is not
supported since the implementation can loop forever without accessing
memory reserves when needed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When removing an element from the mempool, mark it as unpoisoned in KASAN
before verifying its contents for SLUB/SLAB debugging. Otherwise KASAN
will flag the reads checking the element use-after-free writes as
use-after-free reads.
Signed-off-by: Matthew Dawson <matthew@mjdsystems.ca>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mempool_destroy() does not tolerate a NULL mempool_t pointer argument and
performs a NULL-pointer dereference. This requires additional attention
and effort from developers/reviewers and forces all mempool_destroy()
callers to do a NULL check
if (pool)
mempool_destroy(pool);
Or, otherwise, be invalid mempool_destroy() users.
Tweak mempool_destroy() and NULL-check the pointer there.
Proposed by Andrew Morton.
Link: https://lkml.org/lkml/2015/6/8/583
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Mempools keep allocated objects in reserved for situations when ordinary
allocation may not be possible to satisfy. These objects shouldn't be
accessed before they leave the pool.
This patch poison elements when get into the pool and unpoison when they
leave it. This will let KASan to detect use-after-free of mempool's
elements.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Tested-by: David Rientjes <rientjes@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Chernenkov <drcheren@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Mempools keep elements in a reserved pool for contexts in which allocation
may not be possible. When an element is allocated from the reserved pool,
its memory contents is the same as when it was added to the reserved pool.
Because of this, elements lack any free poisoning to detect use-after-free
errors.
This patch adds free poisoning for elements backed by the slab allocator.
This is possible because the mempool layer knows the object size of each
element.
When an element is added to the reserved pool, it is poisoned with
POISON_FREE. When it is removed from the reserved pool, the contents are
checked for POISON_FREE. If there is a mismatch, a warning is emitted to
the kernel log.
This is only effective for configs with CONFIG_DEBUG_SLAB or
CONFIG_SLUB_DEBUG_ON.
[fabio.estevam@freescale.com: use '%zu' for printing 'size_t' variable]
[arnd@arndb.de: add missing include]
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
All occurrences of mempools based on slab caches with object constructors
have been removed from the tree, so disallow creating them.
We can only dereference mem->ctor in mm/mempool.c without including
mm/slab.h in include/linux/mempool.h. So simply note the restriction,
just like the comment restricting usage of __GFP_ZERO, and warn on kernels
with CONFIG_DEBUG_VM() if such a mempool is allocated from.
We don't want to incur this check on every element allocation, so use
VM_BUG_ON().
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Allocating a large number of elements in atomic context could quickly
deplete memory reserves, so just disallow atomic resizing entirely.
Nothing currently uses mempool_resize() with anything other than
GFP_KERNEL, so convert existing callers to drop the gfp_mask.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Steffen Maier <maier@linux.vnet.ibm.com> [zfcp]
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Steve French <sfrench@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When mempool_alloc() returns an existing pool object, kmemleak_alloc()
is no longer called and the stack trace corresponds to the original
object allocation. This patch updates the kmemleak allocation stack
trace for such objects to make it more useful for debugging.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Memory obtained via mempool_alloc is not always zeroed even when
called with __GFP_ZERO. Add a note and VM_BUG_ON statement to make
that clear.
[akpm@linux-foundation.org: use VM_WARN_ON_ONCE]
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add unlikely and likely hints to the function mempool_free. It lays out
the code in such a way that the common path is executed straighforward and
saves a cache line.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use the helper function instead of __GFP_ZERO.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mempool_create_node() currently assumes %GFP_KERNEL. Its only user,
blk_init_free_list(), is about to be updated to use other allocation
flags - add @gfp_mask argument to the function.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
mempool modifies gfp_mask so that the backing allocator doesn't try too
hard or trigger warning message when there's pool to fall back on. In
addition, for the first try, it removes __GFP_WAIT and IO, so that it
doesn't trigger reclaim or wait when allocation can be fulfilled from
pool; however, when that allocation fails and pool is empty too, it waits
for the pool to be replenished before retrying.
Allocation which could have succeeded after a bit of reclaim has to wait
on the reserved items and it's not like mempool doesn't retry with
__GFP_WAIT and IO. It just does that *after* someone returns an element,
pointlessly delaying things.
Fix it by retrying immediately if the first round of allocation attempts
w/o __GFP_WAIT and IO fails.
[akpm@linux-foundation.org: shorten the lock hold time]
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mempool_destroy() is a thin wrapper around free_pool(). The only thing it
adds is BUG_ON(pool->curr_nr != pool->min_nr). The intention seems to be
to enforce that all allocated elements are freed; however, the BUG_ON()
can't achieve that (it doesn't know anything about objects above min_nr)
and incorrect as mempool_resize() is allowed to leave the pool extended
but not filled. Furthermore, panicking is way worse than any memory leak
and there are better debug tools to track memory leaks.
Drop the BUG_ON() from mempool_destory() and as that leaves the function
identical to free_pool(), replace it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mempool_alloc/free() use undocumented smp_mb()'s. The code is slightly
broken and misleading.
The lockless part is in mempool_free(). It wants to determine whether the
item being freed needs to be returned to the pool or backing allocator
without grabbing pool->lock. Two things need to be guaranteed for correct
operation.
1. pool->curr_nr + #allocated should never dip below pool->min_nr.
2. Waiters shouldn't be left dangling.
For #1, The only necessary condition is that curr_nr visible at free is
from after the allocation of the element being freed (details in the
comment). For most cases, this is true without any barrier but there can
be fringe cases where the allocated pointer is passed to the freeing task
without going through memory barriers. To cover this case, wmb is
necessary before returning from allocation and rmb is necessary before
reading curr_nr. IOW,
ALLOCATING TASK FREEING TASK
update pool state after alloc;
wmb();
pass pointer to freeing task;
read pointer;
rmb();
read pool state to free;
The current code doesn't have wmb after pool update during allocation and
may theoretically, on machines where unlock doesn't behave as full wmb,
lead to pool depletion and deadlock. smp_wmb() needs to be added after
successful allocation from reserved elements and smp_mb() in
mempool_free() can be replaced with smp_rmb().
For #2, the waiter needs to add itself to waitqueue and then check the
wait condition and the waker needs to update the wait condition and then
wake up. Because waitqueue operations always go through full spinlock
synchronization, there is no need for extra memory barriers.
Furthermore, mempool_alloc() is already holding pool->lock when it decides
that it needs to wait. There is no reason to do unlock - add waitqueue -
test condition again. It can simply add itself to waitqueue while holding
pool->lock and then unlock and sleep.
This patch adds smp_wmb() after successful allocation from reserved pool,
replaces smp_mb() in mempool_free() with smp_rmb() and extend pool->lock
over waitqueue addition. More importantly, it explains what memory
barriers do and how the lockless testing is correct.
-v2: Oleg pointed out that unlock doesn't imply wmb. Added explicit
smp_wmb() after successful allocation from reserved pool and
updated comments accordingly.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The files changed within are only using the EXPORT_SYMBOL
macro variants. They are not using core modular infrastructure
and hence don't need module.h but only the export.h header.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
The kzalloc mempool zeros items when they are initially allocated, but
does not rezero used items that are returned to the pool. Consequently
mempool_alloc()s may return non-zeroed memory.
Since there are/were only two in-tree users for
mempool_create_kzalloc_pool(), and 'fixing' this in a way that will
re-zero used (but not new) items before first use is non-trivial, just
remove it.
Signed-off-by: Sage Weil <sage@newdream.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
clean up type-casting twice. "size_t" is typedef as "unsigned long" in
64-bit system, and "unsigned int" in 32-bit system, and the intermediate
cast to 'long' is pointless.
Signed-off-by: Figo.zhang <figo1802@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Spelling fixes in mm/.
Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
|
|
kmalloc_node() and kmem_cache_alloc_node() were not available in a zeroing
variant in the past. But with __GFP_ZERO it is possible now to do zeroing
while allocating.
Use __GFP_ZERO to remove the explicit clearing of memory via memset whereever
we can.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Christian Borntraeger points out that mempool_free() doesn't noop when
handed NULL. This is inconsistent with the other free-like functions
in the kernel.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A variety of (mostly) innocuous fixes to the embedded kernel-doc content in
source files, including:
* make multi-line initial descriptions single line
* denote some function names, constants and structs as such
* change erroneous opening '/*' to '/**' in a few places
* reword some text for clarity
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Cc: "Randy.Dunlap" <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch works around a complex dm-related deadlock/livelock down in the
mempool allocator.
Alasdair said:
Several dm targets suffer from this.
Mempools are not yet used correctly everywhere in device-mapper: they can
get shared when devices are stacked, and some targets share them across
multiple instances. I made fixing this one of the prerequisites for this
patch:
md-dm-reduce-stack-usage-with-stacked-block-devices.patch
which in some cases makes people more likely to hit the problem.
There's been some progress on this recently with (unfinished) dm-crypt
patches at:
http://www.kernel.org/pub/linux/kernel/people/agk/patches/2.6/editing/
(dm-crypt-move-io-to-workqueue.patch plus dependencies)
and:
I've no problems with a temporary workaround like that, but Milan Broz (a
new Redhat developer in the Czech Republic) has started reviewing all the
mempool usage in device-mapper so I'm expecting we'll soon have a proper fix
for this associated problems. [He's back from holiday at the start of next
week.]
For now, this sad-but-safe little patch will allow the machine to recover.
[akpm@osdl.org: rewrote changelog]
Cc: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial:
drivers/char/ftape/lowlevel/fdc-io.c: Correct a comment
Kconfig help: MTD_JEDECPROBE already supports Intel
Remove ugly debugging stuff
do_mounts.c: Minor ROOT_DEV comment cleanup
BUG_ON() Conversion in drivers/s390/block/dasd_devmap.c
BUG_ON() Conversion in mm/mempool.c
BUG_ON() Conversion in mm/memory.c
BUG_ON() Conversion in kernel/fork.c
BUG_ON() Conversion in ipc/sem.c
BUG_ON() Conversion in fs/ext2/
BUG_ON() Conversion in fs/hfs/
BUG_ON() Conversion in fs/dcache.c
BUG_ON() Conversion in fs/buffer.c
BUG_ON() Conversion in input/serio/hp_sdc_mlc.c
BUG_ON() Conversion in md/dm-table.c
BUG_ON() Conversion in md/dm-path-selector.c
BUG_ON() Conversion in drivers/isdn
BUG_ON() Conversion in drivers/char
BUG_ON() Conversion in drivers/mtd/
|
|
Add another allocator to the common mempool code: a kzalloc/kfree allocator
This will be used by the next patch in the series to replace a mempool-backed
kzalloc allocator. It is also very likely that there will be more users in
the future.
Signed-off-by: Matthew Dobson <colpatch@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add another allocator to the common mempool code: a kmalloc/kfree allocator
This will be used by the next patch in the series to replace duplicate
mempool-backed kmalloc allocators in several places in the kernel. It is also
very likely that there will be more users in the future.
Signed-off-by: Matthew Dobson <colpatch@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This will be used by the next patch in the series to replace duplicate
mempool-backed page allocators in 2 places in the kernel. It is also likely
that there will be more users in the future.
Signed-off-by: Matthew Dobson <colpatch@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|