aboutsummaryrefslogtreecommitdiff
path: root/mm/slab.c
AgeCommit message (Collapse)Author
2021-02-24kasan: move _RET_IP_ to inline wrappersAndrey Konovalov
Generic mm functions that call KASAN annotations that might report a bug pass _RET_IP_ to them as an argument. This allows KASAN to include the name of the function that called the mm function in its report's header. Now that KASAN has inline wrappers for all of its annotations, move _RET_IP_ to those wrappers to simplify annotation call sites. Link: https://linux-review.googlesource.com/id/I8fb3c06d49671305ee184175a39591bc26647a67 Link: https://lkml.kernel.org/r/5c1490eddf20b436b8c4eeea83fce47687d5e4a4.1610733117.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: memcg/slab: pre-allocate obj_cgroups for slab caches with SLAB_ACCOUNTRoman Gushchin
In general it's unknown in advance if a slab page will contain accounted objects or not. In order to avoid memory waste, an obj_cgroup vector is allocated dynamically when a need to account of a new object arises. Such approach is memory efficient, but requires an expensive cmpxchg() to set up the memcg/objcgs pointer, because an allocation can race with a different allocation on another cpu. But in some common cases it's known for sure that a slab page will contain accounted objects: if the page belongs to a slab cache with a SLAB_ACCOUNT flag set. It includes such popular objects like vm_area_struct, anon_vma, task_struct, etc. In such cases we can pre-allocate the objcgs vector and simple assign it to the page without any atomic operations, because at this early stage the page is not visible to anyone else. A very simplistic benchmark (allocating 10000000 64-bytes objects in a row) shows ~15% win. In the real life it seems that most workloads are not very sensitive to the speed of (accounted) slab allocations. [guro@fb.com: open-code set_page_objcgs() and add some comments, by Johannes] Link: https://lkml.kernel.org/r/20201113001926.GA2934489@carbon.dhcp.thefacebook.com [akpm@linux-foundation.org: fix it for mm-slub-call-account_slab_page-after-slab-page-initialization-fix.patch] Link: https://lkml.kernel.org/r/20201110195753.530157-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/slab: minor coding style tweaksZhiyuan Dai
Fix some coding style issues, improve code reading. Adds whitespace to clearly separate the parameters. Link: https://lkml.kernel.org/r/1612841499-32166-1-git-send-email-daizhiyuan@phytium.com.cn Signed-off-by: Zhiyuan Dai <daizhiyuan@phytium.com.cn> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/sl?b.c: remove ctor argument from kmem_cache_flagsNikolay Borisov
This argument hasn't been used since e153362a50a3 ("slub: Remove objsize check in kmem_cache_flags()") so simply remove it. Link: https://lkml.kernel.org/r/20210126095733.974665-1-nborisov@suse.com Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm, tracing: record slab name for kmem_cache_free()Jacob Wen
Currently, a trace record generated by the RCU core is as below. ... kmem_cache_free: call_site=rcu_core+0x1fd/0x610 ptr=00000000f3b49a66 It doesn't tell us what the RCU core has freed. This patch adds the slab name to trace_kmem_cache_free(). The new format is as follows. ... kmem_cache_free: call_site=rcu_core+0x1fd/0x610 ptr=0000000037f79c8d name=dentry ... kmem_cache_free: call_site=rcu_core+0x1fd/0x610 ptr=00000000f78cb7b5 name=sock_inode_cache ... kmem_cache_free: call_site=rcu_core+0x1fd/0x610 ptr=0000000018768985 name=pool_workqueue ... kmem_cache_free: call_site=rcu_core+0x1fd/0x610 ptr=000000006a6cb484 name=radix_tree_node We can use it to understand what the RCU core is going to free. For example, some users maybe interested in when the RCU core starts freeing reclaimable slabs like dentry to reduce memory pressure. Link: https://lkml.kernel.org/r/20201216072804.8838-1-jian.w.wen@oracle.com Signed-off-by: Jacob Wen <jian.w.wen@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-01-22mm: Add mem_dump_obj() to print source of memory blockPaul E. McKenney
There are kernel facilities such as per-CPU reference counts that give error messages in generic handlers or callbacks, whose messages are unenlightening. In the case of per-CPU reference-count underflow, this is not a problem when creating a new use of this facility because in that case the bug is almost certainly in the code implementing that new use. However, trouble arises when deploying across many systems, which might exercise corner cases that were not seen during development and testing. Here, it would be really nice to get some kind of hint as to which of several uses the underflow was caused by. This commit therefore exposes a mem_dump_obj() function that takes a pointer to memory (which must still be allocated if it has been dynamically allocated) and prints available information on where that memory came from. This pointer can reference the middle of the block as well as the beginning of the block, as needed by things like RCU callback functions and timer handlers that might not know where the beginning of the memory block is. These functions and handlers can use mem_dump_obj() to print out better hints as to where the problem might lie. The information printed can depend on kernel configuration. For example, the allocation return address can be printed only for slab and slub, and even then only when the necessary debug has been enabled. For slab, build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space to the next power of two or use the SLAB_STORE_USER when creating the kmem_cache structure. For slub, build with CONFIG_SLUB_DEBUG=y and boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create() if more focused use is desired. Also for slub, use CONFIG_STACKTRACE to enable printing of the allocation-time stack trace. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Reported-by: Andrii Nakryiko <andrii@kernel.org> [ paulmck: Convert to printing and change names per Joonsoo Kim. ] [ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ] [ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ] [ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ] [ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ] [ paulmck: Explicitly check for small pointers per Naresh Kamboju. ] Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-12-15mm: introduce debug_pagealloc_{map,unmap}_pages() helpersMike Rapoport
Patch series "arch, mm: improve robustness of direct map manipulation", v7. During recent discussion about KVM protected memory, David raised a concern about usage of __kernel_map_pages() outside of DEBUG_PAGEALLOC scope [1]. Indeed, for architectures that define CONFIG_ARCH_HAS_SET_DIRECT_MAP it is possible that __kernel_map_pages() would fail, but since this function is void, the failure will go unnoticed. Moreover, there's lack of consistency of __kernel_map_pages() semantics across architectures as some guard this function with #ifdef DEBUG_PAGEALLOC, some refuse to update the direct map if page allocation debugging is disabled at run time and some allow modifying the direct map regardless of DEBUG_PAGEALLOC settings. This set straightens this out by restoring dependency of __kernel_map_pages() on DEBUG_PAGEALLOC and updating the call sites accordingly. Since currently the only user of __kernel_map_pages() outside DEBUG_PAGEALLOC is hibernation, it is updated to make direct map accesses there more explicit. [1] https://lore.kernel.org/lkml/2759b4bf-e1e3-d006-7d86-78a40348269d@redhat.com This patch (of 4): When CONFIG_DEBUG_PAGEALLOC is enabled, it unmaps pages from the kernel direct mapping after free_pages(). The pages than need to be mapped back before they could be used. Theese mapping operations use __kernel_map_pages() guarded with with debug_pagealloc_enabled(). The only place that calls __kernel_map_pages() without checking whether DEBUG_PAGEALLOC is enabled is the hibernation code that presumes availability of this function when ARCH_HAS_SET_DIRECT_MAP is set. Still, on arm64, __kernel_map_pages() will bail out when DEBUG_PAGEALLOC is not enabled but set_direct_map_invalid_noflush() may render some pages not present in the direct map and hibernation code won't be able to save such pages. To make page allocation debugging and hibernation interaction more robust, the dependency on DEBUG_PAGEALLOC or ARCH_HAS_SET_DIRECT_MAP has to be made more explicit. Start with combining the guard condition and the call to __kernel_map_pages() into debug_pagealloc_map_pages() and debug_pagealloc_unmap_pages() functions to emphasize that __kernel_map_pages() should not be called without DEBUG_PAGEALLOC and use these new functions to map/unmap pages when page allocation debugging is enabled. Link: https://lkml.kernel.org/r/20201109192128.960-1-rppt@kernel.org Link: https://lkml.kernel.org/r/20201109192128.960-2-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Len Brown <len.brown@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm/slab: rerform init_on_free earlierAlexander Popov
Currently in CONFIG_SLAB init_on_free happens too late, and heap objects go to the heap quarantine not being erased. Lets move init_on_free clearing before calling kasan_slab_free(). In that case heap quarantine will store erased objects, similarly to CONFIG_SLUB=y behavior. Link: https://lkml.kernel.org/r/20201210183729.1261524-1-alex.popov@linux.com Signed-off-by: Alexander Popov <alex.popov@linux.com> Reviewed-by: Alexander Potapenko <glider@google.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm, slab, slub: clear the slab_cache field when freeing pageVlastimil Babka
The page allocator expects that page->mapping is NULL for a page being freed. SLAB and SLUB use the slab_cache field which is in union with mapping, but before freeing the page, the field is referenced with the "mapping" name when set to NULL. It's IMHO more correct (albeit functionally the same) to use the slab_cache name as that's the field we use in SL*B, and document why we clear it in a comment (we don't clear fields such as s_mem or freelist, as page allocator doesn't care about those). While using the 'mapping' name would automagically keep the code correct if the unions in struct page changed, such changes should be done consciously and needed changes evaluated - the comment should help with that. Link: https://lkml.kernel.org/r/20201210160020.21562-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16mm: fix some comments formattingChen Tao
Correct one function name "get_partials" with "get_partial". Update the old struct name of list3 with kmem_cache_node. Signed-off-by: Chen Tao <chentao3@hotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Link: https://lkml.kernel.org/r/Message-ID: Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcg/slab: uncharge during kmem_cache_free_bulk()Bharata B Rao
Object cgroup charging is done for all the objects during allocation, but during freeing, uncharging ends up happening for only one object in the case of bulk allocation/freeing. Fix this by having a separate call to uncharge all the objects from kmem_cache_free_bulk() and by modifying memcg_slab_free_hook() to take care of bulk uncharging. Fixes: 964d4bd370d5 ("mm: memcg/slab: save obj_cgroup for non-root slab objects" Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201009060423.390479-1-bharata@linux.ibm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm/slab.c: clean code by removing redundant if conditionMateusz Nosek
The removed code was unnecessary and changed nothing in the flow, since in case of returning NULL by 'kmem_cache_alloc_node' returning 'freelist' from the function in question is the same as returning NULL. Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: https://lkml.kernel.org/r/20200915230329.13002-1-mateusznosek0@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-26mm: slab: fix potential double free in ___cache_freeShakeel Butt
With the commit 10befea91b61 ("mm: memcg/slab: use a single set of kmem_caches for all allocations"), it becomes possible to call kfree() from the slabs_destroy(). The functions cache_flusharray() and do_drain() calls slabs_destroy() on array_cache of the local CPU without updating the size of the array_cache. This enables the kfree() call from the slabs_destroy() to recursively call cache_flusharray() which can potentially call free_block() on the same elements of the array_cache of the local CPU and causing double free and memory corruption. To fix the issue, simply update the local CPU array_cache cache before calling slabs_destroy(). Fixes: 10befea91b61 ("mm: memcg/slab: use a single set of kmem_caches for all allocations") Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Tested-by: Ming Lei <ming.lei@redhat.com> Reported-by: kernel test robot <rong.a.chen@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ted Ts'o <tytso@mit.edu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: slab: rename (un)charge_slab_page() to (un)account_slab_page()Roman Gushchin
charge_slab_page() and uncharge_slab_page() are not related anymore to memcg charging and uncharging. In order to make their names less confusing, let's rename them to account_slab_page() and unaccount_slab_page() respectively. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Link: http://lkml.kernel.org/r/20200707173612.124425-2-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: remove unused argument by charge_slab_page()Roman Gushchin
charge_slab_page() is not using the gfp argument anymore, remove it. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200707173612.124425-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: use a single set of kmem_caches for all allocationsRoman Gushchin
Instead of having two sets of kmem_caches: one for system-wide and non-accounted allocations and the second one shared by all accounted allocations, we can use just one. The idea is simple: space for obj_cgroup metadata can be allocated on demand and filled only for accounted allocations. It allows to remove a bunch of code which is required to handle kmem_cache clones for accounted allocations. There is no more need to create them, accumulate statistics, propagate attributes, etc. It's a quite significant simplification. Also, because the total number of slab_caches is reduced almost twice (not all kmem_caches have a memcg clone), some additional memory savings are expected. On my devvm it additionally saves about 3.5% of slab memory. [guro@fb.com: fix build on MIPS] Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: deprecate slab_root_cachesRoman Gushchin
Currently there are two lists of kmem_caches: 1) slab_caches, which contains all kmem_caches, 2) slab_root_caches, which contains only root kmem_caches. And there is some preprocessor magic to have a single list if CONFIG_MEMCG_KMEM isn't enabled. It was required earlier because the number of non-root kmem_caches was proportional to the number of memory cgroups and could reach really big values. Now, when it cannot exceed the number of root kmem_caches, there is really no reason to maintain two lists. We never iterate over the slab_root_caches list on any hot paths, so it's perfectly fine to iterate over slab_caches and filter out non-root kmem_caches. It allows to remove a lot of config-dependent code and two pointers from the kmem_cache structure. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-16-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: use a single set of kmem_caches for all accounted allocationsRoman Gushchin
This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: save obj_cgroup for non-root slab objectsRoman Gushchin
Store the obj_cgroup pointer in the corresponding place of page->obj_cgroups for each allocated non-root slab object. Make sure that each allocated object holds a reference to obj_cgroup. Objcg pointer is obtained from the memcg->objcg dereferencing in memcg_kmem_get_cache() and passed from pre_alloc_hook to post_alloc_hook. Then in case of successful allocation(s) it's getting stored in the page->obj_cgroups vector. The objcg obtaining part look a bit bulky now, but it will be simplified by next commits in the series. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-9-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, kcsan: instrument SLAB/SLUB free with "ASSERT_EXCLUSIVE_ACCESS"Marco Elver
Provide the necessary KCSAN checks to assist with debugging racy use-after-frees. While KASAN is more reliable at generally catching such use-after-frees (due to its use of a quarantine), it can be difficult to debug racy use-after-frees. If a reliable reproducer exists, KCSAN can assist in debugging such issues. Note: ASSERT_EXCLUSIVE_ACCESS is a convenience wrapper if the size is simply sizeof(var). Instead, here we just use __kcsan_check_access() explicitly to pass the correct size. Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200623072653.114563-1-elver@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, slab/slub: improve error reporting and overhead of cache_from_obj()Vlastimil Babka
cache_from_obj() was added by commit b9ce5ef49f00 ("sl[au]b: always get the cache from its page in kmem_cache_free()") to support kmemcg, where per-memcg cache can be different from the root one, so we can't use the kmem_cache pointer given to kmem_cache_free(). Prior to that commit, SLUB already had debugging check+warning that could be enabled to compare the given kmem_cache pointer to one referenced by the slab page where the object-to-be-freed resides. This check was moved to cache_from_obj(). Later the check was also enabled for SLAB_FREELIST_HARDENED configs by commit 598a0717a816 ("mm/slab: validate cache membership under freelist hardening"). These checks and warnings can be useful especially for the debugging, which can be improved. Commit 598a0717a816 changed the pr_err() with WARN_ON_ONCE() to WARN_ONCE() so only the first hit is now reported, others are silent. This patch changes it to WARN() so that all errors are reported. It's also useful to print SLUB allocation/free tracking info for the offending object, if tracking is enabled. Thus, export the SLUB print_tracking() function and provide an empty one for SLAB. For SLUB we can also benefit from the static key check in kmem_cache_debug_flags(), but we need to move this function to slab.h and declare the static key there. [1] https://lore.kernel.org/r/20200608230654.828134-18-guro@fb.com [vbabka@suse.cz: avoid bogus WARN()] Link: https://lore.kernel.org/r/20200623090213.GW5535@shao2-debian Link: http://lkml.kernel.org/r/b33e0fa7-cd28-4788-9e54-5927846329ef@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Garrett <mjg59@google.com> Cc: Jann Horn <jannh@google.com> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Link: http://lkml.kernel.org/r/afeda7ac-748b-33d8-a905-56b708148ad5@suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, slab/slub: move and improve cache_from_obj()Vlastimil Babka
The function cache_from_obj() was added by commit b9ce5ef49f00 ("sl[au]b: always get the cache from its page in kmem_cache_free()") to support kmemcg, where per-memcg cache can be different from the root one, so we can't use the kmem_cache pointer given to kmem_cache_free(). Prior to that commit, SLUB already had debugging check+warning that could be enabled to compare the given kmem_cache pointer to one referenced by the slab page where the object-to-be-freed resides. This check was moved to cache_from_obj(). Later the check was also enabled for SLAB_FREELIST_HARDENED configs by commit 598a0717a816 ("mm/slab: validate cache membership under freelist hardening"). These checks and warnings can be useful especially for the debugging, which can be improved. Commit 598a0717a816 changed the pr_err() with WARN_ON_ONCE() to WARN_ONCE() so only the first hit is now reported, others are silent. This patch changes it to WARN() so that all errors are reported. It's also useful to print SLUB allocation/free tracking info for the offending object, if tracking is enabled. We could export the SLUB print_tracking() function and provide an empty one for SLAB, or realize that both the debugging and hardening cases in cache_from_obj() are only supported by SLUB anyway. So this patch moves cache_from_obj() from slab.h to separate instances in slab.c and slub.c, where the SLAB version only does the kmemcg lookup and even could be completely removed once the kmemcg rework [1] is merged. The SLUB version can thus easily use the print_tracking() function. It can also use the kmem_cache_debug_flags() static key check for improved performance in kernels without the hardening and with debugging not enabled on boot. [1] https://lore.kernel.org/r/20200608230654.828134-18-guro@fb.com Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Jann Horn <jannh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Link: http://lkml.kernel.org/r/20200610163135.17364-10-vbabka@suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm/slab.c: update outdated kmem_list3 in a commentXiao Yang
kmem_list3 has been renamed to kmem_cache_node long long ago so update it. References: 6744f087ba2a ("slab: Common name for the per node structures") ce8eb6c424c7 ("slab: Rename list3/l3 to node") Signed-off-by: Xiao Yang <yangx.jy@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200722033355.26908-1-yangx.jy@cn.fujitsu.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, slab: check GFP_SLAB_BUG_MASK before alloc_pages in kmalloc_orderLong Li
kmalloc cannot allocate memory from HIGHMEM. Allocating large amounts of memory currently bypasses the check and will simply leak the memory when page_address() returns NULL. To fix this, factor the GFP_SLAB_BUG_MASK check out of slab & slub, and call it from kmalloc_order() as well. In order to make the code clear, the warning message is put in one place. Signed-off-by: Long Li <lonuxli.64@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200704035027.GA62481@lilong Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm/slab: add naive detection of double freeKees Cook
Similar to commit ce6fa91b9363 ("mm/slub.c: add a naive detection of double free or corruption"), add a very cheap double-free check for SLAB under CONFIG_SLAB_FREELIST_HARDENED. With this added, the "SLAB_FREE_DOUBLE" LKDTM test passes under SLAB: lkdtm: Performing direct entry SLAB_FREE_DOUBLE lkdtm: Attempting double slab free ... ------------[ cut here ]------------ WARNING: CPU: 2 PID: 2193 at mm/slab.c:757 ___cache _free+0x325/0x390 [keescook@chromium.org: fix misplaced __free_one()] Link: http://lkml.kernel.org/r/202006261306.0D82A2B@keescook Link: https://lore.kernel.org/lkml/7ff248c7-d447-340c-a8e2-8c02972aca70@infradead.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Randy Dunlap <rdunlap@infradead.org> [build tested] Cc: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Matthew Garrett <mjg59@google.com> Cc: Jann Horn <jannh@google.com> Cc: Vijayanand Jitta <vjitta@codeaurora.org> Link: http://lkml.kernel.org/r/20200625215548.389774-3-keescook@chromium.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm/page_alloc: integrate classzone_idx and high_zoneidxJoonsoo Kim
classzone_idx is just different name for high_zoneidx now. So, integrate them and add some comment to struct alloc_context in order to reduce future confusion about the meaning of this variable. The accessor, ac_classzone_idx() is also removed since it isn't needed after integration. In addition to integration, this patch also renames high_zoneidx to highest_zoneidx since it represents more precise meaning. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ye Xiaolong <xiaolong.ye@intel.com> Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-13mm, debug_pagealloc: don't rely on static keys too earlyVlastimil Babka
Commit 96a2b03f281d ("mm, debug_pagelloc: use static keys to enable debugging") has introduced a static key to reduce overhead when debug_pagealloc is compiled in but not enabled. It relied on the assumption that jump_label_init() is called before parse_early_param() as in start_kernel(), so when the "debug_pagealloc=on" option is parsed, it is safe to enable the static key. However, it turns out multiple architectures call parse_early_param() earlier from their setup_arch(). x86 also calls jump_label_init() even earlier, so no issue was found while testing the commit, but same is not true for e.g. ppc64 and s390 where the kernel would not boot with debug_pagealloc=on as found by our QA. To fix this without tricky changes to init code of multiple architectures, this patch partially reverts the static key conversion from 96a2b03f281d. Init-time and non-fastpath calls (such as in arch code) of debug_pagealloc_enabled() will again test a simple bool variable. Fastpath mm code is converted to a new debug_pagealloc_enabled_static() variant that relies on the static key, which is enabled in a well-defined point in mm_init() where it's guaranteed that jump_label_init() has been called, regardless of architecture. [sfr@canb.auug.org.au: export _debug_pagealloc_enabled_early] Link: http://lkml.kernel.org/r/20200106164944.063ac07b@canb.auug.org.au Link: http://lkml.kernel.org/r/20191219130612.23171-1-vbabka@suse.cz Fixes: 96a2b03f281d ("mm, debug_pagelloc: use static keys to enable debugging") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Qian Cai <cai@lca.pw> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01mm, slab: remove unused kmalloc_size()Pengfei Li
The size of kmalloc can be obtained from kmalloc_info[], so remove kmalloc_size() that will not be used anymore. Link: http://lkml.kernel.org/r/1569241648-26908-3-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01mm, slab: make kmalloc_info[] contain all types of namesPengfei Li
Patch series "mm, slab: Make kmalloc_info[] contain all types of names", v6. There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). Patch1 predefines the names of all types of kmalloc to save the time spent dynamically generating names. These changes make sense, and the time spent by new_kmalloc_cache() has been reduced by approximately 36.3%. Time spent by new_kmalloc_cache() (CPU cycles) 5.3-rc7 66264 5.3-rc7+patch 42188 This patch (of 3): There are three types of kmalloc, KMALLOC_NORMAL, KMALLOC_RECLAIM and KMALLOC_DMA. The name of KMALLOC_NORMAL is contained in kmalloc_info[].name, but the names of KMALLOC_RECLAIM and KMALLOC_DMA are dynamically generated by kmalloc_cache_name(). This patch predefines the names of all types of kmalloc to save the time spent dynamically generating names. Besides, remove the kmalloc_cache_name() that is no longer used. Link: http://lkml.kernel.org/r/1569241648-26908-2-git-send-email-lpf.vector@gmail.com Signed-off-by: Pengfei Li <lpf.vector@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-14mm/slab.c: fix kernel-doc warning for __ksize()Randy Dunlap
Fix kernel-doc warning in mm/slab.c: mm/slab.c:4215: warning: Function parameter or member 'objp' not described in '__ksize' Also add Return: documentation section for this function. Link: http://lkml.kernel.org/r/68c9fd7d-f09e-d376-e292-c7b2bdf1774d@infradead.org Fixes: 10d1f8cb3965 ("mm/slab: refactor common ksize KASAN logic into slab_common.c") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Acked-by: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12mm: security: introduce init_on_alloc=1 and init_on_free=1 boot optionsAlexander Potapenko
Patch series "add init_on_alloc/init_on_free boot options", v10. Provide init_on_alloc and init_on_free boot options. These are aimed at preventing possible information leaks and making the control-flow bugs that depend on uninitialized values more deterministic. Enabling either of the options guarantees that the memory returned by the page allocator and SL[AU]B is initialized with zeroes. SLOB allocator isn't supported at the moment, as its emulation of kmem caches complicates handling of SLAB_TYPESAFE_BY_RCU caches correctly. Enabling init_on_free also guarantees that pages and heap objects are initialized right after they're freed, so it won't be possible to access stale data by using a dangling pointer. As suggested by Michal Hocko, right now we don't let the heap users to disable initialization for certain allocations. There's not enough evidence that doing so can speed up real-life cases, and introducing ways to opt-out may result in things going out of control. This patch (of 2): The new options are needed to prevent possible information leaks and make control-flow bugs that depend on uninitialized values more deterministic. This is expected to be on-by-default on Android and Chrome OS. And it gives the opportunity for anyone else to use it under distros too via the boot args. (The init_on_free feature is regularly requested by folks where memory forensics is included in their threat models.) init_on_alloc=1 makes the kernel initialize newly allocated pages and heap objects with zeroes. Initialization is done at allocation time at the places where checks for __GFP_ZERO are performed. init_on_free=1 makes the kernel initialize freed pages and heap objects with zeroes upon their deletion. This helps to ensure sensitive data doesn't leak via use-after-free accesses. Both init_on_alloc=1 and init_on_free=1 guarantee that the allocator returns zeroed memory. The two exceptions are slab caches with constructors and SLAB_TYPESAFE_BY_RCU flag. Those are never zero-initialized to preserve their semantics. Both init_on_alloc and init_on_free default to zero, but those defaults can be overridden with CONFIG_INIT_ON_ALLOC_DEFAULT_ON and CONFIG_INIT_ON_FREE_DEFAULT_ON. If either SLUB poisoning or page poisoning is enabled, those options take precedence over init_on_alloc and init_on_free: initialization is only applied to unpoisoned allocations. Slowdown for the new features compared to init_on_free=0, init_on_alloc=0: hackbench, init_on_free=1: +7.62% sys time (st.err 0.74%) hackbench, init_on_alloc=1: +7.75% sys time (st.err 2.14%) Linux build with -j12, init_on_free=1: +8.38% wall time (st.err 0.39%) Linux build with -j12, init_on_free=1: +24.42% sys time (st.err 0.52%) Linux build with -j12, init_on_alloc=1: -0.13% wall time (st.err 0.42%) Linux build with -j12, init_on_alloc=1: +0.57% sys time (st.err 0.40%) The slowdown for init_on_free=0, init_on_alloc=0 compared to the baseline is within the standard error. The new features are also going to pave the way for hardware memory tagging (e.g. arm64's MTE), which will require both on_alloc and on_free hooks to set the tags for heap objects. With MTE, tagging will have the same cost as memory initialization. Although init_on_free is rather costly, there are paranoid use-cases where in-memory data lifetime is desired to be minimized. There are various arguments for/against the realism of the associated threat models, but given that we'll need the infrastructure for MTE anyway, and there are people who want wipe-on-free behavior no matter what the performance cost, it seems reasonable to include it in this series. [glider@google.com: v8] Link: http://lkml.kernel.org/r/20190626121943.131390-2-glider@google.com [glider@google.com: v9] Link: http://lkml.kernel.org/r/20190627130316.254309-2-glider@google.com [glider@google.com: v10] Link: http://lkml.kernel.org/r/20190628093131.199499-2-glider@google.com Link: http://lkml.kernel.org/r/20190617151050.92663-2-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.cz> [page and dmapool parts Acked-by: James Morris <jamorris@linux.microsoft.com>] Cc: Christoph Lameter <cl@linux.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Sandeep Patil <sspatil@android.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Jann Horn <jannh@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12mm: memcg/slab: unify SLAB and SLUB page accountingRoman Gushchin
Currently the page accounting code is duplicated in SLAB and SLUB internals. Let's move it into new (un)charge_slab_page helpers in the slab_common.c file. These helpers will be responsible for statistics (global and memcg-aware) and memcg charging. So they are replacing direct memcg_(un)charge_slab() calls. Link: http://lkml.kernel.org/r/20190611231813.3148843-6-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12mm: memcg/slab: generalize postponed non-root kmem_cache deactivationRoman Gushchin
Currently SLUB uses a work scheduled after an RCU grace period to deactivate a non-root kmem_cache. This mechanism can be reused for kmem_caches release, but requires generalization for SLAB case. Introduce kmemcg_cache_deactivate() function, which calls allocator-specific __kmem_cache_deactivate() and schedules execution of __kmem_cache_deactivate_after_rcu() with all necessary locks in a worker context after an rcu grace period. Here is the new calling scheme: kmemcg_cache_deactivate() __kmemcg_cache_deactivate() SLAB/SLUB-specific kmemcg_rcufn() rcu kmemcg_workfn() work __kmemcg_cache_deactivate_after_rcu() SLAB/SLUB-specific instead of: __kmemcg_cache_deactivate() SLAB/SLUB-specific slab_deactivate_memcg_cache_rcu_sched() SLUB-only kmemcg_rcufn() rcu kmemcg_workfn() work kmemcg_cache_deact_after_rcu() SLUB-only For consistency, all allocator-specific functions start with "__". Link: http://lkml.kernel.org/r/20190611231813.3148843-4-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12mm: memcg/slab: postpone kmem_cache memcg pointer initialization to ↵Roman Gushchin
memcg_link_cache() Patch series "mm: reparent slab memory on cgroup removal", v7. # Why do we need this? We've noticed that the number of dying cgroups is steadily growing on most of our hosts in production. The following investigation revealed an issue in the userspace memory reclaim code [1], accounting of kernel stacks [2], and also the main reason: slab objects. The underlying problem is quite simple: any page charged to a cgroup holds a reference to it, so the cgroup can't be reclaimed unless all charged pages are gone. If a slab object is actively used by other cgroups, it won't be reclaimed, and will prevent the origin cgroup from being reclaimed. Slab objects, and first of all vfs cache, is shared between cgroups, which are using the same underlying fs, and what's even more important, it's shared between multiple generations of the same workload. So if something is running periodically every time in a new cgroup (like how systemd works), we do accumulate multiple dying cgroups. Strictly speaking pagecache isn't different here, but there is a key difference: we disable protection and apply some extra pressure on LRUs of dying cgroups, and these LRUs contain all charged pages. My experiments show that with the disabled kernel memory accounting the number of dying cgroups stabilizes at a relatively small number (~100, depends on memory pressure and cgroup creation rate), and with kernel memory accounting it grows pretty steadily up to several thousands. Memory cgroups are quite complex and big objects (mostly due to percpu stats), so it leads to noticeable memory losses. Memory occupied by dying cgroups is measured in hundreds of megabytes. I've even seen a host with more than 100Gb of memory wasted for dying cgroups. It leads to a degradation of performance with the uptime, and generally limits the usage of cgroups. My previous attempt [3] to fix the problem by applying extra pressure on slab shrinker lists caused a regressions with xfs and ext4, and has been reverted [4]. The following attempts to find the right balance [5, 6] were not successful. So instead of trying to find a maybe non-existing balance, let's do reparent accounted slab caches to the parent cgroup on cgroup removal. # Implementation approach There is however a significant problem with reparenting of slab memory: there is no list of charged pages. Some of them are in shrinker lists, but not all. Introducing of a new list is really not an option. But fortunately there is a way forward: every slab page has a stable pointer to the corresponding kmem_cache. So the idea is to reparent kmem_caches instead of slab pages. It's actually simpler and cheaper, but requires some underlying changes: 1) Make kmem_caches to hold a single reference to the memory cgroup, instead of a separate reference per every slab page. 2) Stop setting page->mem_cgroup pointer for memcg slab pages and use page->kmem_cache->memcg indirection instead. It's used only on slab page release, so performance overhead shouldn't be a big issue. 3) Introduce a refcounter for non-root slab caches. It's required to be able to destroy kmem_caches when they become empty and release the associated memory cgroup. There is a bonus: currently we release all memcg kmem_caches all together with the memory cgroup itself. This patchset allows individual kmem_caches to be released as soon as they become inactive and free. Some additional implementation details are provided in corresponding commit messages. # Results Below is the average number of dying cgroups on two groups of our production hosts. They do run some sort of web frontend workload, the memory pressure is moderate. As we can see, with the kernel memory reparenting the number stabilizes in 60s range; however with the original version it grows almost linearly and doesn't show any signs of plateauing. The difference in slab and percpu usage between patched and unpatched versions also grows linearly. In 7 days it exceeded 200Mb. day 0 1 2 3 4 5 6 7 original 56 362 628 752 1070 1250 1490 1560 patched 23 46 51 55 60 57 67 69 mem diff(Mb) 22 74 123 152 164 182 214 241 # Links [1]: commit 68600f623d69 ("mm: don't miss the last page because of round-off error") [2]: commit 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting") [3]: commit 172b06c32b94 ("mm: slowly shrink slabs with a relatively small number of objects") [4]: commit a9a238e83fbb ("Revert "mm: slowly shrink slabs with a relatively small number of objects") [5]: https://lkml.org/lkml/2019/1/28/1865 [6]: https://marc.info/?l=linux-mm&m=155064763626437&w=2 This patch (of 10): Initialize kmem_cache->memcg_params.memcg pointer in memcg_link_cache() rather than in init_memcg_params(). Once kmem_cache will hold a reference to the memory cgroup, it will simplify the refcounting. For non-root kmem_caches memcg_link_cache() is always called before the kmem_cache becomes visible to a user, so it's safe. Link: http://lkml.kernel.org/r/20190611231813.3148843-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Waiman Long <longman@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12mm/slab: refactor common ksize KASAN logic into slab_common.cMarco Elver
This refactors common code of ksize() between the various allocators into slab_common.c: __ksize() is the allocator-specific implementation without instrumentation, whereas ksize() includes the required KASAN logic. Link: http://lkml.kernel.org/r/20190626142014.141844-5-elver@google.com Signed-off-by: Marco Elver <elver@google.com> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12mm/slab: sanity-check page type when looking up cacheKees Cook
This avoids any possible type confusion when looking up an object. For example, if a non-slab were to be passed to kfree(), the invalid slab_cache pointer (i.e. overlapped with some other value from the struct page union) would be used for subsequent slab manipulations that could lead to further memory corruption. Since the page is already in cache, adding the PageSlab() check will have nearly zero cost, so add a check and WARN() to virt_to_cache(). Additionally replaces an open-coded virt_to_cache(). To support the failure mode this also updates all callers of virt_to_cache() and cache_from_obj() to handle a NULL cache pointer return value (though note that several already handle this case gracefully). [dan.carpenter@oracle.com: restore IRQs in kfree()] Link: http://lkml.kernel.org/r/20190613065637.GE16334@mwanda Link: http://lkml.kernel.org/r/20190530045017.15252-3-keescook@chromium.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-16slab: remove /proc/slab_allocatorsQian Cai
It turned out that DEBUG_SLAB_LEAK is still broken even after recent recue efforts that when there is a large number of objects like kmemleak_object which is normal on a debug kernel, # grep kmemleak /proc/slabinfo kmemleak_object 2243606 3436210 ... reading /proc/slab_allocators could easily loop forever while processing the kmemleak_object cache and any additional freeing or allocating objects will trigger a reprocessing. To make a situation worse, soft-lockups could easily happen in this sitatuion which will call printk() to allocate more kmemleak objects to guarantee an infinite loop. Also, since it seems no one had noticed when it was totally broken more than 2-year ago - see the commit fcf88917dd43 ("slab: fix a crash by reading /proc/slab_allocators"), probably nobody cares about it anymore due to the decline of the SLAB. Just remove it entirely. Suggested-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/slab.c: fix an infinite loop in leaks_show()Qian Cai
"cat /proc/slab_allocators" could hang forever on SMP machines with kmemleak or object debugging enabled due to other CPUs running do_drain() will keep making kmemleak_object or debug_objects_cache dirty and unable to escape the first loop in leaks_show(), do { set_store_user_clean(cachep); drain_cpu_caches(cachep); ... } while (!is_store_user_clean(cachep)); For example, do_drain slabs_destroy slab_destroy kmem_cache_free __cache_free ___cache_free kmemleak_free_recursive delete_object_full __delete_object put_object free_object_rcu kmem_cache_free cache_free_debugcheck --> dirty kmemleak_object One approach is to check cachep->name and skip both kmemleak_object and debug_objects_cache in leaks_show(). The other is to set store_user_clean after drain_cpu_caches() which leaves a small window between drain_cpu_caches() and set_store_user_clean() where per-CPU caches could be dirty again lead to slightly wrong information has been stored but could also speed up things significantly which sounds like a good compromise. For example, # cat /proc/slab_allocators 0m42.778s # 1st approach 0m0.737s # 2nd approach [akpm@linux-foundation.org: tweak comment] Link: http://lkml.kernel.org/r/20190411032635.10325-1-cai@lca.pw Fixes: d31676dfde25 ("mm/slab: alternative implementation for DEBUG_SLAB_LEAK") Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/slab.c: remove unneed check in cpuup_canceledLi RongQing
nc is a member of percpu allocation memory, and cannot be NULL. Link: http://lkml.kernel.org/r/1553159353-5056-1-git-send-email-lirongqing@baidu.com Signed-off-by: Li RongQing <lirongqing@baidu.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14slab: use slab_list instead of lruTobin C. Harding
Currently we use the page->lru list for maintaining lists of slabs. We have a list in the page structure (slab_list) that can be used for this purpose. Doing so makes the code cleaner since we are not overloading the lru list. Use the slab_list instead of the lru list for maintaining lists of slabs. Link: http://lkml.kernel.org/r/20190402230545.2929-7-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-06Merge branch 'x86-irq-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 irq updates from Ingo Molnar: "Here are the main changes in this tree: - Introduce x86-64 IRQ/exception/debug stack guard pages to detect stack overflows immediately and deterministically. - Clean up over a decade worth of cruft accumulated. The outcome of this should be more clear-cut faults/crashes when any of the low level x86 CPU stacks overflow, instead of silent memory corruption and sporadic failures much later on" * 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) x86/irq: Fix outdated comments x86/irq/64: Remove stack overflow debug code x86/irq/64: Remap the IRQ stack with guard pages x86/irq/64: Split the IRQ stack into its own pages x86/irq/64: Init hardirq_stack_ptr during CPU hotplug x86/irq/32: Handle irq stack allocation failure proper x86/irq/32: Invoke irq_ctx_init() from init_IRQ() x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr x86/irq/32: Make irq stack a character array x86/irq/32: Define IRQ_STACK_SIZE x86/dumpstack/64: Speedup in_exception_stack() x86/exceptions: Split debug IST stack x86/exceptions: Enable IST guard pages x86/exceptions: Disconnect IST index and stack order x86/cpu: Remove orig_ist array x86/cpu: Prepare TSS.IST setup for guard pages x86/dumpstack/64: Use cpu_entry_area instead of orig_ist x86/irq/64: Use cpu entry area instead of orig_ist x86/traps: Use cpu_entry_area instead of orig_ist ...
2019-04-19slab: store tagged freelist for off-slab slabmgmtQian Cai
Commit 51dedad06b5f ("kasan, slab: make freelist stored without tags") calls kasan_reset_tag() for off-slab slab management object leading to freelist being stored non-tagged. However, cache_grow_begin() calls alloc_slabmgmt() which calls kmem_cache_alloc_node() assigns a tag for the address and stores it in the shadow address. As the result, it causes endless errors below during boot due to drain_freelist() -> slab_destroy() -> kasan_slab_free() which compares already untagged freelist against the stored tag in the shadow address. Since off-slab slab management object freelist is such a special case, just store it tagged. Non-off-slab management object freelist is still stored untagged which has not been assigned a tag and should not cause any other troubles with this inconsistency. BUG: KASAN: double-free or invalid-free in slab_destroy+0x84/0x88 Pointer tag: [ff], memory tag: [99] CPU: 0 PID: 1376 Comm: kworker/0:4 Tainted: G W 5.1.0-rc3+ #8 Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.0.6 07/10/2018 Workqueue: cgroup_destroy css_killed_work_fn Call trace: print_address_description+0x74/0x2a4 kasan_report_invalid_free+0x80/0xc0 __kasan_slab_free+0x204/0x208 kasan_slab_free+0xc/0x18 kmem_cache_free+0xe4/0x254 slab_destroy+0x84/0x88 drain_freelist+0xd0/0x104 __kmem_cache_shrink+0x1ac/0x224 __kmemcg_cache_deactivate+0x1c/0x28 memcg_deactivate_kmem_caches+0xa0/0xe8 memcg_offline_kmem+0x8c/0x3d4 mem_cgroup_css_offline+0x24c/0x290 css_killed_work_fn+0x154/0x618 process_one_work+0x9cc/0x183c worker_thread+0x9b0/0xe38 kthread+0x374/0x390 ret_from_fork+0x10/0x18 Allocated by task 1625: __kasan_kmalloc+0x168/0x240 kasan_slab_alloc+0x18/0x20 kmem_cache_alloc_node+0x1f8/0x3a0 cache_grow_begin+0x4fc/0xa24 cache_alloc_refill+0x2f8/0x3e8 kmem_cache_alloc+0x1bc/0x3bc sock_alloc_inode+0x58/0x334 alloc_inode+0xb8/0x164 new_inode_pseudo+0x20/0xec sock_alloc+0x74/0x284 __sock_create+0xb0/0x58c sock_create+0x98/0xb8 __sys_socket+0x60/0x138 __arm64_sys_socket+0xa4/0x110 el0_svc_handler+0x2c0/0x47c el0_svc+0x8/0xc Freed by task 1625: __kasan_slab_free+0x114/0x208 kasan_slab_free+0xc/0x18 kfree+0x1a8/0x1e0 single_release+0x7c/0x9c close_pdeo+0x13c/0x43c proc_reg_release+0xec/0x108 __fput+0x2f8/0x784 ____fput+0x1c/0x28 task_work_run+0xc0/0x1b0 do_notify_resume+0xb44/0x1278 work_pending+0x8/0x10 The buggy address belongs to the object at ffff809681b89e00 which belongs to the cache kmalloc-128 of size 128 The buggy address is located 0 bytes inside of 128-byte region [ffff809681b89e00, ffff809681b89e80) The buggy address belongs to the page: page:ffff7fe025a06e00 count:1 mapcount:0 mapping:01ff80082000fb00 index:0xffff809681b8fe04 flags: 0x17ffffffc000200(slab) raw: 017ffffffc000200 ffff7fe025a06d08 ffff7fe022ef7b88 01ff80082000fb00 raw: ffff809681b8fe04 ffff809681b80000 00000001000000e0 0000000000000000 page dumped because: kasan: bad access detected page allocated via order 0, migratetype Unmovable, gfp_mask 0x2420c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_COMP|__GFP_THISNODE) prep_new_page+0x4e0/0x5e0 get_page_from_freelist+0x4ce8/0x50d4 __alloc_pages_nodemask+0x738/0x38b8 cache_grow_begin+0xd8/0xa24 ____cache_alloc_node+0x14c/0x268 __kmalloc+0x1c8/0x3fc ftrace_free_mem+0x408/0x1284 ftrace_free_init_mem+0x20/0x28 kernel_init+0x24/0x548 ret_from_fork+0x10/0x18 Memory state around the buggy address: ffff809681b89c00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe ffff809681b89d00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe >ffff809681b89e00: 99 99 99 99 99 99 99 99 fe fe fe fe fe fe fe fe ^ ffff809681b89f00: 43 43 43 43 43 fe fe fe fe fe fe fe fe fe fe fe ffff809681b8a000: 6d fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe Link: http://lkml.kernel.org/r/20190403022858.97584-1-cai@lca.pw Fixes: 51dedad06b5f ("kasan, slab: make freelist stored without tags") Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Andrey Konovalov <andreyknvl@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-17mm/slab: Remove store_stackinfo()Qian Cai
store_stackinfo() does not seem used in actual SLAB debugging. Potentially, it could be added to check_poison_obj() to provide more information but this seems like an overkill due to the declining popularity of SLAB, so just remove it instead. Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: linux-mm <linux-mm@kvack.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: rientjes@google.com Cc: sean.j.christopherson@intel.com Link: https://lkml.kernel.org/r/20190416142258.18694-1-cai@lca.pw
2019-04-07slab: fix a crash by reading /proc/slab_allocatorsQian Cai
The commit 510ded33e075 ("slab: implement slab_root_caches list") changes the name of the list node within "struct kmem_cache" from "list" to "root_caches_node", but leaks_show() still use the "list" which causes a crash when reading /proc/slab_allocators. You need to have CONFIG_SLAB=y and CONFIG_MEMCG=y to see the problem, because without MEMCG all slab caches are root caches, and the "list" node happens to be the right one. Fixes: 510ded33e075 ("slab: implement slab_root_caches list") Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Tobin C. Harding <tobin@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29mm: add support for kmem caches in DMA32 zoneNicolas Boichat
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables", v6. This is a followup to the discussion in [1], [2]. IOMMUs using ARMv7 short-descriptor format require page tables (level 1 and 2) to be allocated within the first 4GB of RAM, even on 64-bit systems. For L1 tables that are bigger than a page, we can just use __get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still use GFP_DMA). For L2 tables that only take 1KB, it would be a waste to allocate a full page, so we considered 3 approaches: 1. This series, adding support for GFP_DMA32 slab caches. 2. genalloc, which requires pre-allocating the maximum number of L2 page tables (4096, so 4MB of memory). 3. page_frag, which is not very memory-efficient as it is unable to reuse freed fragments until the whole page is freed. [3] This series is the most memory-efficient approach. stable@ note: We confirmed that this is a regression, and IOMMU errors happen on 4.19 and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue most likely starts from commit ad67f5a6545f ("arm64: replace ZONE_DMA with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek platforms (and maybe others?). [1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html [2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html [3] https://patchwork.codeaurora.org/patch/671639/ This patch (of 3): IOMMUs using ARMv7 short-descriptor format require page tables to be allocated within the first 4GB of RAM, even on 64-bit systems. On arm64, this is done by passing GFP_DMA32 flag to memory allocation functions. For IOMMU L2 tables that only take 1KB, it would be a waste to allocate a full page using get_free_pages, so we considered 3 approaches: 1. This patch, adding support for GFP_DMA32 slab caches. 2. genalloc, which requires pre-allocating the maximum number of L2 page tables (4096, so 4MB of memory). 3. page_frag, which is not very memory-efficient as it is unable to reuse freed fragments until the whole page is freed. This change makes it possible to create a custom cache in DMA32 zone using kmem_cache_create, then allocate memory using kmem_cache_alloc. We do not create a DMA32 kmalloc cache array, as there are currently no users of kmalloc(..., GFP_DMA32). These calls will continue to trigger a warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK. This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32 kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and unnecessary). Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org Signed-off-by: Nicolas Boichat <drinkcat@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Sasha Levin <Alexander.Levin@microsoft.com> Cc: Huaisheng Ye <yehs1@lenovo.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yong Wu <yong.wu@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Tomasz Figa <tfiga@google.com> Cc: Yingjoe Chen <yingjoe.chen@mediatek.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05docs/core-api/mm: fix return value descriptions in mm/Mike Rapoport
Many kernel-doc comments in mm/ have the return value descriptions either misformatted or omitted at all which makes kernel-doc script unhappy: $ make V=1 htmldocs ... ./mm/util.c:36: info: Scanning doc for kstrdup ./mm/util.c:41: warning: No description found for return value of 'kstrdup' ./mm/util.c:57: info: Scanning doc for kstrdup_const ./mm/util.c:66: warning: No description found for return value of 'kstrdup_const' ./mm/util.c:75: info: Scanning doc for kstrndup ./mm/util.c:83: warning: No description found for return value of 'kstrndup' ... Fixing the formatting and adding the missing return value descriptions eliminates ~100 such warnings. Link: http://lkml.kernel.org/r/1549549644-4903-4-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05numa: make "nr_node_ids" unsigned intAlexey Dobriyan
Number of NUMA nodes can't be negative. This saves a few bytes on x86_64: add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238) Function old new delta hv_synic_alloc.cold 88 110 +22 prealloc_shrinker 260 262 +2 bootstrap 249 251 +2 sched_init_numa 1566 1567 +1 show_slab_objects 778 777 -1 s_show 1201 1200 -1 kmem_cache_init 346 345 -1 __alloc_workqueue_key 1146 1145 -1 mem_cgroup_css_alloc 1614 1612 -2 __do_sys_swapon 4702 4699 -3 __list_lru_init 655 651 -4 nic_probe 2379 2374 -5 store_user_store 118 111 -7 red_zone_store 106 99 -7 poison_store 106 99 -7 wq_numa_init 348 338 -10 __kmem_cache_empty 75 65 -10 task_numa_free 186 173 -13 merge_across_nodes_store 351 336 -15 irq_create_affinity_masks 1261 1246 -15 do_numa_crng_init 343 321 -22 task_numa_fault 4760 4737 -23 swapfile_init 179 156 -23 hv_synic_alloc 536 492 -44 apply_wqattrs_prepare 746 695 -51 Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05mm/slab.c: kmemleak no scan alien cachesQian Cai
Kmemleak throws endless warnings during boot due to in __alloc_alien_cache(), alc = kmalloc_node(memsize, gfp, node); init_arraycache(&alc->ac, entries, batch); kmemleak_no_scan(ac); Kmemleak does not track the array cache (alc->ac) but the alien cache (alc) instead, so let it track the latter by lifting kmemleak_no_scan() out of init_arraycache(). There is another place that calls init_arraycache(), but alloc_kmem_cache_cpus() uses the percpu allocation where will never be considered as a leak. kmemleak: Found object by alias at 0xffff8007b9aa7e38 CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2 Call trace: dump_backtrace+0x0/0x168 show_stack+0x24/0x30 dump_stack+0x88/0xb0 lookup_object+0x84/0xac find_and_get_object+0x84/0xe4 kmemleak_no_scan+0x74/0xf4 setup_kmem_cache_node+0x2b4/0x35c __do_tune_cpucache+0x250/0x2d4 do_tune_cpucache+0x4c/0xe4 enable_cpucache+0xc8/0x110 setup_cpu_cache+0x40/0x1b8 __kmem_cache_create+0x240/0x358 create_cache+0xc0/0x198 kmem_cache_create_usercopy+0x158/0x20c kmem_cache_create+0x50/0x64 fsnotify_init+0x58/0x6c do_one_initcall+0x194/0x388 kernel_init_freeable+0x668/0x688 kernel_init+0x18/0x124 ret_from_fork+0x10/0x18 kmemleak: Object 0xffff8007b9aa7e00 (size 256): kmemleak: comm "swapper/0", pid 1, jiffies 4294697137 kmemleak: min_count = 1 kmemleak: count = 0 kmemleak: flags = 0x1 kmemleak: checksum = 0 kmemleak: backtrace: kmemleak_alloc+0x84/0xb8 kmem_cache_alloc_node_trace+0x31c/0x3a0 __kmalloc_node+0x58/0x78 setup_kmem_cache_node+0x26c/0x35c __do_tune_cpucache+0x250/0x2d4 do_tune_cpucache+0x4c/0xe4 enable_cpucache+0xc8/0x110 setup_cpu_cache+0x40/0x1b8 __kmem_cache_create+0x240/0x358 create_cache+0xc0/0x198 kmem_cache_create_usercopy+0x158/0x20c kmem_cache_create+0x50/0x64 fsnotify_init+0x58/0x6c do_one_initcall+0x194/0x388 kernel_init_freeable+0x668/0x688 kernel_init+0x18/0x124 kmemleak: Not scanning unknown object at 0xffff8007b9aa7e38 CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2 Call trace: dump_backtrace+0x0/0x168 show_stack+0x24/0x30 dump_stack+0x88/0xb0 kmemleak_no_scan+0x90/0xf4 setup_kmem_cache_node+0x2b4/0x35c __do_tune_cpucache+0x250/0x2d4 do_tune_cpucache+0x4c/0xe4 enable_cpucache+0xc8/0x110 setup_cpu_cache+0x40/0x1b8 __kmem_cache_create+0x240/0x358 create_cache+0xc0/0x198 kmem_cache_create_usercopy+0x158/0x20c kmem_cache_create+0x50/0x64 fsnotify_init+0x58/0x6c do_one_initcall+0x194/0x388 kernel_init_freeable+0x668/0x688 kernel_init+0x18/0x124 ret_from_fork+0x10/0x18 Link: http://lkml.kernel.org/r/20190129184518.39808-1-cai@lca.pw Fixes: 1fe00d50a9e8 ("slab: factor out initialization of array cache") Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21kasan, slab: remove redundant kasan_slab_alloc hooksAndrey Konovalov
kasan_slab_alloc() calls in kmem_cache_alloc() and kmem_cache_alloc_node() are redundant as they are already called via slab_alloc/slab_alloc_node()-> slab_post_alloc_hook()->kasan_slab_alloc(). Remove them. Link: http://lkml.kernel.org/r/4ca1655cdcfc4379c49c50f7bf80f81c4ad01485.1550602886.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Tested-by: Qian Cai <cai@lca.pw> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgeniy Stepanov <eugenis@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21kasan, slab: make freelist stored without tagsAndrey Konovalov
Similarly to "kasan, slub: move kasan_poison_slab hook before page_address", move kasan_poison_slab() before alloc_slabmgmt(), which calls page_address(), to make page_address() return value to be non-tagged. This, combined with calling kasan_reset_tag() for off-slab slab management object, leads to freelist being stored non-tagged. Link: http://lkml.kernel.org/r/dfb53b44a4d00de3879a05a9f04c1f55e584f7a1.1550602886.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Tested-by: Qian Cai <cai@lca.pw> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgeniy Stepanov <eugenis@google.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>