aboutsummaryrefslogtreecommitdiff
path: root/mm/vmalloc.c
AgeCommit message (Collapse)Author
2022-05-13mm/vmalloc: use raw_cpu_ptr() for vmap_block_queue accessSebastian Andrzej Siewior
The per-CPU resource vmap_block_queue is accessed via get_cpu_var(). That macro disables preemption and then loads the pointer from the current CPU. This doesn't work on PREEMPT_RT because a spinlock_t is later accessed within the preempt-disable section. There is no need to disable preemption while accessing the per-CPU struct vmap_block_queue because the list is protected with a spinlock_t. The per-CPU struct is also accessed cross-CPU in purge_fragmented_blocks(). It is possible that by using raw_cpu_ptr() the code migrates to another CPU and uses struct from another CPU. This is fine because the list is locked and the locked section is very short. Use raw_cpu_ptr() to access vmap_block_queue. Link: https://lkml.kernel.org/r/YnKx3duAB53P7ojN@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13mm: functions may simplify the use of return valuesLi kunyu
p4d_clear_huge may be optimized for void return type and function usage. vunmap_p4d_range function saves a few steps here. Link: https://lkml.kernel.org/r/20220507150630.90399-1-kunyu@nfschina.com Signed-off-by: Li kunyu <kunyu@nfschina.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28vmap(): don't allow invalid pagesYury Norov
vmap() takes struct page *pages as one of arguments, and user may provide an invalid pointer which may lead to corrupted translation table. An example of such behaviour is erroneous usage of virt_to_page(): vaddr1 = dma_alloc_coherent() page = virt_to_page() // Wrong here ... vaddr2 = vmap(page) memset(vaddr2) // Faulting here virt_to_page() returns a wrong pointer if vaddr1 is not a linear kernel address. The problem is that vmap() populates pte with bad pfn successfully, and it's much harder to debug at memory access time. This case should be caught by DEBUG_VIRTUAL being that enabled, but it's not enabled in popular distros. Kernel already checks the pages against NULL. In the case mentioned above, however, the address is not NULL, and it's big enough so that the hardware generated Address Size Abort on arm64: [ 665.484101] Unhandled fault at 0xffff8000252cd000 [ 665.488807] Mem abort info: [ 665.491617] ESR = 0x96000043 [ 665.494675] EC = 0x25: DABT (current EL), IL = 32 bits [ 665.499985] SET = 0, FnV = 0 [ 665.503039] EA = 0, S1PTW = 0 [ 665.506167] Data abort info: [ 665.509047] ISV = 0, ISS = 0x00000043 [ 665.512882] CM = 0, WnR = 1 [ 665.515851] swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000818cb000 [ 665.522550] [ffff8000252cd000] pgd=000000affcfff003, pud=000000affcffe003, pmd=0000008fad8c3003, pte=00688000a5217713 [ 665.533160] Internal error: level 3 address size fault: 96000043 [#1] SMP [ 665.539936] Modules linked in: [...] [ 665.616212] CPU: 178 PID: 13199 Comm: test Tainted: P OE 5.4.0-84-generic #94~18.04.1-Ubuntu [ 665.626806] Hardware name: HPE Apollo 70 /C01_APACHE_MB , BIOS L50_5.13_1.0.6 07/10/2018 [ 665.636618] pstate: 80400009 (Nzcv daif +PAN -UAO) [ 665.641407] pc : __memset+0x38/0x188 [ 665.645146] lr : test+0xcc/0x3f8 [ 665.650184] sp : ffff8000359bb840 [ 665.653486] x29: ffff8000359bb840 x28: 0000000000000000 [ 665.658785] x27: 0000000000000000 x26: 0000000000231000 [ 665.664083] x25: ffff00ae660f6110 x24: ffff00ae668cb800 [ 665.669382] x23: 0000000000000001 x22: ffff00af533e5000 [ 665.674680] x21: 0000000000001000 x20: 0000000000000000 [ 665.679978] x19: ffff00ae66950000 x18: ffffffffffffffff [ 665.685276] x17: 00000000588636a5 x16: 0000000000000013 [ 665.690574] x15: ffffffffffffffff x14: 000000000007ffff [ 665.695872] x13: 0000000080000000 x12: 0140000000000000 [ 665.701170] x11: 0000000000000041 x10: ffff8000652cd000 [ 665.706468] x9 : ffff8000252cf000 x8 : ffff8000252cd000 [ 665.711767] x7 : 0303030303030303 x6 : 0000000000001000 [ 665.717065] x5 : ffff8000252cd000 x4 : 0000000000000000 [ 665.722363] x3 : ffff8000252cdfff x2 : 0000000000000001 [ 665.727661] x1 : 0000000000000003 x0 : ffff8000252cd000 [ 665.732960] Call trace: [ 665.735395] __memset+0x38/0x188 [...] Interestingly, this abort happens even if copy_from_kernel_nofault() is used, which is quite inconvenient for debugging purposes. This patch adds a pfn_valid() check into vmap() path, so that invalid mapping will not be created; WARN_ON() is used to let client code know that something goes wrong, and it's not a regular EINVAL situation. Link: https://lkml.kernel.org/r/20220422220410.1308706-1-yury.norov@gmail.com Signed-off-by: Yury Norov (NVIDIA) <yury.norov@gmail.com> Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Alexey Klimov <aklimov@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ding Tianhong <dingtianhong@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-28mm/vmalloc: fix a commentYixuan Cao
The sentence "but the mempolcy want to alloc memory by interleaving" should be rephrased with "but the mempolicy wants to alloc memory by interleaving" where "mempolicy" is a struct name. This work is coauthored by Yinan Zhang Jiajian Ye Shenghong Han Chongxi Zhao Yuhong Feng Yongqiang Liu Link: https://lkml.kernel.org/r/20220401064543.4447-1-caoyixuan2019@email.szu.edu.cn Signed-off-by: Yixuan Cao <caoyixuan2019@email.szu.edu.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-22mm/vmalloc: huge vmalloc backing pages should be split rather than compoundNicholas Piggin
Huge vmalloc higher-order backing pages were allocated with __GFP_COMP in order to allow the sub-pages to be refcounted by callers such as "remap_vmalloc_page [sic]" (remap_vmalloc_range). However a similar problem exists for other struct page fields callers use, for example fb_deferred_io_fault() takes a vmalloc'ed page and not only refcounts it but uses ->lru, ->mapping, ->index. This is not compatible with compound sub-pages, and can cause bad page state issues like BUG: Bad page state in process swapper/0 pfn:00743 page:(____ptrval____) refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x743 flags: 0x7ffff000000000(node=0|zone=0|lastcpupid=0x7ffff) raw: 007ffff000000000 c00c00000001d0c8 c00c00000001d0c8 0000000000000000 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: corrupted mapping in tail page Modules linked in: CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.18.0-rc3-00082-gfc6fff4a7ce1-dirty #2810 Call Trace: dump_stack_lvl+0x74/0xa8 (unreliable) bad_page+0x12c/0x170 free_tail_pages_check+0xe8/0x190 free_pcp_prepare+0x31c/0x4e0 free_unref_page+0x40/0x1b0 __vunmap+0x1d8/0x420 ... The correct approach is to use split high-order pages for the huge vmalloc backing. These allow callers to treat them in exactly the same way as individually-allocated order-0 pages. Link: https://lore.kernel.org/all/14444103-d51b-0fb3-ee63-c3f182f0b546@molgen.mpg.de/ Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Cc: Paul Menzel <pmenzel@molgen.mpg.de> Cc: Song Liu <songliubraving@fb.com> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-19vmalloc: replace VM_NO_HUGE_VMAP with VM_ALLOW_HUGE_VMAPSong Liu
Huge page backed vmalloc memory could benefit performance in many cases. However, some users of vmalloc may not be ready to handle huge pages for various reasons: hardware constraints, potential pages split, etc. VM_NO_HUGE_VMAP was introduced to allow vmalloc users to opt-out huge pages. However, it is not easy to track down all the users that require the opt-out, as the allocation are passed different stacks and may cause issues in different layers. To address this issue, replace VM_NO_HUGE_VMAP with an opt-in flag, VM_ALLOW_HUGE_VMAP, so that users that benefit from huge pages could ask specificially. Also, remove vmalloc_no_huge() and add opt-in helper vmalloc_huge(). Fixes: fac54e2bfb5b ("x86/Kconfig: Select HAVE_ARCH_HUGE_VMALLOC with HAVE_ARCH_HUGE_VMAP") Link: https://lore.kernel.org/netdev/14444103-d51b-0fb3-ee63-c3f182f0b546@molgen.mpg.de/" Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Song Liu <song@kernel.org> Reviewed-by: Rik van Riel <riel@surriel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-04-15mm/vmalloc: fix spinning drain_vmap_work after reading from /proc/vmcoreOmar Sandoval
Commit 3ee48b6af49c ("mm, x86: Saving vmcore with non-lazy freeing of vmas") introduced set_iounmap_nonlazy(), which sets vmap_lazy_nr to lazy_max_pages() + 1, ensuring that any future vunmaps() immediately purge the vmap areas instead of doing it lazily. Commit 690467c81b1a ("mm/vmalloc: Move draining areas out of caller context") moved the purging from the vunmap() caller to a worker thread. Unfortunately, set_iounmap_nonlazy() can cause the worker thread to spin (possibly forever). For example, consider the following scenario: 1. Thread reads from /proc/vmcore. This eventually calls __copy_oldmem_page() -> set_iounmap_nonlazy(), which sets vmap_lazy_nr to lazy_max_pages() + 1. 2. Then it calls free_vmap_area_noflush() (via iounmap()), which adds 2 pages (one page plus the guard page) to the purge list and vmap_lazy_nr. vmap_lazy_nr is now lazy_max_pages() + 3, so the drain_vmap_work is scheduled. 3. Thread returns from the kernel and is scheduled out. 4. Worker thread is scheduled in and calls drain_vmap_area_work(). It frees the 2 pages on the purge list. vmap_lazy_nr is now lazy_max_pages() + 1. 5. This is still over the threshold, so it tries to purge areas again, but doesn't find anything. 6. Repeat 5. If the system is running with only one CPU (which is typicial for kdump) and preemption is disabled, then this will never make forward progress: there aren't any more pages to purge, so it hangs. If there is more than one CPU or preemption is enabled, then the worker thread will spin forever in the background. (Note that if there were already pages to be purged at the time that set_iounmap_nonlazy() was called, this bug is avoided.) This can be reproduced with anything that reads from /proc/vmcore multiple times. E.g., vmcore-dmesg /proc/vmcore. It turns out that improvements to vmap() over the years have obsoleted the need for this "optimization". I benchmarked `dd if=/proc/vmcore of=/dev/null` with 4k and 1M read sizes on a system with a 32GB vmcore. The test was run on 5.17, 5.18-rc1 with a fix that avoided the hang, and 5.18-rc1 with set_iounmap_nonlazy() removed entirely: |5.17 |5.18+fix|5.18+removal 4k|40.86s| 40.09s| 26.73s 1M|24.47s| 23.98s| 21.84s The removal was the fastest (by a wide margin with 4k reads). This patch removes set_iounmap_nonlazy(). Link: https://lkml.kernel.org/r/52f819991051f9b865e9ce25605509bfdbacadcd.1649277321.git.osandov@fb.com Fixes: 690467c81b1a ("mm/vmalloc: Move draining areas out of caller context") Signed-off-by: Omar Sandoval <osandov@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24kasan, vmalloc: only tag normal vmalloc allocationsAndrey Konovalov
The kernel can use to allocate executable memory. The only supported way to do that is via __vmalloc_node_range() with the executable bit set in the prot argument. (vmap() resets the bit via pgprot_nx()). Once tag-based KASAN modes start tagging vmalloc allocations, executing code from such allocations will lead to the PC register getting a tag, which is not tolerated by the kernel. Only tag the allocations for normal kernel pages. [andreyknvl@google.com: pass KASAN_VMALLOC_PROT_NORMAL to kasan_unpoison_vmalloc()] Link: https://lkml.kernel.org/r/9230ca3d3e40ffca041c133a524191fd71969a8d.1646233925.git.andreyknvl@google.com [andreyknvl@google.com: support tagged vmalloc mappings] Link: https://lkml.kernel.org/r/2f6605e3a358cf64d73a05710cb3da356886ad29.1646233925.git.andreyknvl@google.com [andreyknvl@google.com: don't unintentionally disabled poisoning] Link: https://lkml.kernel.org/r/de4587d6a719232e83c760113e46ed2d4d8da61e.1646757322.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/fbfd9939a4dc375923c9a5c6b9e7ab05c26b8c6b.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24kasan, vmalloc: add vmalloc tagging for HW_TAGSAndrey Konovalov
Add vmalloc tagging support to HW_TAGS KASAN. The key difference between HW_TAGS and the other two KASAN modes when it comes to vmalloc: HW_TAGS KASAN can only assign tags to physical memory. The other two modes have shadow memory covering every mapped virtual memory region. Make __kasan_unpoison_vmalloc() for HW_TAGS KASAN: - Skip non-VM_ALLOC mappings as HW_TAGS KASAN can only tag a single mapping of normal physical memory; see the comment in the function. - Generate a random tag, tag the returned pointer and the allocation, and initialize the allocation at the same time. - Propagate the tag into the page stucts to allow accesses through page_address(vmalloc_to_page()). The rest of vmalloc-related KASAN hooks are not needed: - The shadow-related ones are fully skipped. - __kasan_poison_vmalloc() is kept as a no-op with a comment. Poisoning and zeroing of physical pages that are backing vmalloc() allocations are skipped via __GFP_SKIP_KASAN_UNPOISON and __GFP_SKIP_ZERO: __kasan_unpoison_vmalloc() does that instead. Enabling CONFIG_KASAN_VMALLOC with HW_TAGS is not yet allowed. Link: https://lkml.kernel.org/r/d19b2e9e59a9abc59d05b72dea8429dcaea739c6.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24kasan, vmalloc: unpoison VM_ALLOC pages after mappingAndrey Konovalov
Make KASAN unpoison vmalloc mappings after they have been mapped in when it's possible: for vmalloc() (indentified via VM_ALLOC) and vm_map_ram(). The reasons for this are: - For vmalloc() and vm_map_ram(): pages don't get unpoisoned in case mapping them fails. - For vmalloc(): HW_TAGS KASAN needs pages to be mapped to set tags via kasan_unpoison_vmalloc(). As a part of these changes, the return value of __vmalloc_node_range() is changed to area->addr. This is a non-functional change, as __vmalloc_area_node() returns area->addr anyway. Link: https://lkml.kernel.org/r/fcb98980e6fcd3c4be6acdcb5d6110898ef28548.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Acked-by: Marco Elver <elver@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24kasan, vmalloc, arm64: mark vmalloc mappings as pgprot_taggedAndrey Konovalov
HW_TAGS KASAN relies on ARM Memory Tagging Extension (MTE). With MTE, a memory region must be mapped as MT_NORMAL_TAGGED to allow setting memory tags via MTE-specific instructions. Add proper protection bits to vmalloc() allocations. These allocations are always backed by page_alloc pages, so the tags will actually be getting set on the corresponding physical memory. Link: https://lkml.kernel.org/r/983fc33542db2f6b1e77b34ca23448d4640bbb9e.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24kasan, vmalloc: add vmalloc tagging for SW_TAGSAndrey Konovalov
Add vmalloc tagging support to SW_TAGS KASAN. - __kasan_unpoison_vmalloc() now assigns a random pointer tag, poisons the virtual mapping accordingly, and embeds the tag into the returned pointer. - __get_vm_area_node() (used by vmalloc() and vmap()) and pcpu_get_vm_areas() save the tagged pointer into vm_struct->addr (note: not into vmap_area->addr). This requires putting kasan_unpoison_vmalloc() after setup_vmalloc_vm[_locked](); otherwise the latter will overwrite the tagged pointer. The tagged pointer then is naturally propagateed to vmalloc() and vmap(). - vm_map_ram() returns the tagged pointer directly. As a result of this change, vm_struct->addr is now tagged. Enabling KASAN_VMALLOC with SW_TAGS is not yet allowed. Link: https://lkml.kernel.org/r/4a78f3c064ce905e9070c29733aca1dd254a74f1.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24kasan, vmalloc: reset tags in vmalloc functionsAndrey Konovalov
In preparation for adding vmalloc support to SW/HW_TAGS KASAN, reset pointer tags in functions that use pointer values in range checks. vread() is a special case here. Despite the untagging of the addr pointer in its prologue, the accesses performed by vread() are checked. Instead of accessing the virtual mappings though addr directly, vread() recovers the physical address via page_address(vmalloc_to_page()) and acceses that. And as page_address() recovers the pointer tag, the accesses get checked. Link: https://lkml.kernel.org/r/046003c5f683cacb0ba18e1079e9688bb3dca943.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24kasan, x86, arm64, s390: rename functions for modules shadowAndrey Konovalov
Rename kasan_free_shadow to kasan_free_module_shadow and kasan_module_alloc to kasan_alloc_module_shadow. These functions are used to allocate/free shadow memory for kernel modules when KASAN_VMALLOC is not enabled. The new names better reflect their purpose. Also reword the comment next to their declaration to improve clarity. Link: https://lkml.kernel.org/r/36db32bde765d5d0b856f77d2d806e838513fe84.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22mm/vmalloc.c: fix "unused function" warningJiapeng Chong
compute_subtree_max_size() is unused, when building with DEBUG_AUGMENT_PROPAGATE_CHECK=y. mm/vmalloc.c:785:1: warning: unused function 'compute_subtree_max_size' [-Wunused-function]. Link: https://lkml.kernel.org/r/20220129034652.75359-1-jiapeng.chong@linux.alibaba.com Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22mm/vmalloc: eliminate an extra orig_gfp_maskUladzislau Rezki (Sony)
That extra variable has been introduced just for keeping an original passed gfp_mask because it is updated with __GFP_NOWARN on entry, thus error handling messages were broken. Instead we can keep an original gfp_mask without modifying it and add an extra __GFP_NOWARN flag together with gfp_mask as a parameter to the vm_area_alloc_pages() function. It will make it less confused. Link: https://lkml.kernel.org/r/20220119143540.601149-3-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vasily Averin <vvs@virtuozzo.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22mm/vmalloc: add adjust_search_size parameterUladzislau Rezki
Extend the find_vmap_lowest_match() function with one more parameter. It is "adjust_search_size" boolean variable, so it is possible to control an accuracy of search block if a specific alignment is required. With this patch, a search size is always adjusted, to serve a request as fast as possible because of performance reason. But there is one exception though, it is short ranges where requested size corresponds to passed vstart/vend restriction together with a specific alignment request. In such scenario an adjustment wold not lead to success allocation. Link: https://lkml.kernel.org/r/20220119143540.601149-2-urezki@gmail.com Signed-off-by: Uladzislau Rezki <uladzislau.rezki@sony.com> Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Vasily Averin <vvs@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22mm/vmalloc: Move draining areas out of caller contextUladzislau Rezki (Sony)
A caller initiates the drain procces from its context once the drain threshold is reached or passed. There are at least two drawbacks of doing so: a) a caller can be a high-prio or RT task. In that case it can stuck in doing the actual drain of all lazily freed areas. This is not optimal because such tasks usually are latency sensitive where the control should be returned back as soon as possible in order to drive such workloads in time. See 96e2db456135 ("mm/vmalloc: rework the drain logic") b) It is not safe to call vfree() during holding a spinlock due to the vmap_purge_lock mutex. The was a report about this from Zeal Robot <zealci@zte.com.cn> here: https://lore.kernel.org/all/20211222081026.484058-1-chi.minghao@zte.com.cn Moving the drain to the separate work context addresses those issues. v1->v2: - Added prefix "_work" to the drain worker function. v2->v3: - Remove the drain_vmap_work_in_progress. Extra queuing is expectable under heavy load but it can be disregarded because a work will bail out if nothing to be done. Link: https://lkml.kernel.org/r/20220131144058.35608-1-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Vasily Averin <vvs@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22mm/vmalloc: remove unneeded function forward declarationMiaohe Lin
The forward declaration for lazy_max_pages() is unnecessary. Remove it. Link: https://lkml.kernel.org/r/20220124133752.60663-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22mm: merge pte_mkhuge() call into arch_make_huge_pte()Anshuman Khandual
Each call into pte_mkhuge() is invariably followed by arch_make_huge_pte(). Instead arch_make_huge_pte() can accommodate pte_mkhuge() at the beginning. This updates generic fallback stub for arch_make_huge_pte() and available platforms definitions. This makes huge pte creation much cleaner and easier to follow. Link: https://lkml.kernel.org/r/1643860669-26307-1-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm/vmalloc: be more explicit about supported gfp flags.Michal Hocko
Commit b7d90e7a5ea8 ("mm/vmalloc: be more explicit about supported gfp flags") has been merged prematurely without the rest of the series and without addressed review feedback from Neil. Fix that up now. Only wording is changed slightly. Link: https://lkml.kernel.org/r/20211122153233.9924-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm/vmalloc: add support for __GFP_NOFAILMichal Hocko
Dave Chinner has mentioned that some of the xfs code would benefit from kvmalloc support for __GFP_NOFAIL because they have allocations that cannot fail and they do not fit into a single page. The large part of the vmalloc implementation already complies with the given gfp flags so there is no work for those to be done. The area and page table allocations are an exception to that. Implement a retry loop for those. Add a short sleep before retrying. 1 jiffy is a completely random timeout. Ideally the retry would wait for an explicit event - e.g. a change to the vmalloc space change if the failure was caused by the space fragmentation or depletion. But there are multiple different reasons to retry and this could become much more complex. Keep the retry simple for now and just sleep to prevent from hogging CPUs. Link: https://lkml.kernel.org/r/20211122153233.9924-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm/vmalloc: alloc GFP_NO{FS,IO} for vmallocMichal Hocko
Patch series "extend vmalloc support for constrained allocations", v2. Based on a recent discussion with Dave and Neil [1] I have tried to implement NOFS, NOIO, NOFAIL support for the vmalloc to make life of kvmalloc users easier. A requirement for NOFAIL support for kvmalloc was new to me but this seems to be really needed by the xfs code. NOFS/NOIO was a known and a long term problem which was hoped to be handled by the scope API. Those scope should have been used at the reclaim recursion boundaries both to document them and also to remove the necessity of NOFS/NOIO constrains for all allocations within that scope. Instead workarounds were developed to wrap a single allocation instead (like ceph_kvmalloc). First patch implements NOFS/NOIO support for vmalloc. The second one adds NOFAIL support and the third one bundles all together into kvmalloc and drops ceph_kvmalloc which can use kvmalloc directly now. [1] http://lkml.kernel.org/r/163184741778.29351.16920832234899124642.stgit@noble.brown This patch (of 4): vmalloc historically hasn't supported GFP_NO{FS,IO} requests because page table allocations do not support externally provided gfp mask and performed GFP_KERNEL like allocations. Since few years we have scope (memalloc_no{fs,io}_{save,restore}) APIs to enforce NOFS and NOIO constrains implicitly to all allocators within the scope. There was a hope that those scopes would be defined on a higher level when the reclaim recursion boundary starts/stops (e.g. when a lock required during the memory reclaim is required etc.). It seems that not all NOFS/NOIO users have adopted this approach and instead they have taken a workaround approach to wrap a single [k]vmalloc allocation by a scope API. These workarounds do not serve the purpose of a better reclaim recursion documentation and reduction of explicit GFP_NO{FS,IO} usege so let's just provide them with the semantic they are asking for without a need for workarounds. Add support for GFP_NOFS and GFP_NOIO to vmalloc directly. All internal allocations already comply with the given gfp_mask. The only current exception is vmap_pages_range which maps kernel page tables. Infer the proper scope API based on the given gfp mask. [sfr@canb.auug.org.au: mm/vmalloc.c needs linux/sched/mm.h] Link: https://lkml.kernel.org/r/20211217232641.0148710c@canb.auug.org.au Link: https://lkml.kernel.org/r/20211122153233.9924-1-mhocko@kernel.org Link: https://lkml.kernel.org/r/20211122153233.9924-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15memcg: add per-memcg vmalloc statShakeel Butt
The kvmalloc* allocation functions can fallback to vmalloc allocations and more often on long running machines. In addition the kernel does have __GFP_ACCOUNT kvmalloc* calls. So, often on long running machines, the memory.stat does not tell the complete picture which type of memory is charged to the memcg. So add a per-memcg vmalloc stat. [shakeelb@google.com: page_memcg() within rcu lock, per Muchun] Link: https://lkml.kernel.org/r/20211222052457.1960701-1-shakeelb@google.com [akpm@linux-foundation.org: remove cast, per Muchun] [shakeelb@google.com: remove area->page[0] checks and move to page by page accounting per Michal] Link: https://lkml.kernel.org/r/20220104222341.3972772-1-shakeelb@google.com Link: https://lkml.kernel.org/r/20211221215336.1922823-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm: defer kmemleak object creation of module_alloc()Kefeng Wang
Yongqiang reports a kmemleak panic when module insmod/rmmod with KASAN enabled(without KASAN_VMALLOC) on x86[1]. When the module area allocates memory, it's kmemleak_object is created successfully, but the KASAN shadow memory of module allocation is not ready, so when kmemleak scan the module's pointer, it will panic due to no shadow memory with KASAN check. module_alloc __vmalloc_node_range kmemleak_vmalloc kmemleak_scan update_checksum kasan_module_alloc kmemleak_ignore Note, there is no problem if KASAN_VMALLOC enabled, the modules area entire shadow memory is preallocated. Thus, the bug only exits on ARCH which supports dynamic allocation of module area per module load, for now, only x86/arm64/s390 are involved. Add a VM_DEFER_KMEMLEAK flags, defer vmalloc'ed object register of kmemleak in module_alloc() to fix this issue. [1] https://lore.kernel.org/all/6d41e2b9-4692-5ec4-b1cd-cbe29ae89739@huawei.com/ [wangkefeng.wang@huawei.com: fix build] Link: https://lkml.kernel.org/r/20211125080307.27225-1-wangkefeng.wang@huawei.com [akpm@linux-foundation.org: simplify ifdefs, per Andrey] Link: https://lkml.kernel.org/r/CA+fCnZcnwJHUQq34VuRxpdoY6_XbJCDJ-jopksS5Eia4PijPzw@mail.gmail.com Link: https://lkml.kernel.org/r/20211124142034.192078-1-wangkefeng.wang@huawei.com Fixes: 793213a82de4 ("s390/kasan: dynamic shadow mem allocation for modules") Fixes: 39d114ddc682 ("arm64: add KASAN support") Fixes: bebf56a1b176 ("kasan: enable instrumentation of global variables") Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reported-by: Yongqiang Liu <liuyongqiang13@huawei.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmalloc: introduce alloc_pages_bulk_array_mempolicy to accelerate memory ↵Chen Wandun
allocation Commit ffb29b1c255a ("mm/vmalloc: fix numa spreading for large hash tables") can cause significant performance regressions in some situations as Andrew mentioned in [1]. The main situation is vmalloc, vmalloc will allocate pages with NUMA_NO_NODE by default, that will result in alloc page one by one; In order to solve this, __alloc_pages_bulk and mempolicy should be considered at the same time. 1) If node is specified in memory allocation request, it will alloc all pages by __alloc_pages_bulk. 2) If interleaving allocate memory, it will cauculate how many pages should be allocated in each node, and use __alloc_pages_bulk to alloc pages in each node. [1]: https://lore.kernel.org/lkml/CALvZod4G3SzP3kWxQYn0fj+VgG-G3yWXz=gz17+3N57ru1iajw@mail.gmail.com/t/#m750c8e3231206134293b089feaa090590afa0f60 [akpm@linux-foundation.org: coding style fixes] [akpm@linux-foundation.org: make two functions static] [akpm@linux-foundation.org: fix CONFIG_NUMA=n build] Link: https://lkml.kernel.org/r/20211021080744.874701-3-chenwandun@huawei.com Signed-off-by: Chen Wandun <chenwandun@huawei.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmalloc: be more explicit about supported gfp flagsMichal Hocko
The core of the vmalloc allocator __vmalloc_area_node doesn't say anything about gfp mask argument. Not all gfp flags are supported though. Be more explicit about constraints. Link: https://lkml.kernel.org/r/20211020082545.4830-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jeff Layton <jlayton@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06kasan: arm64: fix pcpu_page_first_chunk crash with KASAN_VMALLOCKefeng Wang
With KASAN_VMALLOC and NEED_PER_CPU_PAGE_FIRST_CHUNK the kernel crashes: Unable to handle kernel paging request at virtual address ffff7000028f2000 ... swapper pgtable: 64k pages, 48-bit VAs, pgdp=0000000042440000 [ffff7000028f2000] pgd=000000063e7c0003, p4d=000000063e7c0003, pud=000000063e7c0003, pmd=000000063e7b0003, pte=0000000000000000 Internal error: Oops: 96000007 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 5.13.0-rc4-00003-gc6e6e28f3f30-dirty #62 Hardware name: linux,dummy-virt (DT) pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO BTYPE=--) pc : kasan_check_range+0x90/0x1a0 lr : memcpy+0x88/0xf4 sp : ffff80001378fe20 ... Call trace: kasan_check_range+0x90/0x1a0 pcpu_page_first_chunk+0x3f0/0x568 setup_per_cpu_areas+0xb8/0x184 start_kernel+0x8c/0x328 The vm area used in vm_area_register_early() has no kasan shadow memory, Let's add a new kasan_populate_early_vm_area_shadow() function to populate the vm area shadow memory to fix the issue. [wangkefeng.wang@huawei.com: fix redefinition of 'kasan_populate_early_vm_area_shadow'] Link: https://lkml.kernel.org/r/20211011123211.3936196-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20210910053354.26721-4-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Marco Elver <elver@google.com> [KASAN] Acked-by: Andrey Konovalov <andreyknvl@gmail.com> [KASAN] Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06vmalloc: choose a better start address in vm_area_register_early()Kefeng Wang
Percpu embedded first chunk allocator is the firstly option, but it could fail on ARM64, eg, percpu: max_distance=0x5fcfdc640000 too large for vmalloc space 0x781fefff0000 percpu: max_distance=0x600000540000 too large for vmalloc space 0x7dffb7ff0000 percpu: max_distance=0x5fff9adb0000 too large for vmalloc space 0x5dffb7ff0000 then we could get to WARNING: CPU: 15 PID: 461 at vmalloc.c:3087 pcpu_get_vm_areas+0x488/0x838 and the system cannot boot successfully. Let's implement page mapping percpu first chunk allocator as a fallback to the embedding allocator to increase the robustness of the system. Also fix a crash when both NEED_PER_CPU_PAGE_FIRST_CHUNK and KASAN_VMALLOC enabled. Tested on ARM64 qemu with cmdline "percpu_alloc=page". This patch (of 3): There are some fixed locations in the vmalloc area be reserved in ARM(see iotable_init()) and ARM64(see map_kernel()), but for pcpu_page_first_chunk(), it calls vm_area_register_early() and choose VMALLOC_START as the start address of vmap area which could be conflicted with above address, then could trigger a BUG_ON in vm_area_add_early(). Let's choose a suit start address by traversing the vmlist. Link: https://lkml.kernel.org/r/20210910053354.26721-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20210910053354.26721-2-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06vmalloc: back off when the current task is OOM-killedVasily Averin
Huge vmalloc allocation on heavy loaded node can lead to a global memory shortage. Task called vmalloc can have worst badness and be selected by OOM-killer, however taken fatal signal does not interrupt allocation cycle. Vmalloc repeat page allocaions again and again, exacerbating the crisis and consuming the memory freed up by another killed tasks. After a successful completion of the allocation procedure, a fatal signal will be processed and task will be destroyed finally. However it may not release the consumed memory, since the allocated object may have a lifetime unrelated to the completed task. In the worst case, this can lead to the host will panic due to "Out of memory and no killable processes..." This patch allows OOM-killer to break vmalloc cycle, makes OOM more effective and avoid host panic. It does not check oom condition directly, however, and breaks page allocation cycle when fatal signal was received. This may trigger some hidden problems, when caller does not handle vmalloc failures, or when rollaback after failed vmalloc calls own vmallocs inside. However all of these scenarios are incorrect: vmalloc does not guarantee successful allocation, it has never been called with __GFP_NOFAIL and threfore either should not be used for any rollbacks or should handle such errors correctly and not lead to critical failures. Link: https://lkml.kernel.org/r/83efc664-3a65-2adb-d7c4-2885784cf109@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmalloc: check various alignments when debuggingUladzislau Rezki (Sony)
Before we did not guarantee a free block with lowest start address for allocations with alignment >= PAGE_SIZE. Because an alignment overhead was included into a search length like below: length = size + align - 1; doing so we make sure that a bigger block would fit after applying an alignment adjustment. Now there is no such limitation, i.e. any alignment that user wants to apply will result to a lowest address of returned free area. Link: https://lkml.kernel.org/r/20211004142829.22222-2-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Ping Fang <pifang@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmalloc: do not adjust the search size for alignment overheadUladzislau Rezki (Sony)
We used to include an alignment overhead into a search length, in that case we guarantee that a found area will definitely fit after applying a specific alignment that user specifies. From the other hand we do not guarantee that an area has the lowest address if an alignment is >= PAGE_SIZE. It means that, when a user specifies a special alignment together with a range that corresponds to an exact requested size then an allocation will fail. This is what happens to KASAN, it wants the free block that exactly matches a specified range during onlining memory banks: [root@vm-0 fedora]# echo online > /sys/devices/system/memory/memory82/state [root@vm-0 fedora]# echo online > /sys/devices/system/memory/memory83/state [root@vm-0 fedora]# echo online > /sys/devices/system/memory/memory85/state [root@vm-0 fedora]# echo online > /sys/devices/system/memory/memory84/state vmap allocation for size 16777216 failed: use vmalloc=<size> to increase size bash: vmalloc: allocation failure: 16777216 bytes, mode:0x6000c0(GFP_KERNEL), nodemask=(null),cpuset=/,mems_allowed=0 CPU: 4 PID: 1644 Comm: bash Kdump: loaded Not tainted 4.18.0-339.el8.x86_64+debug #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8e/0xd0 warn_alloc.cold.90+0x8a/0x1b2 ? zone_watermark_ok_safe+0x300/0x300 ? slab_free_freelist_hook+0x85/0x1a0 ? __get_vm_area_node+0x240/0x2c0 ? kfree+0xdd/0x570 ? kmem_cache_alloc_node_trace+0x157/0x230 ? notifier_call_chain+0x90/0x160 __vmalloc_node_range+0x465/0x840 ? mark_held_locks+0xb7/0x120 Fix it by making sure that find_vmap_lowest_match() returns lowest start address with any given alignment value, i.e. for alignments bigger then PAGE_SIZE the algorithm rolls back toward parent nodes checking right sub-trees if the most left free block did not fit due to alignment overhead. Link: https://lkml.kernel.org/r/20211004142829.22222-1-urezki@gmail.com Fixes: 68ad4a330433 ("mm/vmalloc.c: keep track of free blocks for vmap allocation") Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reported-by: Ping Fang <pifang@redhat.com> Tested-by: David Hildenbrand <david@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmalloc: make sure to dump unpurged areas in /proc/vmallocinfoEric Dumazet
If last va found in vmap_area_list does not have a vm pointer, vmallocinfo.s_show() returns 0, and show_purge_info() is not called as it should. Link: https://lkml.kernel.org/r/20211001170815.73321-1-eric.dumazet@gmail.com Fixes: dd3b8353bae7 ("mm/vmalloc: do not keep unpurged areas in the busy tree") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Pengfei Li <lpf.vector@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmalloc: make show_numa_info() aware of hugepage mappingsEric Dumazet
show_numa_info() can be slightly faster, by skipping over hugepages directly. Link: https://lkml.kernel.org/r/20211001172725.105824-1-eric.dumazet@gmail.com Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmalloc: don't allow VM_NO_GUARD on vmap()Peter Zijlstra
The vmalloc guard pages are added on top of each allocation, thereby isolating any two allocations from one another. The top guard of the lower allocation is the bottom guard guard of the higher allocation etc. Therefore VM_NO_GUARD is dangerous; it breaks the basic premise of isolating separate allocations. There are only two in-tree users of this flag, neither of which use it through the exported interface. Ensure it stays this way. Link: https://lkml.kernel.org/r/YUMfdA36fuyZ+/xt@hirez.programming.kicks-ass.net Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Will Deacon <will@kernel.org> Acked-by: Kees Cook <keescook@chromium.org> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/vmalloc: repair warn_alloc()s in __vmalloc_area_node()Vasily Averin
Commit f255935b9767 ("mm: cleanup the gfp_mask handling in __vmalloc_area_node") added __GFP_NOWARN to gfp_mask unconditionally however it disabled all output inside warn_alloc() call. This patch saves original gfp_mask and provides it to all warn_alloc() calls. Link: https://lkml.kernel.org/r/f4f3187b-9684-e426-565d-827c2a9bbb0e@virtuozzo.com Fixes: f255935b9767 ("mm: cleanup the gfp_mask handling in __vmalloc_area_node") Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-28mm/vmalloc: fix numa spreading for large hash tablesChen Wandun
Eric Dumazet reported a strange numa spreading info in [1], and found commit 121e6f3258fe ("mm/vmalloc: hugepage vmalloc mappings") introduced this issue [2]. Dig into the difference before and after this patch, page allocation has some difference: before: alloc_large_system_hash __vmalloc __vmalloc_node(..., NUMA_NO_NODE, ...) __vmalloc_node_range __vmalloc_area_node alloc_page /* because NUMA_NO_NODE, so choose alloc_page branch */ alloc_pages_current alloc_page_interleave /* can be proved by print policy mode */ after: alloc_large_system_hash __vmalloc __vmalloc_node(..., NUMA_NO_NODE, ...) __vmalloc_node_range __vmalloc_area_node alloc_pages_node /* choose nid by nuam_mem_id() */ __alloc_pages_node(nid, ....) So after commit 121e6f3258fe ("mm/vmalloc: hugepage vmalloc mappings"), it will allocate memory in current node instead of interleaving allocate memory. Link: https://lore.kernel.org/linux-mm/CANn89iL6AAyWhfxdHO+jaT075iOa3XcYn9k6JJc7JR2XYn6k_Q@mail.gmail.com/ [1] Link: https://lore.kernel.org/linux-mm/CANn89iLofTR=AK-QOZY87RdUZENCZUT4O6a0hvhu3_EwRMerOg@mail.gmail.com/ [2] Link: https://lkml.kernel.org/r/20211021080744.874701-2-chenwandun@huawei.com Fixes: 121e6f3258fe ("mm/vmalloc: hugepage vmalloc mappings") Signed-off-by: Chen Wandun <chenwandun@huawei.com> Reported-by: Eric Dumazet <edumazet@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge more updates from Andrew Morton: "147 patches, based on 7d2a07b769330c34b4deabeed939325c77a7ec2f. Subsystems affected by this patch series: mm (memory-hotplug, rmap, ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan), alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib, checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig, selftests, ipc, and scripts" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits) scripts: check_extable: fix typo in user error message mm/workingset: correct kernel-doc notations ipc: replace costly bailout check in sysvipc_find_ipc() selftests/memfd: remove unused variable Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH configs: remove the obsolete CONFIG_INPUT_POLLDEV prctl: allow to setup brk for et_dyn executables pid: cleanup the stale comment mentioning pidmap_init(). kernel/fork.c: unexport get_{mm,task}_exe_file coredump: fix memleak in dump_vma_snapshot() fs/coredump.c: log if a core dump is aborted due to changed file permissions nilfs2: use refcount_dec_and_lock() to fix potential UAF nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group nilfs2: fix NULL pointer in nilfs_##name##_attr_release nilfs2: fix memory leak in nilfs_sysfs_create_device_group trap: cleanup trap_init() init: move usermodehelper_enable() to populate_rootfs() ...
2021-09-08mm: don't allow executable ioremap mappingsChristoph Hellwig
There is no need to execute from iomem (and most platforms it is impossible anyway), so add the pgprot_nx() call similar to vmap. Link: https://lkml.kernel.org/r/20210824091259.1324527-3-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08mm: move ioremap_page_range to vmalloc.cChristoph Hellwig
Patch series "small ioremap cleanups". The first patch moves a little code around the vmalloc/ioremap boundary following a bigger move by Nick earlier. The second enforces non-executable mapping on ioremap just like we do for vmap. No driver currently uses executable mappings anyway, as they should. This patch (of 2): This keeps it together with the implementation, and to remove the vmap_range wrapper. Link: https://lkml.kernel.org/r/20210824091259.1324527-1-hch@lst.de Link: https://lkml.kernel.org/r/20210824091259.1324527-2-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03mm/vmalloc: fix wrong behavior in vreadChen Wandun
commit f608788cd2d6 ("mm/vmalloc: use rb_tree instead of list for vread() lookups") use rb_tree instread of list to speed up lookup, but function __find_vmap_area is try to find a vmap_area that include target address, if target address is smaller than the leftmost node in vmap_area_root, it will return NULL, then vread will read nothing. This behavior is different from the primitive semantics. The correct way is find the first vmap_are that bigger than target addr, that is what function find_vmap_area_exceed_addr does. Link: https://lkml.kernel.org/r/20210714015959.3204871-1-chenwandun@huawei.com Fixes: f608788cd2d6 ("mm/vmalloc: use rb_tree instead of list for vread() lookups") Signed-off-by: Chen Wandun <chenwandun@huawei.com> Reported-by: Hulk Robot <hulkci@huawei.com> Cc: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Wei Yongjun <weiyongjun1@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03mm/vmalloc: remove gfpflags_allow_blocking() checkUladzislau Rezki (Sony)
Get rid of gfpflags_allow_blocking() check from the vmalloc() path as it is supposed to be sleepable anyway. Thus remove it from the alloc_vmap_area() as well as from the vm_area_alloc_pages(). Link: https://lkml.kernel.org/r/20210707182639.31282-2-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03mm/vmalloc: use batched page requests in bulk-allocatorUladzislau Rezki (Sony)
In case of simultaneous vmalloc allocations, for example it is 1GB and 12 CPUs my system is able to hit "BUG: soft lockup" for !CONFIG_PREEMPT kernel. RIP: 0010:__alloc_pages_bulk+0xa9f/0xbb0 Call Trace: __vmalloc_node_range+0x11c/0x2d0 __vmalloc_node+0x4b/0x70 fix_size_alloc_test+0x44/0x60 [test_vmalloc] test_func+0xe7/0x1f0 [test_vmalloc] kthread+0x11a/0x140 ret_from_fork+0x22/0x30 To address this issue invoke a bulk-allocator many times until all pages are obtained, i.e. do batched page requests adding cond_resched() meanwhile to reschedule. Batched value is hard-coded and is 100 pages per call. Link: https://lkml.kernel.org/r/20210707182639.31282-1-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hillf Danton <hdanton@sina.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm/vmalloc: include header for prototype of set_iounmap_nonlazyMel Gorman
make W=1 generates the following warning for mm/vmalloc.c mm/vmalloc.c:1599:6: warning: no previous prototype for `set_iounmap_nonlazy' [-Wmissing-prototypes] void set_iounmap_nonlazy(void) ^~~~~~~~~~~~~~~~~~~ This is an arch-generic function only used by x86. On other arches, it's dead code. Include the header with the definition and make it x86-64 specific. Link: https://lkml.kernel.org/r/20210520084809.8576-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm/vmalloc: enable mapping of huge pages at pte level in vmallocChristophe Leroy
On some architectures like powerpc, there are huge pages that are mapped at pte level. Enable it in vmalloc. For that, architectures can provide arch_vmap_pte_supported_shift() that returns the shift for pages to map at pte level. Link: https://lkml.kernel.org/r/2c717e3b1fba1894d890feb7669f83025bfa314d.1620795204.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm/vmalloc: enable mapping of huge pages at pte level in vmapChristophe Leroy
On some architectures like powerpc, there are huge pages that are mapped at pte level. Enable it in vmap. For that, architectures can provide arch_vmap_pte_range_map_size() that returns the size of pages to map at pte level. Link: https://lkml.kernel.org/r/fb3ccc73377832ac6708181ec419128a2f98ce36.1620795204.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm: vmalloc: add cond_resched() in __vunmap()Rafael Aquini
On non-preemptible kernel builds the watchdog can complain about soft lockups when vfree() is called against large vmalloc areas: [ 210.851798] kvmalloc-test: vmalloc(2199023255552) succeeded [ 238.654842] watchdog: BUG: soft lockup - CPU#181 stuck for 26s! [rmmod:5203] [ 238.662716] Modules linked in: kvmalloc_test(OE-) ... [ 238.772671] CPU: 181 PID: 5203 Comm: rmmod Tainted: G S OE 5.13.0-rc7+ #1 [ 238.781413] Hardware name: Intel Corporation PURLEY/PURLEY, BIOS PLYXCRB1.86B.0553.D01.1809190614 09/19/2018 [ 238.792383] RIP: 0010:free_unref_page+0x52/0x60 [ 238.797447] Code: 48 c1 fd 06 48 89 ee e8 9c d0 ff ff 84 c0 74 19 9c 41 5c fa 48 89 ee 48 89 df e8 b9 ea ff ff 41 f7 c4 00 02 00 00 74 01 fb 5b <5d> 41 5c c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 f0 29 77 [ 238.818406] RSP: 0018:ffffb4d87868fe98 EFLAGS: 00000206 [ 238.824236] RAX: 0000000000000000 RBX: 000000001da0c945 RCX: ffffb4d87868fe40 [ 238.832200] RDX: ffffd79d3beed108 RSI: ffffd7998501dc08 RDI: ffff9c6fbffd7010 [ 238.840166] RBP: 000000000d518cbd R08: ffffd7998501dc08 R09: 0000000000000001 [ 238.848131] R10: 0000000000000000 R11: ffffd79d3beee088 R12: 0000000000000202 [ 238.856095] R13: ffff9e5be3eceec0 R14: 0000000000000000 R15: 0000000000000000 [ 238.864059] FS: 00007fe082c2d740(0000) GS:ffff9f4c69b40000(0000) knlGS:0000000000000000 [ 238.873089] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 238.879503] CR2: 000055a000611128 CR3: 000000f6094f6006 CR4: 00000000007706e0 [ 238.887467] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 238.895433] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 238.903397] PKRU: 55555554 [ 238.906417] Call Trace: [ 238.909149] __vunmap+0x17c/0x220 [ 238.912851] __x64_sys_delete_module+0x13a/0x250 [ 238.918008] ? syscall_trace_enter.isra.20+0x13c/0x1b0 [ 238.923746] do_syscall_64+0x39/0x80 [ 238.927740] entry_SYSCALL_64_after_hwframe+0x44/0xae Like in other range zapping routines that iterate over a large list, lets just add cond_resched() within __vunmap()'s page-releasing loop in order to avoid the watchdog splats. Link: https://lkml.kernel.org/r/20210622225030.478384-1-aquini@redhat.com Signed-off-by: Rafael Aquini <aquini@redhat.com> Acked-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm/vmalloc: fallback to a single page allocatorUladzislau Rezki
Currently for order-0 pages we use a bulk-page allocator to get set of pages. From the other hand not allocating all pages is something that might occur. In that case we should fallbak to the single-page allocator trying to get missing pages, because it is more permissive(direct reclaim, etc). Introduce a vm_area_alloc_pages() function where the described logic is implemented. Link: https://lkml.kernel.org/r/20210521130718.GA17882@pc638.lan Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm/vmalloc: remove quoted strings split across linesUladzislau Rezki (Sony)
A checkpatch.pl script complains on splitting a text across lines. It is because if a user wants to find an entire string he or she will not succeeded. <snip> WARNING: quoted string split across lines + "vmalloc size %lu allocation failure: " + "page order %u allocation failed", total: 0 errors, 1 warnings, 10 lines checked <snip> Link: https://lkml.kernel.org/r/20210521204359.19943-1-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm/vmalloc: print a warning message first on failureUladzislau Rezki (Sony)
When a memory allocation for array of pages are not succeed emit a warning message as a first step and then perform the further cleanup. The reason it should be done in a right order is the clean up function which is free_vm_area() can potentially also follow its error paths what can lead to confusion what was broken first. Link: https://lkml.kernel.org/r/20210516202056.2120-4-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>