aboutsummaryrefslogtreecommitdiff
path: root/mm/workingset.c
AgeCommit message (Collapse)Author
2022-04-21memcg: sync flush only if periodic flush is delayedShakeel Butt
Daniel Dao has reported [1] a regression on workloads that may trigger a lot of refaults (anon and file). The underlying issue is that flushing rstat is expensive. Although rstat flush are batched with (nr_cpus * MEMCG_BATCH) stat updates, it seems like there are workloads which genuinely do stat updates larger than batch value within short amount of time. Since the rstat flush can happen in the performance critical codepaths like page faults, such workload can suffer greatly. This patch fixes this regression by making the rstat flushing conditional in the performance critical codepaths. More specifically, the kernel relies on the async periodic rstat flusher to flush the stats and only if the periodic flusher is delayed by more than twice the amount of its normal time window then the kernel allows rstat flushing from the performance critical codepaths. Now the question: what are the side-effects of this change? The worst that can happen is the refault codepath will see 4sec old lruvec stats and may cause false (or missed) activations of the refaulted page which may under-or-overestimate the workingset size. Though that is not very concerning as the kernel can already miss or do false activations. There are two more codepaths whose flushing behavior is not changed by this patch and we may need to come to them in future. One is the writeback stats used by dirty throttling and second is the deactivation heuristic in the reclaim. For now keeping an eye on them and if there is report of regression due to these codepaths, we will reevaluate then. Link: https://lore.kernel.org/all/CA+wXwBSyO87ZX5PVwdHm-=dBjZYECGmfnydUicUyrQqndgX2MQ@mail.gmail.com [1] Link: https://lkml.kernel.org/r/20220304184040.1304781-1-shakeelb@google.com Fixes: 1f828223b799 ("memcg: flush lruvec stats in the refault") Signed-off-by: Shakeel Butt <shakeelb@google.com> Reported-by: Daniel Dao <dqminh@cloudflare.com> Tested-by: Ivan Babrou <ivan@cloudflare.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Frank Hofmann <fhofmann@cloudflare.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds
Pull folio updates from Matthew Wilcox: - Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) * tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits) mm/damon: minor cleanup for damon_pa_young selftests/vm/transhuge-stress: Support file-backed PMD folios mm/filemap: Support VM_HUGEPAGE for file mappings mm/readahead: Switch to page_cache_ra_order mm/readahead: Align file mappings for non-DAX mm/readahead: Add large folio readahead mm: Support arbitrary THP sizes mm: Make large folios depend on THP mm: Fix READ_ONLY_THP warning mm/filemap: Allow large folios to be added to the page cache mm: Turn can_split_huge_page() into can_split_folio() mm/vmscan: Convert pageout() to take a folio mm/vmscan: Turn page_check_references() into folio_check_references() mm/vmscan: Account large folios correctly mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios mm/vmscan: Free non-shmem folios without splitting them mm/rmap: Constify the rmap_walk_control argument mm/rmap: Convert rmap_walk() to take a folio mm: Turn page_anon_vma() into folio_anon_vma() mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read() ...
2022-03-22mm: workingset: replace IRQ-off check with a lockdep assert.Sebastian Andrzej Siewior
Commit 68d48e6a2df57 ("mm: workingset: add vmstat counter for shadow nodes") introduced an IRQ-off check to ensure that a lock is held which also disabled interrupts. This does not work the same way on PREEMPT_RT because none of the locks, that are held, disable interrupts. Replace this check with a lockdep assert which ensures that the lock is held. Link: https://lkml.kernel.org/r/20220301122143.1521823-3-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22xarray: use kmem_cache_alloc_lru to allocate xa_nodeMuchun Song
The workingset will add the xa_node to the shadow_nodes list. So the allocation of xa_node should be done by kmem_cache_alloc_lru(). Using xas_set_lru() to pass the list_lru which we want to insert xa_node into to set up the xa_node reclaim context correctly. Link: https://lkml.kernel.org/r/20220228122126.37293-9-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Alex Shi <alexs@kernel.org> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Kari Argillander <kari.argillander@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-21mm/workingset: Convert workingset_eviction() to take a folioMatthew Wilcox (Oracle)
This removes an assumption that THPs are the only kind of compound pages and removes a few hidden calls to compound_head(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-11-09Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge more updates from Andrew Morton: "87 patches. Subsystems affected by this patch series: mm (pagecache and hugetlb), procfs, misc, MAINTAINERS, lib, checkpatch, binfmt, kallsyms, ramfs, init, codafs, nilfs2, hfs, crash_dump, signals, seq_file, fork, sysvfs, kcov, gdb, resource, selftests, and ipc" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (87 commits) ipc/ipc_sysctl.c: remove fallback for !CONFIG_PROC_SYSCTL ipc: check checkpoint_restore_ns_capable() to modify C/R proc files selftests/kselftest/runner/run_one(): allow running non-executable files virtio-mem: disallow mapping virtio-mem memory via /dev/mem kernel/resource: disallow access to exclusive system RAM regions kernel/resource: clean up and optimize iomem_is_exclusive() scripts/gdb: handle split debug for vmlinux kcov: replace local_irq_save() with a local_lock_t kcov: avoid enable+disable interrupts if !in_task() kcov: allocate per-CPU memory on the relevant node Documentation/kcov: define `ip' in the example Documentation/kcov: include types.h in the example sysv: use BUILD_BUG_ON instead of runtime check kernel/fork.c: unshare(): use swap() to make code cleaner seq_file: fix passing wrong private data seq_file: move seq_escape() to a header signal: remove duplicate include in signal.h crash_dump: remove duplicate include in crash_dump.h crash_dump: fix boolreturn.cocci warning hfs/hfsplus: use WARN_ON for sanity check ...
2021-11-09vfs: keep inodes with page cache off the inode shrinker LRUJohannes Weiner
Historically (pre-2.5), the inode shrinker used to reclaim only empty inodes and skip over those that still contained page cache. This caused problems on highmem hosts: struct inode could put fill lowmem zones before the cache was getting reclaimed in the highmem zones. To address this, the inode shrinker started to strip page cache to facilitate reclaiming lowmem. However, this comes with its own set of problems: the shrinkers may drop actively used page cache just because the inodes are not currently open or dirty - think working with a large git tree. It further doesn't respect cgroup memory protection settings and can cause priority inversions between containers. Nowadays, the page cache also holds non-resident info for evicted cache pages in order to detect refaults. We've come to rely heavily on this data inside reclaim for protecting the cache workingset and driving swap behavior. We also use it to quantify and report workload health through psi. The latter in turn is used for fleet health monitoring, as well as driving automated memory sizing of workloads and containers, proactive reclaim and memory offloading schemes. The consequences of dropping page cache prematurely is that we're seeing subtle and not-so-subtle failures in all of the above-mentioned scenarios, with the workload generally entering unexpected thrashing states while losing the ability to reliably detect it. To fix this on non-highmem systems at least, going back to rotating inodes on the LRU isn't feasible. We've tried (commit a76cf1a474d7 ("mm: don't reclaim inodes with many attached pages")) and failed (commit 69056ee6a8a3 ("Revert "mm: don't reclaim inodes with many attached pages"")). The issue is mostly that shrinker pools attract pressure based on their size, and when objects get skipped the shrinkers remember this as deferred reclaim work. This accumulates excessive pressure on the remaining inodes, and we can quickly eat into heavily used ones, or dirty ones that require IO to reclaim, when there potentially is plenty of cold, clean cache around still. Instead, this patch keeps populated inodes off the inode LRU in the first place - just like an open file or dirty state would. An otherwise clean and unused inode then gets queued when the last cache entry disappears. This solves the problem without reintroducing the reclaim issues, and generally is a bit more scalable than having to wade through potentially hundreds of thousands of busy inodes. Locking is a bit tricky because the locks protecting the inode state (i_lock) and the inode LRU (lru_list.lock) don't nest inside the irq-safe page cache lock (i_pages.xa_lock). Page cache deletions are serialized through i_lock, taken before the i_pages lock, to make sure depopulated inodes are queued reliably. Additions may race with deletions, but we'll check again in the shrinker. If additions race with the shrinker itself, we're protected by the i_lock: if find_inode() or iput() win, the shrinker will bail on the elevated i_count or I_REFERENCED; if the shrinker wins and goes ahead with the inode, it will set I_FREEING and inhibit further igets(), which will cause the other side to create a new instance of the inode instead. Link: https://lkml.kernel.org/r/20210614211904.14420-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18mm/workingset: Convert workingset_refault() to take a folioMatthew Wilcox (Oracle)
This nets us 178 bytes of savings from removing calls to compound_head. The three callers all grow a little, but each of them will be converted to use folios soon, so that's fine. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-27mm/workingset: Convert workingset_activation to take a folioMatthew Wilcox (Oracle)
This function already assumed it was being passed a head page. No real change here, except that thp_nr_pages() compiles away on kernels with THP compiled out while folio_nr_pages() is always present. Also convert page_memcg_rcu() to folio_memcg_rcu(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-27mm/memcg: Add folio_lruvec()Matthew Wilcox (Oracle)
This replaces mem_cgroup_page_lruvec(). All callers converted. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-09-23memcg: flush lruvec stats in the refaultShakeel Butt
Prior to the commit 7e1c0d6f5820 ("memcg: switch lruvec stats to rstat") and the commit aa48e47e3906 ("memcg: infrastructure to flush memcg stats"), each lruvec memcg stats can be off by (nr_cgroups * nr_cpus * 32) at worst and for unbounded amount of time. The commit aa48e47e3906 moved the lruvec stats to rstat infrastructure and the commit 7e1c0d6f5820 bounded the error for all the lruvec stats to (nr_cpus * 32) at worst for at most 2 seconds. More specifically it decoupled the number of stats and the number of cgroups from the error rate. However this reduction in error comes with the cost of triggering the slowpath of stats update more frequently. Previously in the slowpath the kernel adds the stats up the memcg tree. After aa48e47e3906, the kernel triggers the asyn lruvec stats flush through queue_work(). This causes regression reports from 0day kernel bot [1] as well as from phoronix test suite [2]. We tried two options to fix the regression: 1) Increase the threshold to trigger the slowpath in lruvec stats update codepath from 32 to 512. 2) Remove the slowpath from lruvec stats update codepath and instead flush the stats in the page refault codepath. The assumption is that the kernel timely flush the stats, so, the update tree would be small in the refault codepath to not cause the preformance impact. Following are the results of will-it-scale/page_fault[1|2|3] benchmark on four settings i.e. (1) 5.15-rc1 as baseline (2) 5.15-rc1 with aa48e47e3906 and 7e1c0d6f5820 reverted (3) 5.15-rc1 with option-1 (4) 5.15-rc1 with option-2. test (1) (2) (3) (4) pg_f1 368563 406277 (10.23%) 399693 (8.44%) 416398 (12.97%) pg_f2 338399 372133 (9.96%) 369180 (9.09%) 381024 (12.59%) pg_f3 500853 575399 (14.88%) 570388 (13.88%) 576083 (15.02%) From the above result, it seems like the option-2 not only solves the regression but also improves the performance for at least these benchmarks. Feng Tang (intel) ran the aim7 benchmark with these two options and confirms that option-1 reduces the regression but option-2 removes the regression. Michael Larabel (phoronix) ran multiple benchmarks with these options and reported the results at [3] and it shows for most benchmarks option-2 removes the regression introduced by the commit aa48e47e3906 ("memcg: infrastructure to flush memcg stats"). Based on the experiment results, this patch proposed the option-2 as the solution to resolve the regression. Link: https://lore.kernel.org/all/20210726022421.GB21872@xsang-OptiPlex-9020 [1] Link: https://www.phoronix.com/scan.php?page=article&item=linux515-compile-regress [2] Link: https://openbenchmarking.org/result/2109226-DEBU-LINUX5104 [3] Fixes: aa48e47e3906 ("memcg: infrastructure to flush memcg stats") Signed-off-by: Shakeel Butt <shakeelb@google.com> Tested-by: Michael Larabel <Michael@phoronix.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hillf Danton <hdanton@sina.com>, Cc: Michal Koutný <mkoutny@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org>, Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08mm/workingset: correct kernel-doc notationsRandy Dunlap
Use the documented kernel-doc format to prevent kernel-doc warnings. mm/workingset.c:256: warning: No description found for return value of 'workingset_eviction' mm/workingset.c:285: warning: Function parameter or member 'folio' not described in 'workingset_refault' mm/workingset.c:285: warning: Excess function parameter 'page' description in 'workingset_refault' Link: https://lkml.kernel.org/r/20210808203153.10678-1-rdunlap@infradead.org Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: workingset: define macro WORKINGSET_SHIFTMiaohe Lin
The magic number 1 is used in several places in workingset.c. Define a macro WORKINGSET_SHIFT for it to improve code readability. Link: https://lkml.kernel.org/r/20210624122307.1759342-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm: memcontrol: remove the pgdata parameter of mem_cgroup_page_lruvecMuchun Song
All the callers of mem_cgroup_page_lruvec() just pass page_pgdat(page) as the 2nd parameter to it (except isolate_migratepages_block()). But for isolate_migratepages_block(), the page_pgdat(page) is also equal to the local variable of @pgdat. So mem_cgroup_page_lruvec() do not need the pgdat parameter. Just remove it to simplify the code. Link: https://lkml.kernel.org/r/20210417043538.9793-4-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm: stop accounting shadow entriesMatthew Wilcox (Oracle)
We no longer need to keep track of how many shadow entries are present in a mapping. This saves a few writes to the inode and memory barriers. Link: https://lkml.kernel.org/r/20201026151849.24232-3-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Tested-by: Vishal Verma <vishal.l.verma@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: workingset: clarify eviction order and distance calculationOscar Salvador
The premise of the refault distance is that it can be seen as a deficit of the inactive list space, so that if the inactive list would have had (R - E) more slots, the page would not have been evicted but promoted to the active list instead. However, the way the code is ordered right now set us to be off by one, so the real number of slots would be (R - E) + 1. I stumbled upon this when trying to understand the code and it puzzled me that the comments did not match what the code did. This it not an issue at all since evictions and refaults tend to happen in a number large enough that being off-by-one does not have any impact - and since the compiler and CPUs are free to rearrange the execution sequence anyway. But as Johannes says, it is better to re-arrange the code in the proper order since otherwise would be misleading to somebody who is actively reading and trying to understand the logic of the code - like it happened to me. Link: https://lkml.kernel.org/r/20210201060651.3781-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/workingset.c: avoid unnecessary max_nodes estimation in count_shadow_nodes()Miaohe Lin
If list_lru_shrink_count is 0, we always return SHRINK_EMPTY regardless of the value of max_nodes. So we can return early if nodes == 0 to save some cpu cycles of approximating a reasonable limit for the nodes. Link: https://lkml.kernel.org/r/20210123073825.46709-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge more updates from Andrew Morton: "More MM work: a memcg scalability improvememt" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: mm/lru: revise the comments of lru_lock mm/lru: introduce relock_page_lruvec() mm/lru: replace pgdat lru_lock with lruvec lock mm/swap.c: serialize memcg changes in pagevec_lru_move_fn mm/compaction: do page isolation first in compaction mm/lru: introduce TestClearPageLRU() mm/mlock: remove __munlock_isolate_lru_page() mm/mlock: remove lru_lock on TestClearPageMlocked mm/vmscan: remove lruvec reget in move_pages_to_lru mm/lru: move lock into lru_note_cost mm/swap.c: fold vm event PGROTATED into pagevec_move_tail_fn mm/memcg: add debug checking in lock_page_memcg mm: page_idle_get_page() does not need lru_lock mm/rmap: stop store reordering issue on page->mapping mm/vmscan: remove unnecessary lruvec adding mm/thp: narrow lru locking mm/thp: simplify lru_add_page_tail() mm/thp: use head for head page in lru_add_page_tail() mm/thp: move lru_add_page_tail() to huge_memory.c
2020-12-15mm/lru: move lock into lru_note_costAlex Shi
We have to move lru_lock into lru_note_cost, since it cycle up on memcg tree, for future per lruvec lru_lock replace. It's a bit ugly and may cost a bit more locking, but benefit from multiple memcg locking could cover the lost. Link: https://lkml.kernel.org/r/1604566549-62481-11-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15Merge tag 'net-next-5.11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core: - support "prefer busy polling" NAPI operation mode, where we defer softirq for some time expecting applications to periodically busy poll - AF_XDP: improve efficiency by more batching and hindering the adjacency cache prefetcher - af_packet: make packet_fanout.arr size configurable up to 64K - tcp: optimize TCP zero copy receive in presence of partial or unaligned reads making zero copy a performance win for much smaller messages - XDP: add bulk APIs for returning / freeing frames - sched: support fragmenting IP packets as they come out of conntrack - net: allow virtual netdevs to forward UDP L4 and fraglist GSO skbs BPF: - BPF switch from crude rlimit-based to memcg-based memory accounting - BPF type format information for kernel modules and related tracing enhancements - BPF implement task local storage for BPF LSM - allow the FENTRY/FEXIT/RAW_TP tracing programs to use bpf_sk_storage Protocols: - mptcp: improve multiple xmit streams support, memory accounting and many smaller improvements - TLS: support CHACHA20-POLY1305 cipher - seg6: add support for SRv6 End.DT4/DT6 behavior - sctp: Implement RFC 6951: UDP Encapsulation of SCTP - ppp_generic: add ability to bridge channels directly - bridge: Connectivity Fault Management (CFM) support as is defined in IEEE 802.1Q section 12.14. Drivers: - mlx5: make use of the new auxiliary bus to organize the driver internals - mlx5: more accurate port TX timestamping support - mlxsw: - improve the efficiency of offloaded next hop updates by using the new nexthop object API - support blackhole nexthops - support IEEE 802.1ad (Q-in-Q) bridging - rtw88: major bluetooth co-existance improvements - iwlwifi: support new 6 GHz frequency band - ath11k: Fast Initial Link Setup (FILS) - mt7915: dual band concurrent (DBDC) support - net: ipa: add basic support for IPA v4.5 Refactor: - a few pieces of in_interrupt() cleanup work from Sebastian Andrzej Siewior - phy: add support for shared interrupts; get rid of multiple driver APIs and have the drivers write a full IRQ handler, slight growth of driver code should be compensated by the simpler API which also allows shared IRQs - add common code for handling netdev per-cpu counters - move TX packet re-allocation from Ethernet switch tag drivers to a central place - improve efficiency and rename nla_strlcpy - number of W=1 warning cleanups as we now catch those in a patchwork build bot Old code removal: - wan: delete the DLCI / SDLA drivers - wimax: move to staging - wifi: remove old WDS wifi bridging support" * tag 'net-next-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1922 commits) net: hns3: fix expression that is currently always true net: fix proc_fs init handling in af_packet and tls nfc: pn533: convert comma to semicolon af_vsock: Assign the vsock transport considering the vsock address flags af_vsock: Set VMADDR_FLAG_TO_HOST flag on the receive path vsock_addr: Check for supported flag values vm_sockets: Add VMADDR_FLAG_TO_HOST vsock flag vm_sockets: Add flags field in the vsock address data structure net: Disable NETIF_F_HW_TLS_TX when HW_CSUM is disabled tcp: Add logic to check for SYN w/ data in tcp_simple_retransmit net: mscc: ocelot: install MAC addresses in .ndo_set_rx_mode from process context nfc: s3fwrn5: Release the nfc firmware net: vxget: clean up sparse warnings mlxsw: spectrum_router: Use eXtended mezzanine to offload IPv4 router mlxsw: spectrum: Set KVH XLT cache mode for Spectrum2/3 mlxsw: spectrum_router_xm: Introduce basic XM cache flushing mlxsw: reg: Add Router LPM Cache Enable Register mlxsw: reg: Add Router LPM Cache ML Delete Register mlxsw: spectrum_router_xm: Implement L-value tracking for M-index mlxsw: reg: Add XM Router M Table Register ...
2020-12-15mm: memcg/slab: rename *_lruvec_slab_state to *_lruvec_kmem_stateMuchun Song
The *_lruvec_slab_state is also suitable for pages allocated from buddy, not just for the slab objects. But the function name seems to tell us that only slab object is applicable. So we can rename the keyword of slab to kmem. Link: https://lkml.kernel.org/r/20201117085249.24319-1-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-02mm: memcontrol: Use helpers to read page's memcg dataRoman Gushchin
Patch series "mm: allow mapping accounted kernel pages to userspace", v6. Currently a non-slab kernel page which has been charged to a memory cgroup can't be mapped to userspace. The underlying reason is simple: PageKmemcg flag is defined as a page type (like buddy, offline, etc), so it takes a bit from a page->mapped counter. Pages with a type set can't be mapped to userspace. But in general the kmemcg flag has nothing to do with mapping to userspace. It only means that the page has been accounted by the page allocator, so it has to be properly uncharged on release. Some bpf maps are mapping the vmalloc-based memory to userspace, and their memory can't be accounted because of this implementation detail. This patchset removes this limitation by moving the PageKmemcg flag into one of the free bits of the page->mem_cgroup pointer. Also it formalizes accesses to the page->mem_cgroup and page->obj_cgroups using new helpers, adds several checks and removes a couple of obsolete functions. As the result the code became more robust with fewer open-coded bit tricks. This patch (of 4): Currently there are many open-coded reads of the page->mem_cgroup pointer, as well as a couple of read helpers, which are barely used. It creates an obstacle on a way to reuse some bits of the pointer for storing additional bits of information. In fact, we already do this for slab pages, where the last bit indicates that a pointer has an attached vector of objcg pointers instead of a regular memcg pointer. This commits uses 2 existing helpers and introduces a new helper to converts all read sides to calls of these helpers: struct mem_cgroup *page_memcg(struct page *page); struct mem_cgroup *page_memcg_rcu(struct page *page); struct mem_cgroup *page_memcg_check(struct page *page); page_memcg_check() is intended to be used in cases when the page can be a slab page and have a memcg pointer pointing at objcg vector. It does check the lowest bit, and if set, returns NULL. page_memcg() contains a VM_BUG_ON_PAGE() check for the page not being a slab page. To make sure nobody uses a direct access, struct page's mem_cgroup/obj_cgroups is converted to unsigned long memcg_data. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
2020-10-20Merge tag 'xarray-5.9' of git://git.infradead.org/users/willy/xarrayLinus Torvalds
Pull XArray updates from Matthew Wilcox: - Fix the test suite after introduction of the local_lock - Fix a bug in the IDA spotted by Coverity - Change the API that allows the workingset code to delete a node - Fix xas_reload() when dealing with entries that occupy multiple indices - Add a few more tests to the test suite - Fix an unsigned int being shifted into an unsigned long * tag 'xarray-5.9' of git://git.infradead.org/users/willy/xarray: XArray: Fix xas_create_range for ranges above 4 billion radix-tree: fix the comment of radix_tree_next_slot() XArray: Fix xas_reload for multi-index entries XArray: Add private interface for workingset node deletion XArray: Fix xas_for_each_conflict documentation XArray: Test marked multiorder iterations XArray: Test two more things about xa_cmpxchg ida: Free allocated bitmap in error path radix tree test suite: Fix compilation
2020-10-16mm/workingset.c: fix some doc warningsXiaofei Tan
Fix following warnings caused by mismatch bewteen function parameters and comments. mm/workingset.c:228: warning: Function parameter or member 'lruvec' not described in 'workingset_age_nonresident' mm/workingset.c:228: warning: Excess function parameter 'memcg' description in 'workingset_age_nonresident' Signed-off-by: Xiaofei Tan <tanxiaofei@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Link: https://lkml.kernel.org/r/1600485913-11192-1-git-send-email-tanxiaofei@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13XArray: Add private interface for workingset node deletionMatthew Wilcox (Oracle)
Move the tricky bits of dealing with the XArray from the workingset code to the XArray. Make it clear in the documentation that this is a private interface, and only export it for the benefit of the test suite. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2020-08-14mm: replace hpage_nr_pages with thp_nr_pagesMatthew Wilcox (Oracle)
The thp prefix is more frequently used than hpage and we should be consistent between the various functions. [akpm@linux-foundation.org: fix mm/migrate.c] Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/swap: implement workingset detection for anonymous LRUJoonsoo Kim
This patch implements workingset detection for anonymous LRU. All the infrastructure is implemented by the previous patches so this patch just activates the workingset detection by installing/retrieving the shadow entry and adding refault calculation. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/workingset: prepare the workingset detection infrastructure for anon LRUJoonsoo Kim
To prepare the workingset detection for anon LRU, this patch splits workingset event counters for refault, activate and restore into anon and file variants, as well as the refaults counter in struct lruvec. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-4-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg: convert vmstat slab counters to bytesRoman Gushchin
In order to prepare for per-object slab memory accounting, convert NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes. To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB). Internally global and per-node counters are stored in pages, however memcg and lruvec counters are stored in bytes. This scheme may look weird, but only for now. As soon as slab pages will be shared between multiple cgroups, global and node counters will reflect the total number of slab pages. However memcg and lruvec counters will be used for per-memcg slab memory tracking, which will take separate kernel objects in the account. Keeping global and node counters in pages helps to avoid additional overhead. The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it will fit into atomic_long_t we use for vmstats. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26mm: workingset: age nonresident information alongside anonymous pagesJohannes Weiner
Patch series "fix for "mm: balance LRU lists based on relative thrashing" patchset" This patchset fixes some problems of the patchset, "mm: balance LRU lists based on relative thrashing", which is now merged on the mainline. Patch "mm: workingset: let cache workingset challenge anon fix" is the result of discussion with Johannes. See following link. http://lkml.kernel.org/r/20200520232525.798933-6-hannes@cmpxchg.org And, the other two are minor things which are found when I try to rebase my patchset. This patch (of 3): After ("mm: workingset: let cache workingset challenge anon fix"), we compare refault distances to active_file + anon. But age of the non-resident information is only driven by the file LRU. As a result, we may overestimate the recency of any incoming refaults and activate them too eagerly, causing unnecessary LRU churn in certain situations. Make anon aging drive nonresident age as well to address that. Link: http://lkml.kernel.org/r/1592288204-27734-1-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1592288204-27734-2-git-send-email-iamjoonsoo.kim@lge.com Fixes: 34e58cac6d8f2a ("mm: workingset: let cache workingset challenge anon") Reported-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Rik van Riel <riel@surriel.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm: vmscan: reclaim writepage is IO costJohannes Weiner
The VM tries to balance reclaim pressure between anon and file so as to reduce the amount of IO incurred due to the memory shortage. It already counts refaults and swapins, but in addition it should also count writepage calls during reclaim. For swap, this is obvious: it's IO that wouldn't have occurred if the anonymous memory hadn't been under memory pressure. From a relative balancing point of view this makes sense as well: even if anon is cold and reclaimable, a cache that isn't thrashing may have equally cold pages that don't require IO to reclaim. For file writeback, it's trickier: some of the reclaim writepage IO would have likely occurred anyway due to dirty expiration. But not all of it - premature writeback reduces batching and generates additional writes. Since the flushers are already woken up by the time the VM starts writing cache pages one by one, let's assume that we'e likely causing writes that wouldn't have happened without memory pressure. In addition, the per-page cost of IO would have probably been much cheaper if written in larger batches from the flusher thread rather than the single-page-writes from kswapd. For our purposes - getting the trend right to accelerate convergence on a stable state that doesn't require paging at all - this is sufficiently accurate. If we later wanted to optimize for sustained thrashing, we can still refine the measurements. Count all writepage calls from kswapd as IO cost toward the LRU that the page belongs to. Why do this dynamically? Don't we know in advance that anon pages require IO to reclaim, and so could build in a static bias? First, scanning is not the same as reclaiming. If all the anon pages are referenced, we may not swap for a while just because we're scanning the anon list. During this time, however, it's important that we age anonymous memory and the page cache at the same rate so that their hot-cold gradients are comparable. Everything else being equal, we still want to reclaim the coldest memory overall. Second, we keep copies in swap unless the page changes. If there is swap-backed data that's mostly read (tmpfs file) and has been swapped out before, we can reclaim it without incurring additional IO. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-14-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm: balance LRU lists based on relative thrashingJohannes Weiner
Since the LRUs were split into anon and file lists, the VM has been balancing between page cache and anonymous pages based on per-list ratios of scanned vs. rotated pages. In most cases that tips page reclaim towards the list that is easier to reclaim and has the fewest actively used pages, but there are a few problems with it: 1. Refaults and LRU rotations are weighted the same way, even though one costs IO and the other costs a bit of CPU. 2. The less we scan an LRU list based on already observed rotations, the more we increase the sampling interval for new references, and rotations become even more likely on that list. This can enter a death spiral in which we stop looking at one list completely until the other one is all but annihilated by page reclaim. Since commit a528910e12ec ("mm: thrash detection-based file cache sizing") we have refault detection for the page cache. Along with swapin events, they are good indicators of when the file or anon list, respectively, is too small for its workingset and needs to grow. For example, if the page cache is thrashing, the cache pages need more time in memory, while there may be colder pages on the anonymous list. Likewise, if swapped pages are faulting back in, it indicates that we reclaim anonymous pages too aggressively and should back off. Replace LRU rotations with refaults and swapins as the basis for relative reclaim cost of the two LRUs. This will have the VM target list balances that incur the least amount of IO on aggregate. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-12-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm: workingset: let cache workingset challenge anonJohannes Weiner
We activate cache refaults with reuse distances in pages smaller than the size of the total cache. This allows new pages with competitive access frequencies to establish themselves, as well as challenge and potentially displace pages on the active list that have gone cold. However, that assumes that active cache can only replace other active cache in a competition for the hottest memory. This is not a great default assumption. The page cache might be thrashing while there are enough completely cold and unused anonymous pages sitting around that we'd only have to write to swap once to stop all IO from the cache. Activate cache refaults when their reuse distance in pages is smaller than the total userspace workingset, including anonymous pages. Reclaim can still decide how to balance pressure among the two LRUs depending on the IO situation. Rotational drives will prefer avoiding random IO from swap and go harder after cache. But fundamentally, hot cache should be able to compete with anon pages for a place in RAM. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-6-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01mm: vmscan: detect file thrashing at the reclaim rootJohannes Weiner
We use refault information to determine whether the cache workingset is stable or transitioning, and dynamically adjust the inactive:active file LRU ratio so as to maximize protection from one-off cache during stable periods, and minimize IO during transitions. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, refaults only affect the local LRU order in the cgroup in which they are occuring. As a result, cache transitions can take longer in a cgrouped system as the active pages of sibling cgroups aren't challenged when they should be. [ Right now, this is somewhat theoretical, because the siblings, under continued regular reclaim pressure, should eventually run out of inactive pages - and since inactive:active *size* balancing is also done on a cgroup-local level, we will challenge the active pages eventually in most cases. But the next patch will move that relative size enforcement to the reclaim root as well, and then this patch here will be necessary to propagate refault pressure to siblings. ] This patch moves refault detection to the root of reclaim. Instead of remembering the cgroup owner of an evicted page, remember the cgroup that caused the reclaim to happen. When refaults later occur, they'll correctly influence the cross-cgroup LRU order that reclaim follows. I.e. if global reclaim kicked out pages in some subgroup A/B/C, the refault of those pages will challenge the global LRU order, and not just the local order down inside C. [hannes@cmpxchg.org: use page_memcg() instead of another lookup] Link: http://lkml.kernel.org/r/20191115160722.GA309754@cmpxchg.org Link: http://lkml.kernel.org/r/20191107205334.158354-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01mm: clean up and clarify lruvec lookup procedureJohannes Weiner
There is a per-memcg lruvec and a NUMA node lruvec. Which one is being used is somewhat confusing right now, and it's easy to make mistakes - especially when it comes to global reclaim. How it works: when memory cgroups are enabled, we always use the root_mem_cgroup's per-node lruvecs. When memory cgroups are not compiled in or disabled at runtime, we use pgdat->lruvec. Document that in a comment. Due to the way the reclaim code is generalized, all lookups use the mem_cgroup_lruvec() helper function, and nobody should have to find the right lruvec manually right now. But to avoid future mistakes, rename the pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper that suggests it's a commonly accessed member. While in this area, swap the mem_cgroup_lruvec() argument order. The name suggests a memcg operation, yet it takes a pgdat first and a memcg second. I have to double take every time I call this. Fix that. Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13mm: workingset: fix vmstat counters for shadow nodesRoman Gushchin
Memcg counters for shadow nodes are broken because the memcg pointer is obtained in a wrong way. The following approach is used: virt_to_page(xa_node)->mem_cgroup Since commit 4d96ba353075 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages") page->mem_cgroup pointer isn't set for slab pages, so memcg_from_slab_page() should be used instead. Also I doubt that it ever worked correctly: virt_to_head_page() should be used instead of virt_to_page(). Otherwise objects residing on tail pages are not accounted, because only the head page contains a valid mem_cgroup pointer. That was a case since the introduction of these counters by the commit 68d48e6a2df5 ("mm: workingset: add vmstat counter for shadow nodes"). Link: http://lkml.kernel.org/r/20190801233532.138743-1-guro@fb.com Fixes: 4d96ba353075 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages") Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memcontrol: make cgroup stats and events query API explicitly localJohannes Weiner
Patch series "mm: memcontrol: memory.stat cost & correctness". The cgroup memory.stat file holds recursive statistics for the entire subtree. The current implementation does this tree walk on-demand whenever the file is read. This is giving us problems in production. 1. The cost of aggregating the statistics on-demand is high. A lot of system service cgroups are mostly idle and their stats don't change between reads, yet we always have to check them. There are also always some lazily-dying cgroups sitting around that are pinned by a handful of remaining page cache; the same applies to them. In an application that periodically monitors memory.stat in our fleet, we have seen the aggregation consume up to 5% CPU time. 2. When cgroups die and disappear from the cgroup tree, so do their accumulated vm events. The result is that the event counters at higher-level cgroups can go backwards and confuse some of our automation, let alone people looking at the graphs over time. To address both issues, this patch series changes the stat implementation to spill counts upwards when the counters change. The upward spilling is batched using the existing per-cpu cache. In a sparse file stress test with 5 level cgroup nesting, the additional cost of the flushing was negligible (a little under 1% of CPU at 100% CPU utilization, compared to the 5% of reading memory.stat during regular operation). This patch (of 4): memcg_page_state(), lruvec_page_state(), memcg_sum_events() are currently returning the state of the local memcg or lruvec, not the recursive state. In practice there is a demand for both versions, although the callers that want the recursive counts currently sum them up by hand. Per default, cgroups are considered recursive entities and generally we expect more users of the recursive counters, with the local counts being special cases. To reflect that in the name, add a _local suffix to the current implementations. The following patch will re-incarnate these functions with recursive semantics, but with an O(1) implementation. [hannes@cmpxchg.org: fix bisection hole] Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()Johannes Weiner
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around lruvec_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct lruvec_page_state() calls. This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so make that function private again, too. Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05mm/workingset: remove unused @mapping argument in workingset_eviction()Andrey Ryabinin
workingset_eviction() doesn't use and never did use the @mapping argument. Remove it. Link: http://lkml.kernel.org/r/20190228083329.31892-1-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28mm: convert totalram_pages and totalhigh_pages variables to atomicArun KS
totalram_pages and totalhigh_pages are made static inline function. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Suggested-by: Michal Hocko <mhocko@suse.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-28Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-daxLinus Torvalds
Pull XArray conversion from Matthew Wilcox: "The XArray provides an improved interface to the radix tree data structure, providing locking as part of the API, specifying GFP flags at allocation time, eliminating preloading, less re-walking the tree, more efficient iterations and not exposing RCU-protected pointers to its users. This patch set 1. Introduces the XArray implementation 2. Converts the pagecache to use it 3. Converts memremap to use it The page cache is the most complex and important user of the radix tree, so converting it was most important. Converting the memremap code removes the only other user of the multiorder code, which allows us to remove the radix tree code that supported it. I have 40+ followup patches to convert many other users of the radix tree over to the XArray, but I'd like to get this part in first. The other conversions haven't been in linux-next and aren't suitable for applying yet, but you can see them in the xarray-conv branch if you're interested" * 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits) radix tree: Remove multiorder support radix tree test: Convert multiorder tests to XArray radix tree tests: Convert item_delete_rcu to XArray radix tree tests: Convert item_kill_tree to XArray radix tree tests: Move item_insert_order radix tree test suite: Remove multiorder benchmarking radix tree test suite: Remove __item_insert memremap: Convert to XArray xarray: Add range store functionality xarray: Move multiorder_check to in-kernel tests xarray: Move multiorder_shrink to kernel tests xarray: Move multiorder account test in-kernel radix tree test suite: Convert iteration test to XArray radix tree test suite: Convert tag_tagged_items to XArray radix tree: Remove radix_tree_clear_tags radix tree: Remove radix_tree_maybe_preload_order radix tree: Remove split/join code radix tree: Remove radix_tree_update_node_t page cache: Finish XArray conversion dax: Convert page fault handlers to XArray ...
2018-10-26mm: zero-seek shrinkersJohannes Weiner
The page cache and most shrinkable slab caches hold data that has been read from disk, but there are some caches that only cache CPU work, such as the dentry and inode caches of procfs and sysfs, as well as the subset of radix tree nodes that track non-resident page cache. Currently, all these are shrunk at the same rate: using DEFAULT_SEEKS for the shrinker's seeks setting tells the reclaim algorithm that for every two page cache pages scanned it should scan one slab object. This is a bogus setting. A virtual inode that required no IO to create is not twice as valuable as a page cache page; shadow cache entries with eviction distances beyond the size of memory aren't either. In most cases, the behavior in practice is still fine. Such virtual caches don't tend to grow and assert themselves aggressively, and usually get picked up before they cause problems. But there are scenarios where that's not true. Our database workloads suffer from two of those. For one, their file workingset is several times bigger than available memory, which has the kernel aggressively create shadow page cache entries for the non-resident parts of it. The workingset code does tell the VM that most of these are expendable, but the VM ends up balancing them 2:1 to cache pages as per the seeks setting. This is a huge waste of memory. These workloads also deal with tens of thousands of open files and use /proc for introspection, which ends up growing the proc_inode_cache to absurdly large sizes - again at the cost of valuable cache space, which isn't a reasonable trade-off, given that proc inodes can be re-created without involving the disk. This patch implements a "zero-seek" setting for shrinkers that results in a target ratio of 0:1 between their objects and IO-backed caches. This allows such virtual caches to grow when memory is available (they do cache/avoid CPU work after all), but effectively disables them as soon as IO-backed objects are under pressure. It then switches the shrinkers for procfs and sysfs metadata, as well as excess page cache shadow nodes, to the new zero-seek setting. Link: http://lkml.kernel.org/r/20181009184732.762-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Domas Mituzas <dmituzas@fb.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26mm: workingset: add vmstat counter for shadow nodesJohannes Weiner
Make it easier to catch bugs in the shadow node shrinker by adding a counter for the shadow nodes in circulation. [akpm@linux-foundation.org: assert that irqs are disabled, for __inc_lruvec_page_state()] [akpm@linux-foundation.org: s/WARN_ON_ONCE/VM_WARN_ON_ONCE/, per Johannes] Link: http://lkml.kernel.org/r/20181009184732.762-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26mm: workingset: use cheaper __inc_lruvec_state in irqsafe node reclaimJohannes Weiner
No need to use the preemption-safe lruvec state function inside the reclaim region that has irqs disabled. Link: http://lkml.kernel.org/r/20181009184732.762-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26mm: workingset: tell cache transitions from workingset thrashingJohannes Weiner
Refaults happen during transitions between workingsets as well as in-place thrashing. Knowing the difference between the two has a range of applications, including measuring the impact of memory shortage on the system performance, as well as the ability to smarter balance pressure between the filesystem cache and the swap-backed workingset. During workingset transitions, inactive cache refaults and pushes out established active cache. When that active cache isn't stale, however, and also ends up refaulting, that's bonafide thrashing. Introduce a new page flag that tells on eviction whether the page has been active or not in its lifetime. This bit is then stored in the shadow entry, to classify refaults as transitioning or thrashing. How many page->flags does this leave us with on 32-bit? 20 bits are always page flags 21 if you have an MMU 23 with the zone bits for DMA, Normal, HighMem, Movable 29 with the sparsemem section bits 30 if PAE is enabled 31 with this patch. So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If that's not enough, the system can switch to discontigmem and re-gain the 6 or 7 sparsemem section bits. Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26mm: workingset: don't drop refault information prematurelyJohannes Weiner
Patch series "psi: pressure stall information for CPU, memory, and IO", v4. Overview PSI reports the overall wallclock time in which the tasks in a system (or cgroup) wait for (contended) hardware resources. This helps users understand the resource pressure their workloads are under, which allows them to rootcause and fix throughput and latency problems caused by overcommitting, underprovisioning, suboptimal job placement in a grid; as well as anticipate major disruptions like OOM. Real-world applications We're using the data collected by PSI (and its previous incarnation, memdelay) quite extensively at Facebook, and with several success stories. One usecase is avoiding OOM hangs/livelocks. The reason these happen is because the OOM killer is triggered by reclaim not being able to free pages, but with fast flash devices there is *always* some clean and uptodate cache to reclaim; the OOM killer never kicks in, even as tasks spend 90% of the time thrashing the cache pages of their own executables. There is no situation where this ever makes sense in practice. We wrote a <100 line POC python script to monitor memory pressure and kill stuff way before such pathological thrashing leads to full system losses that would require forcible hard resets. We've since extended and deployed this code into other places to guarantee latency and throughput SLAs, since they're usually violated way before the kernel OOM killer would ever kick in. It is available here: https://github.com/facebookincubator/oomd Eventually we probably want to trigger the in-kernel OOM killer based on extreme sustained pressure as well, so that Linux can avoid memory livelocks - which technically aren't deadlocks, but to the user indistinguishable from them - out of the box. We'd continue using OOMD as the first line of defense to ensure workload health and implement complex kill policies that are beyond the scope of the kernel. We also use PSI memory pressure for loadshedding. Our batch job infrastructure used to use heuristics based on various VM stats to anticipate OOM situations, with lackluster success. We switched it to PSI and managed to anticipate and avoid OOM kills and lockups fairly reliably. The reduction of OOM outages in the worker pool raised the pool's aggregate productivity, and we were able to switch that service to smaller machines. Lastly, we use cgroups to isolate a machine's main workload from maintenance crap like package upgrades, logging, configuration, as well as to prevent multiple workloads on a machine from stepping on each others' toes. We were not able to configure this properly without the pressure metrics; we would see latency or bandwidth drops, but it would often be hard to impossible to rootcause it post-mortem. We now log and graph pressure for the containers in our fleet and can trivially link latency spikes and throughput drops to shortages of specific resources after the fact, and fix the job config/scheduling. PSI has also received testing, feedback, and feature requests from Android and EndlessOS for the purpose of low-latency OOM killing, to intervene in pressure situations before the UI starts hanging. How do you use this feature? A kernel with CONFIG_PSI=y will create a /proc/pressure directory with 3 files: cpu, memory, and io. If using cgroup2, cgroups will also have cpu.pressure, memory.pressure and io.pressure files, which simply aggregate task stalls at the cgroup level instead of system-wide. The cpu file contains one line: some avg10=2.04 avg60=0.75 avg300=0.40 total=157656722 The averages give the percentage of walltime in which one or more tasks are delayed on the runqueue while another task has the CPU. They're recent averages over 10s, 1m, 5m windows, so you can tell short term trends from long term ones, similarly to the load average. The total= value gives the absolute stall time in microseconds. This allows detecting latency spikes that might be too short to sway the running averages. It also allows custom time averaging in case the 10s/1m/5m windows aren't adequate for the usecase (or are too coarse with future hardware). What to make of this "some" metric? If CPU utilization is at 100% and CPU pressure is 0, it means the system is perfectly utilized, with one runnable thread per CPU and nobody waiting. At two or more runnable tasks per CPU, the system is 100% overcommitted and the pressure average will indicate as much. From a utilization perspective this is a great state of course: no CPU cycles are being wasted, even when 50% of the threads were to go idle (as most workloads do vary). From the perspective of the individual job it's not great, however, and they would do better with more resources. Depending on what your priority and options are, raised "some" numbers may or may not require action. The memory file contains two lines: some avg10=70.24 avg60=68.52 avg300=69.91 total=3559632828 full avg10=57.59 avg60=58.06 avg300=60.38 total=3300487258 The some line is the same as for cpu, the time in which at least one task is stalled on the resource. In the case of memory, this includes waiting on swap-in, page cache refaults and page reclaim. The full line, however, indicates time in which *nobody* is using the CPU productively due to pressure: all non-idle tasks are waiting for memory in one form or another. Significant time spent in there is a good trigger for killing things, moving jobs to other machines, or dropping incoming requests, since neither the jobs nor the machine overall are making too much headway. The io file is similar to memory. Because the block layer doesn't have a concept of hardware contention right now (how much longer is my IO request taking due to other tasks?), it reports CPU potential lost on all IO delays, not just the potential lost due to competition. FAQ Q: How is PSI's CPU component different from the load average? A: There are several quirks in the load average that make it hard to impossible to tell how overcommitted the CPU really is. 1. The load average is reported as a raw number of active tasks. You need to know how many CPUs there are in the system, how many CPUs the workload is allowed to use, then think about what the proportion between load and the number of CPUs mean for the tasks trying to run. PSI reports the percentage of wallclock time in which tasks are waiting for a CPU to run on. It doesn't matter how many CPUs are present or usable. The number always tells the quality of life of tasks in the system or in a particular cgroup. 2. The shortest averaging window is 1m, which is extremely coarse, and it's sampled in 5s intervals. A *lot* can happen on a CPU in 5 seconds. This *may* be able to identify persistent long-term trends and very clear and obvious overloads, but it's unusable for latency spikes and more subtle overutilization. PSI's shortest window is 10s. It also exports the cumulative stall times (in microseconds) of synchronously recorded events. 3. On Linux, the load average for historical reasons includes all TASK_UNINTERRUPTIBLE tasks. This gives a broader sense of how busy the system is, but on the flipside it doesn't distinguish whether tasks are likely to contend over the CPU or IO - which obviously requires very different interventions from a sys admin or a job scheduler. PSI reports independent metrics for CPU and IO. You can tell which resource is making the tasks wait, but in conjunction still see how overloaded the system is overall. Q: What's the cost / performance impact of this feature? A: PSI's primary cost is in the scheduler, in particular task wakeups and sleeps. I benchmarked this code using Facebook's two most scheduling sensitive workloads: memcache and webserver. They handle a ton of small requests - lots of wakeups and sleeps with little actual work in between - so they tend to be canaries for scheduler regressions. In the tests, the boxes were handling live traffic over the course of several hours. Half the machines, the control, ran with CONFIG_PSI=n. For memcache I used eight machines total. They're 2-socket, 14 core, 56 thread boxes. The test runs for half the test period, flips the test and control kernels on the hardware to rule out HW factors, DC location etc., then runs the other half of the test. For the webservers, I used 32 machines total. They're single socket, 16 core, 32 thread machines. During the memcache test, CPU load was nopsi=78.05% psi=78.98% in the first half and nopsi=77.52% psi=78.25%, so PSI added between 0.7 and 0.9 percentage points to the CPU load, a difference of about 1%. UPDATE: I re-ran this test with the v3 version of this patch set and the CPU utilization was equivalent between test and control. UPDATE: v4 is on par with v3. As far as end-to-end request latency from the client perspective goes, we don't sample those finely enough to capture the requests going to those particular machines during the test, but we know the p50 turnaround time in this workload is 54us, and perf bench sched pipe on those machines show nopsi=5.232666 us/op and psi=5.587347 us/op, so this doesn't add much here either. The profile for the pipe benchmark shows: 0.87% sched-pipe [kernel.vmlinux] [k] psi_group_change 0.83% perf.real [kernel.vmlinux] [k] psi_group_change 0.82% perf.real [kernel.vmlinux] [k] psi_task_change 0.58% sched-pipe [kernel.vmlinux] [k] psi_task_change The webserver load is running inside 4 nested cgroup levels. The CPU load with both nopsi and psi kernels was indistinguishable at 81%. For comparison, we had to disable the cgroup cpu controller on the webservers because it added 4 percentage points to the CPU% during this same exact test. Versions of this accounting code now run on 80% of our fleet. None of our workloads have reported regressions during the rollout. Daniel Drake said: : I just retested the latest version at : http://git.cmpxchg.org/cgit.cgi/linux-psi.git (Linux 4.18) and the results : are great. : : Test setup: : Endless OS : GeminiLake N4200 low end laptop : 2GB RAM : swap (and zram swap) disabled : : Baseline test: open a handful of large-ish apps and several website : tabs in Google Chrome. : : Results: after a couple of minutes, system is excessively thrashing, mouse : cursor can barely be moved, UI is not responding to mouse clicks, so it's : impractical to recover from this situation as an ordinary user : : Add my simple killer: : https://gist.github.com/dsd/a8988bf0b81a6163475988120fe8d9cd : : Results: when the thrashing causes the UI to become sluggish, the killer : steps in and kills something (usually a chrome tab), and the system : remains usable. I repeatedly opened more apps and more websites over a 15 : minute period but I wasn't able to get the system to a point of UI : unresponsiveness. Suren said: : Backported to 4.9 and retested on ARMv8 8 code system running Android. : Signals behave as expected reacting to memory pressure, no jumps in : "total" counters that would indicate an overflow/underflow issues. Nicely : done! This patch (of 9): If we keep just enough refault information to match the *current* page cache during reclaim time, we could lose a lot of events when there is only a temporary spike in non-cache memory consumption that pushes out all the cache. Once cache comes back, we won't see those refaults. They might not be actionable for LRU aging, but we want to know about them for measuring memory pressure. [hannes@cmpxchg.org: switch to NUMA-aware lru and slab counters] Link: http://lkml.kernel.org/r/20181009184732.762-2-hannes@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <jweiner@fb.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Christopher Lameter <cl@linux.com> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-21mm: Convert workingset to XArrayMatthew Wilcox
We construct an XA_STATE and use it to delete the node with xas_store() rather than adding a special function for this unique use case. Includes a test that simulates this usage for the test suite. Signed-off-by: Matthew Wilcox <willy@infradead.org>
2018-10-21xarray: Define struct xa_nodeMatthew Wilcox
This is a direct replacement for struct radix_tree_node. A couple of struct members have changed name, so convert those. Use a #define so that radix tree users continue to work without change. Signed-off-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Josef Bacik <jbacik@fb.com>
2018-09-29xarray: Replace exceptional entriesMatthew Wilcox
Introduce xarray value entries and tagged pointers to replace radix tree exceptional entries. This is a slight change in encoding to allow the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a value entry). It is also a change in emphasis; exceptional entries are intimidating and different. As the comment explains, you can choose to store values or pointers in the xarray and they are both first-class citizens. Signed-off-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Josef Bacik <jbacik@fb.com>
2018-08-17mm/list_lru: introduce list_lru_shrink_walk_irq()Sebastian Andrzej Siewior
Provide list_lru_shrink_walk_irq() and let it behave like list_lru_walk_one() except that it locks the spinlock with spin_lock_irq(). This is used by scan_shadow_nodes() because its lock nests within the i_pages lock which is acquired with IRQ. This change allows to use proper locking promitives instead hand crafted lock_irq_disable() plus spin_lock(). There is no EXPORT_SYMBOL provided because the current user is in-kernel only. Add list_lru_shrink_walk_irq() which acquires the spinlock with the proper locking primitives. Link: http://lkml.kernel.org/r/20180716111921.5365-5-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>