Age | Commit message (Collapse) | Author |
|
[ Upstream commit bfa7965b33ab79fc3b2f8adc14704075fe2416cd ]
Kfence only needs its pool to be mapped as page granularity, if it is
inited early. Previous judgement was a bit over protected. From [1], Mark
suggested to "just map the KFENCE region a page granularity". So I
decouple it from judgement and do page granularity mapping for kfence
pool only. Need to be noticed that late init of kfence pool still requires
page granularity mapping.
Page granularity mapping in theory cost more(2M per 1GB) memory on arm64
platform. Like what I've tested on QEMU(emulated 1GB RAM) with
gki_defconfig, also turning off rodata protection:
Before:
[root@liebao ]# cat /proc/meminfo
MemTotal: 999484 kB
After:
[root@liebao ]# cat /proc/meminfo
MemTotal: 1001480 kB
To implement this, also relocate the kfence pool allocation before the
linear mapping setting up, arm64_kfence_alloc_pool is to allocate phys
addr, __kfence_pool is to be set after linear mapping set up.
LINK: [1] https://lore.kernel.org/linux-arm-kernel/Y+IsdrvDNILA59UN@FVFF77S0Q05N/
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/1679066974-690-1-git-send-email-quic_zhenhuah@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
Stable-dep-of: acfa60dbe038 ("arm64: mm: Fix "rodata=on" when CONFIG_RODATA_FULL_DEFAULT_ENABLED=y")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 24948e3b7b12e0031a6edb4f49bbb9fb2ad1e4e9 upstream.
Objcg vectors attached to slab pages to store slab object ownership
information are allocated using gfp flags for the original slab
allocation. Depending on slab page order and the size of slab objects,
objcg vector can take several pages.
If the original allocation was done with the __GFP_NOFAIL flag, it
triggered a warning in the page allocation code. Indeed, order > 1 pages
should not been allocated with the __GFP_NOFAIL flag.
Fix this by simply dropping the __GFP_NOFAIL flag when allocating the
objcg vector. It effectively allows to skip the accounting of a single
slab object under a heavy memory pressure.
An alternative would be to implement the mechanism to fallback to order-0
allocations for accounting metadata, which is also not perfect because it
will increase performance penalty and memory footprint of the kernel
memory accounting under memory pressure.
Link: https://lkml.kernel.org/r/ZUp8ZFGxwmCx4ZFr@P9FQF9L96D.corp.robot.car
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Reported-by: Christoph Lameter <cl@linux.com>
Closes: https://lkml.kernel.org/r/6b42243e-f197-600a-5d22-56bd728a5ad8@gentwo.org
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a48d5bdc877b85201e42cef9c2fdf5378164c23a upstream.
While qualifiying the 6.4 release, the following warning was detected in
messages:
vmstat_refresh: nr_file_hugepages -15664
The warning is caused by the incorrect updating of the NR_FILE_THPS
counter in the function split_huge_page_to_list. The if case is checking
for folio_test_swapbacked, but the else case is missing the check for
folio_test_pmd_mappable. The other functions that manipulate the counter
like __filemap_add_folio and filemap_unaccount_folio have the
corresponding check.
I have a test case, which reproduces the problem. It can be found here:
https://github.com/sroeschus/testcase/blob/main/vmstat_refresh/madv.c
The test case reproduces on an XFS filesystem. Running the same test
case on a BTRFS filesystem does not reproduce the problem.
AFAIK version 6.1 until 6.6 are affected by this problem.
[akpm@linux-foundation.org: whitespace fix]
[shr@devkernel.io: test for folio_test_pmd_mappable()]
Link: https://lkml.kernel.org/r/20231108171517.2436103-1-shr@devkernel.io
Link: https://lkml.kernel.org/r/20231106181918.1091043-1-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Co-debugged-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1640a0ef80f6d572725f5b0330038c18e98ea168 upstream.
When dealing with hugetlb pages, manipulating struct page pointers
directly can get to wrong struct page, since struct page is not guaranteed
to be contiguous on SPARSEMEM without VMEMMAP. Use pfn calculation to
handle it properly.
Without the fix, a wrong number of page might be skipped. Since skip cannot be
negative, scan_movable_page() will end early and might miss a movable page with
-ENOENT. This might fail offline_pages(). No bug is reported. The fix comes
from code inspection.
Link: https://lkml.kernel.org/r/20230913201248.452081-4-zi.yan@sent.com
Fixes: eeb0efd071d8 ("mm,memory_hotplug: fix scan_movable_pages() for gigantic hugepages")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2e7cfe5cd5b6b0b98abf57a3074885979e187c1c upstream.
Patch series "Use nth_page() in place of direct struct page manipulation",
v3.
On SPARSEMEM without VMEMMAP, struct page is not guaranteed to be
contiguous, since each memory section's memmap might be allocated
independently. hugetlb pages can go beyond a memory section size, thus
direct struct page manipulation on hugetlb pages/subpages might give wrong
struct page. Kernel provides nth_page() to do the manipulation properly.
Use that whenever code can see hugetlb pages.
This patch (of 5):
When dealing with hugetlb pages, manipulating struct page pointers
directly can get to wrong struct page, since struct page is not guaranteed
to be contiguous on SPARSEMEM without VMEMMAP. Use nth_page() to handle
it properly.
Without the fix, page_kasan_tag_reset() could reset wrong page tags,
causing a wrong kasan result. No related bug is reported. The fix
comes from code inspection.
Link: https://lkml.kernel.org/r/20230913201248.452081-1-zi.yan@sent.com
Link: https://lkml.kernel.org/r/20230913201248.452081-2-zi.yan@sent.com
Fixes: 2813b9c02962 ("kasan, mm, arm64: tag non slab memory allocated via pagealloc")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b4936b544b08ed44949055b92bd25f77759ebafc upstream.
Patch series "mm/damon/sysfs: fix unhandled return values".
Some of DAMON sysfs interface code is not handling return values from some
functions. As a result, confusing user input handling or NULL-dereference
is possible. Check those properly.
This patch (of 3):
damon_sysfs_update_target() returns error code for failures, but its
caller, damon_sysfs_set_targets() is ignoring that. The update function
seems making no critical change in case of such failures, but the behavior
will look like DAMON sysfs is silently ignoring or only partially
accepting the user input. Fix it.
Link: https://lkml.kernel.org/r/20231106233408.51159-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231106233408.51159-2-sj@kernel.org
Fixes: 19467a950b49 ("mm/damon/sysfs: remove requested targets when online-commit inputs")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [5.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3bafc47d3c4a2fc4d3b382aeb3c087f8fc84d9fd upstream.
When calculating the hotness of each region for the under-quota regions
prioritization, DAMON divides some values by the maximum nr_accesses.
However, due to the type of the related variables, simple division-based
calculation of the divisor can return zero. As a result, divide-by-zero
is possible. Fix it by using damon_max_nr_accesses(), which handles the
case.
Link: https://lkml.kernel.org/r/20231019194924.100347-4-sj@kernel.org
Fixes: 198f0f4c58b9 ("mm/damon/vaddr,paddr: support pageout prioritization")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org> [5.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 44063f125af4bb4efd1d500d8091fa33a98af325 upstream.
When calculating the hotness threshold for lru_prio scheme of
DAMON_LRU_SORT, the module divides some values by the maximum nr_accesses.
However, due to the type of the related variables, simple division-based
calculation of the divisor can return zero. As a result, divide-by-zero
is possible. Fix it by using damon_max_nr_accesses(), which handles the
case.
Link: https://lkml.kernel.org/r/20231019194924.100347-5-sj@kernel.org
Fixes: 40e983cca927 ("mm/damon: introduce DAMON-based LRU-lists Sorting")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org> [6.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9732336006764e2ee61225387e3c70eae9139035 upstream.
When user input is committed online, DAMON sysfs interface is ignoring the
user input for the monitoring target regions. Such request is valid and
useful for fixed monitoring target regions-based monitoring ops like
'paddr' or 'fvaddr'.
Update the region boundaries as user specified, too. Note that the
monitoring results of the regions that overlap between the latest
monitoring target regions and the new target regions are preserved.
Treat empty monitoring target regions user request as a request to just
make no change to the monitoring target regions. Otherwise, users should
set the monitoring target regions same to current one for every online
input commit, and it could be challenging for dynamic monitoring target
regions update DAMON ops like 'vaddr'. If the user really need to remove
all monitoring target regions, they can simply remove the target and then
create the target again with empty target regions.
Link: https://lkml.kernel.org/r/20231031170131.46972-1-sj@kernel.org
Fixes: da87878010e5 ("mm/damon/sysfs: support online inputs update")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [5.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 19467a950b49432a84bf6dbadbbb17bdf89418b7 upstream.
damon_sysfs_set_targets(), which updates the targets of the context for
online commitment, do not remove targets that removed from the
corresponding sysfs files. As a result, more than intended targets of the
context can exist and hence consume memory and monitoring CPU resource
more than expected.
Fix it by removing all targets of the context and fill up again using the
user input. This could cause unnecessary memory dealloc and realloc
operations, but this is not a hot code path. Also, note that damon_target
is stateless, and hence no data is lost.
[sj@kernel.org: fix unnecessary monitoring results removal]
Link: https://lkml.kernel.org/r/20231028213353.45397-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231022210735.46409-2-sj@kernel.org
Fixes: da87878010e5 ("mm/damon/sysfs: support online inputs update")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: <stable@vger.kernel.org> [5.19.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 247f9e1feef4e57911510c8f82348efb4491ea0e ]
This is the equivalent of find_get_pages_range_tag(), except for folios
instead of pages.
One noteable difference is filemap_get_folios_tag() does not take in a
maximum pages argument. It instead tries to fill a folio batch and stops
either once full (15 folios) or reaching the end of the search range.
The new function supports large folios, the initial function did not since
all callers don't use large folios.
Link: https://lkml.kernel.org/r/20230104211448.4804-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcow (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: c5d3f9b7649a ("f2fs: compress: fix deadloop in f2fs_write_cache_pages()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7116c0af4b8414b2f19fdb366eea213cbd9d91c2 ]
Readahead was factored to call generic_fadvise. That refactor added an
S_ISREG restriction which broke readahead on block devices.
In addition to S_ISREG, this change checks S_ISBLK to fix block device
readahead. There is no change in behavior with any file type besides block
devices in this change.
Fixes: 3d8f7615319b ("vfs: implement readahead(2) using POSIX_FADV_WILLNEED")
Signed-off-by: Reuben Hawkins <reubenhwk@gmail.com>
Link: https://lore.kernel.org/r/20231003015704.2415-1-reubenhwk@gmail.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 824135c46b00df7fb369ec7f1f8607427bbebeb0 upstream.
When the calling function fails after the dup_anon_vma(), the
duplication of the anon_vma is not being undone. Add the necessary
unlink_anon_vma() call to the error paths that are missing them.
This issue showed up during inspection of the error path in vma_merge()
for an unrelated vma iterator issue.
Users may experience increased memory usage, which may be problematic as
the failure would likely be caused by a low memory situation.
Link: https://lkml.kernel.org/r/20230929183041.2835469-3-Liam.Howlett@oracle.com
Fixes: d4af56c5c7c6 ("mm: start tracking VMAs with maple tree")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 51f625377561e5b167da2db5aafb7ee268f691c5 upstream.
The two users of mbind_range() are expecting that mbind_range() will
update the pointer to the previous VMA, or return an error. However,
set_mempolicy_home_node() does not call mbind_range() if there is no VMA
policy. The fix is to update the pointer to the previous VMA prior to
continuing iterating the VMAs when there is no policy.
Users may experience a WARN_ON() during VMA policy updates when updating
a range of VMAs on the home node.
Link: https://lkml.kernel.org/r/20230928172432.2246534-1-Liam.Howlett@oracle.com
Link: https://lore.kernel.org/linux-mm/CALcu4rbT+fMVNaO_F2izaCT+e7jzcAciFkOvk21HGJsmLcUuwQ@mail.gmail.com/
Fixes: f4e9e0e69468 ("mm/mempolicy: fix use-after-free of VMA iterator")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Yikebaer Aizezi <yikebaer61@gmail.com>
Closes: https://lore.kernel.org/linux-mm/CALcu4rbT+fMVNaO_F2izaCT+e7jzcAciFkOvk21HGJsmLcUuwQ@mail.gmail.com/
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit babddbfb7d7d70ae7f10fedd75a45d8ad75fdddf upstream.
when the checked address is illegal,the corresponding shadow address from
kasan_mem_to_shadow may have no mapping in mmu table. Access such shadow
address causes kernel oops. Here is a sample about oops on arm64(VA
39bit) with KASAN_SW_TAGS and KASAN_OUTLINE on:
[ffffffb80aaaaaaa] pgd=000000005d3ce003, p4d=000000005d3ce003,
pud=000000005d3ce003, pmd=0000000000000000
Internal error: Oops: 0000000096000006 [#1] PREEMPT SMP
Modules linked in:
CPU: 3 PID: 100 Comm: sh Not tainted 6.6.0-rc1-dirty #43
Hardware name: linux,dummy-virt (DT)
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __hwasan_load8_noabort+0x5c/0x90
lr : do_ib_ob+0xf4/0x110
ffffffb80aaaaaaa is the shadow address for efffff80aaaaaaaa.
The problem is reading invalid shadow in kasan_check_range.
The generic kasan also has similar oops.
It only reports the shadow address which causes oops but not
the original address.
Commit 2f004eea0fc8("x86/kasan: Print original address on #GP")
introduce to kasan_non_canonical_hook but limit it to KASAN_INLINE.
This patch extends it to KASAN_OUTLINE mode.
Link: https://lkml.kernel.org/r/20231009073748.159228-1-haibo.li@mediatek.com
Fixes: 2f004eea0fc8("x86/kasan: Print original address on #GP")
Signed-off-by: Haibo Li <haibo.li@mediatek.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Haibo Li <haibo.li@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bf4916922c60f43efaa329744b3eef539aa6a2b2 upstream.
Extend the locking scheme used to protect shared hugetlb mappings from
truncate vs page fault races, in order to protect private hugetlb mappings
(with resv_map) against MADV_DONTNEED.
Add a read-write semaphore to the resv_map data structure, and use that
from the hugetlb_vma_(un)lock_* functions, in preparation for closing the
race between MADV_DONTNEED and page faults.
Link: https://lkml.kernel.org/r/20231006040020.3677377-3-riel@surriel.com
Fixes: 04ada095dcfc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing")
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 229e2253766c7cdfe024f1fe280020cc4711087c upstream.
do_pages_move does not handle compat pointers for the page list.
correctly. Add in_compat_syscall check and appropriate get_user fetch
when iterating the page list.
It makes the syscall in compat mode (32-bit userspace, 64-bit kernel)
work the same way as the native 32-bit syscall again, restoring the
behavior before my broken commit 5b1b561ba73c ("mm: simplify
compat_sys_move_pages").
More specifically, my patch moved the parsing of the 'pages' array from
the main entry point into do_pages_stat(), which left the syscall
working correctly for the 'stat' operation (nodes = NULL), while the
'move' operation (nodes != NULL) is now missing the conversion and
interprets 'pages' as an array of 64-bit pointers instead of the
intended 32-bit userspace pointers.
It is possible that nobody noticed this bug because the few
applications that actually call move_pages are unlikely to run in
compat mode because of their large memory requirements, but this
clearly fixes a user-visible regression and should have been caught by
ltp.
Link: https://lkml.kernel.org/r/20231003144857.752952-1-gregory.price@memverge.com
Fixes: 5b1b561ba73c ("mm: simplify compat_sys_move_pages")
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Co-developed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 61e21cf2d2c3cc5e60e8d0a62a77e250fccda62c upstream.
When guard page debug is enabled and set_page_guard returns success, we
miss to forward page to point to start of next split range and we will do
split unexpectedly in page range without target page. Move start page
update before set_page_guard to fix this.
As we split to wrong target page, then splited pages are not able to merge
back to original order when target page is put back and splited pages
except target page is not usable. To be specific:
Consider target page is the third page in buddy page with order 2.
| buddy-2 | Page | Target | Page |
After break down to target page, we will only set first page to Guard
because of bug.
| Guard | Page | Target | Page |
When we try put_page_back_buddy with target page, the buddy page of target
if neither guard nor buddy, Then it's not able to construct original page
with order 2
| Guard | Page | buddy-0 | Page |
All pages except target page is not in free list and is not usable.
Link: https://lkml.kernel.org/r/20230927094401.68205-1-shikemeng@huaweicloud.com
Fixes: 06be6ff3d2ec ("mm,hwpoison: rework soft offline for free pages")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 92fe9dcbe4e109a7ce6bab3e452210a35b0ab493 upstream.
Patch series "hugetlbfs: close race between MADV_DONTNEED and page fault", v7.
Malloc libraries, like jemalloc and tcalloc, take decisions on when to
call madvise independently from the code in the main application.
This sometimes results in the application page faulting on an address,
right after the malloc library has shot down the backing memory with
MADV_DONTNEED.
Usually this is harmless, because we always have some 4kB pages sitting
around to satisfy a page fault. However, with hugetlbfs systems often
allocate only the exact number of huge pages that the application wants.
Due to TLB batching, hugetlbfs MADV_DONTNEED will free pages outside of
any lock taken on the page fault path, which can open up the following
race condition:
CPU 1 CPU 2
MADV_DONTNEED
unmap page
shoot down TLB entry
page fault
fail to allocate a huge page
killed with SIGBUS
free page
Fix that race by extending the hugetlb_vma_lock locking scheme to also
cover private hugetlb mappings (with resv_map), and pulling the locking
from __unmap_hugepage_final_range into helper functions called from
zap_page_range_single. This ensures page faults stay locked out of the
MADV_DONTNEED VMA until the huge pages have actually been freed.
This patch (of 3):
Hugetlbfs leaves a dangling pointer in the VMA if mmap fails. This has
not been a problem so far, but other code in this patch series tries to
follow that pointer.
Link: https://lkml.kernel.org/r/20231006040020.3677377-1-riel@surriel.com
Link: https://lkml.kernel.org/r/20231006040020.3677377-2-riel@surriel.com
Fixes: 04ada095dcfc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e0f81ab1e4f42ffece6440dc78f583eb352b9a71 upstream.
Calling vm_brk_flags() with flags set other than VM_EXEC will exit the
function without releasing the mmap_write_lock.
Just do the sanity check before the lock is acquired. This doesn't fix an
actual issue since no caller sets a flag other than VM_EXEC.
Link: https://lkml.kernel.org/r/20230929171937.work.697-kees@kernel.org
Fixes: 2e7ce7d354f2 ("mm/mmap: change do_brk_flags() to expand existing VMA and add do_brk_munmap()")
Signed-off-by: Sebastian Ott <sebott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 7b086755fb8cdbb6b3e45a1bbddc00e7f9b1dc03 ]
Commit 4b23a68f9536 ("mm/page_alloc: protect PCP lists with a spinlock")
bypasses the pcplist on lock contention and returns the page directly to
the buddy list of the page's migratetype.
For pages that don't have their own pcplist, such as CMA and HIGHATOMIC,
the migratetype is temporarily updated such that the page can hitch a ride
on the MOVABLE pcplist. Their true type is later reassessed when flushing
in free_pcppages_bulk(). However, when lock contention is detected after
the type was already overridden, the bypass will then put the page on the
wrong buddy list.
Once on the MOVABLE buddy list, the page becomes eligible for fallbacks
and even stealing. In the case of HIGHATOMIC, otherwise ineligible
allocations can dip into the highatomic reserves. In the case of CMA, the
page can be lost from the CMA region permanently.
Use a separate pcpmigratetype variable for the pcplist override. Use the
original migratetype when going directly to the buddy. This fixes the bug
and should make the intentions more obvious in the code.
Originally sent here to address the HIGHATOMIC case:
https://lore.kernel.org/lkml/20230821183733.106619-4-hannes@cmpxchg.org/
Changelog updated in response to the CMA-specific bug report.
[mgorman@techsingularity.net: updated changelog]
Link: https://lkml.kernel.org/r/20230911181108.GA104295@cmpxchg.org
Fixes: 4b23a68f9536 ("mm/page_alloc: protect PCP lists with a spinlock")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Joe Liu <joe.liu@mediatek.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5749077415994eb02d660b2559b9d8278521e73d ]
The pcp_spin_lock_irqsave protecting the PCP lists is IRQ-safe as a task
allocating from the PCP must not re-enter the allocator from IRQ context.
In each instance where IRQ-reentrancy is possible, the lock is acquired
using pcp_spin_trylock_irqsave() even though IRQs are disabled and
re-entrancy is impossible.
Demote the lock to pcp_spin_lock avoids an IRQ disable/enable in the
common case at the cost of some IRQ allocations taking a slower path. If
the PCP lists need to be refilled, the zone lock still needs to disable
IRQs but that will only happen on PCP refill and drain. If an IRQ is
raised when a PCP allocation is in progress, the trylock will fail and
fallback to using the buddy lists directly. Note that this may not be a
universal win if an interrupt-intensive workload also allocates heavily
from interrupt context and contends heavily on the zone->lock as a result.
[mgorman@techsingularity.net: migratetype might be wrong if a PCP was locked]
Link: https://lkml.kernel.org/r/20221122131229.5263-2-mgorman@techsingularity.net
[yuzhao@google.com: reported lockdep issue on IO completion from softirq]
[hughd@google.com: fix list corruption, lock improvements, micro-optimsations]
Link: https://lkml.kernel.org/r/20221118101714.19590-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 7b086755fb8c ("mm: page_alloc: fix CMA and HIGHATOMIC landing on the wrong buddy list")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c3e58a70425ac6ddaae1529c8146e88b4f7252bb ]
Patch series "Leave IRQs enabled for per-cpu page allocations", v3.
This patch (of 2):
free_unref_page_list() has neglected to remove pages properly from the
list of pages to free since forever. It works by coincidence because
list_add happened to do the right thing adding the pages to just the PCP
lists. However, a later patch added pages to either the PCP list or the
zone list but only properly deleted the page from the list in one path
leading to list corruption and a subsequent failure. As a preparation
patch, always delete the pages from one list properly before adding to
another. On its own, this fixes nothing although it adds a fractional
amount of overhead but is critical to the next patch.
Link: https://lkml.kernel.org/r/20221118101714.19590-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20221118101714.19590-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 7b086755fb8c ("mm: page_alloc: fix CMA and HIGHATOMIC landing on the wrong buddy list")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
specified
[ Upstream commit 24526268f4e38c9ec0c4a30de4f37ad2a2a84e47 ]
When calling mbind() with MPOL_MF_{MOVE|MOVEALL} | MPOL_MF_STRICT, kernel
should attempt to migrate all existing pages, and return -EIO if there is
misplaced or unmovable page. Then commit 6f4576e3687b ("mempolicy: apply
page table walker on queue_pages_range()") messed up the return value and
didn't break VMA scan early ianymore when MPOL_MF_STRICT alone. The
return value problem was fixed by commit a7f40cfe3b7a ("mm: mempolicy:
make mbind() return -EIO when MPOL_MF_STRICT is specified"), but it broke
the VMA walk early if unmovable page is met, it may cause some pages are
not migrated as expected.
The code should conceptually do:
if (MPOL_MF_MOVE|MOVEALL)
scan all vmas
try to migrate the existing pages
return success
else if (MPOL_MF_MOVE* | MPOL_MF_STRICT)
scan all vmas
try to migrate the existing pages
return -EIO if unmovable or migration failed
else /* MPOL_MF_STRICT alone */
break early if meets unmovable and don't call mbind_range() at all
else /* none of those flags */
check the ranges in test_walk, EFAULT without mbind_range() if discontig.
Fixed the behavior.
Link: https://lkml.kernel.org/r/20230920223242.3425775-1-yang@os.amperecomputing.com
Fixes: a7f40cfe3b7a ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified")
Signed-off-by: Yang Shi <yang@os.amperecomputing.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 4a64981dfee9119aa2c1f243b48f34cbbd67779c ]
Replace migrate_page_add() with migrate_folio_add(). migrate_folio_add()
does the same a migrate_page_add() but takes in a folio instead of a page.
This removes a couple of calls to compound_head().
Link: https://lkml.kernel.org/r/20230130201833.27042-7-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 24526268f4e3 ("mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 3dae02bbd07f40e37bbfec2d77119628db461eaa ]
This function now operates on folios associated with ptes instead of
pages.
This change is in preparation for the conversion of queue_pages_required()
to queue_folio_required() and migrate_page_add() to migrate_folio_add().
Link: https://lkml.kernel.org/r/20230130201833.27042-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: "Yin, Fengwei" <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 24526268f4e3 ("mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit de1f5055523e9a035b38533f25a56df03d45034a ]
The function now operates on a folio instead of the page associated with a
pmd.
This change is in preparation for the conversion of queue_pages_required()
to queue_folio_required() and migrate_page_add() to migrate_folio_add().
Link: https://lkml.kernel.org/r/20230130201833.27042-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: "Yin, Fengwei" <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 24526268f4e3 ("mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 318e9342fbbb6888d903d86e83865609901a1c65 ]
Patch series "Convert deactivate_page() to folio_deactivate()", v4.
Deactivate_page() has already been converted to use folios. This patch
series modifies the callers of deactivate_page() to use folios. It also
introduces vm_normal_folio() to assist with folio conversions, and
converts deactivate_page() to folio_deactivate() which takes in a folio.
This patch (of 4):
Introduce a wrapper function called vm_normal_folio(). This function
calls vm_normal_page() and returns the folio of the page found, or null if
no page is found.
This function allows callers to get a folio from a pte, which will
eventually allow them to completely replace their struct page variables
with struct folio instead.
Link: https://lkml.kernel.org/r/20221221180848.20774-1-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20221221180848.20774-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 24526268f4e3 ("mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 4597648fddeadef5877610d693af11906aa666ac upstream.
This reverts commits 86327e8eb94c ("memcg: drop kmem.limit_in_bytes") and
partially reverts 58056f77502f ("memcg, kmem: further deprecate
kmem.limit_in_bytes") which have incrementally removed support for the
kernel memory accounting hard limit. Unfortunately it has turned out that
there is still userspace depending on the existence of
memory.kmem.limit_in_bytes [1]. The underlying functionality is not
really required but the non-existent file just confuses the userspace
which fails in the result. The patch to fix this on the userspace side
has been submitted but it is hard to predict how it will propagate through
the maze of 3rd party consumers of the software.
Now, reverting alone 86327e8eb94c is not an option because there is
another set of userspace which cannot cope with ENOTSUPP returned when
writing to the file. Therefore we have to go and revisit 58056f77502f as
well. There are two ways to go ahead. Either we give up on the
deprecation and fully revert 58056f77502f as well or we can keep
kmem.limit_in_bytes but make the write a noop and warn about the fact.
This should work for both known breaking workloads which depend on the
existence but do not depend on the hard limit enforcement.
Note to backporters to stable trees. a8c49af3be5f ("memcg: add per-memcg
total kernel memory stat") introduced in 4.18 has added memcg_account_kmem
so the accounting is not done by obj_cgroup_charge_pages directly for v1
anymore. Prior kernels need to add it explicitly (thanks to Johannes for
pointing this out).
[akpm@linux-foundation.org: fix build - remove unused local]
Link: http://lkml.kernel.org/r/20230920081101.GA12096@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net [1]
Link: https://lkml.kernel.org/r/ZRE5VJozPZt9bRPy@dhcp22.suse.cz
Fixes: 86327e8eb94c ("memcg: drop kmem.limit_in_bytes")
Fixes: 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 86327e8eb94c52eca4f93cfece2e29d1bf52acbf upstream.
kmem.limit_in_bytes (v1 way to limit kernel memory usage) has been
deprecated since 58056f77502f ("memcg, kmem: further deprecate
kmem.limit_in_bytes") merged in 5.16. We haven't heard about any serious
users since then but it seems that the mere presence of the file is
causing more harm thatn good. We (SUSE) have had several bug reports from
customers where Docker based containers started to fail because a write to
kmem.limit_in_bytes has failed.
This was unexpected because runc code only expects ENOENT (kmem disabled)
or EBUSY (tasks already running within cgroup). So a new error code was
unexpected and the whole container startup failed. This has been later
addressed by
https://github.com/opencontainers/runc/commit/52390d68040637dfc77f9fda6bbe70952423d380
so current Docker runtimes do not suffer from the problem anymore. There
are still older version of Docker in use and likely hard to get rid of
completely.
Address this by wiping out the file completely and effectively get back to
pre 4.5 era and CONFIG_MEMCG_KMEM=n configuration.
I would recommend backporting to stable trees which have picked up
58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes").
[mhocko@suse.com: restore _KMEM switch case]
Link: https://lkml.kernel.org/r/ZKe5wxdbvPi5Cwd7@dhcp22.suse.cz
Link: https://lkml.kernel.org/r/20230704115240.14672-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9ea9cb00a82b53ec39630eac718776d37e41b35a upstream.
Breno and Josef report a deadlock scenario from cgroup reclaim
re-entering the filesystem:
[ 361.546690] ======================================================
[ 361.559210] WARNING: possible circular locking dependency detected
[ 361.571703] 6.5.0-0_fbk700_debug_rc0_kbuilder_13159_gbf787a128001 #1 Tainted: G S E
[ 361.589704] ------------------------------------------------------
[ 361.602277] find/9315 is trying to acquire lock:
[ 361.611625] ffff88837ba140c0 (&delayed_node->mutex){+.+.}-{4:4}, at: __btrfs_release_delayed_node+0x68/0x4f0
[ 361.631437]
[ 361.631437] but task is already holding lock:
[ 361.643243] ffff8881765b8678 (btrfs-tree-01){++++}-{4:4}, at: btrfs_tree_read_lock+0x1e/0x40
[ 362.904457] mutex_lock_nested+0x1c/0x30
[ 362.912414] __btrfs_release_delayed_node+0x68/0x4f0
[ 362.922460] btrfs_evict_inode+0x301/0x770
[ 362.982726] evict+0x17c/0x380
[ 362.988944] prune_icache_sb+0x100/0x1d0
[ 363.005559] super_cache_scan+0x1f8/0x260
[ 363.013695] do_shrink_slab+0x2a2/0x540
[ 363.021489] shrink_slab_memcg+0x237/0x3d0
[ 363.050606] shrink_slab+0xa7/0x240
[ 363.083382] shrink_node_memcgs+0x262/0x3b0
[ 363.091870] shrink_node+0x1a4/0x720
[ 363.099150] shrink_zones+0x1f6/0x5d0
[ 363.148798] do_try_to_free_pages+0x19b/0x5e0
[ 363.157633] try_to_free_mem_cgroup_pages+0x266/0x370
[ 363.190575] reclaim_high+0x16f/0x1f0
[ 363.208409] mem_cgroup_handle_over_high+0x10b/0x270
[ 363.246678] try_charge_memcg+0xaf2/0xc70
[ 363.304151] charge_memcg+0xf0/0x350
[ 363.320070] __mem_cgroup_charge+0x28/0x40
[ 363.328371] __filemap_add_folio+0x870/0xd50
[ 363.371303] filemap_add_folio+0xdd/0x310
[ 363.399696] __filemap_get_folio+0x2fc/0x7d0
[ 363.419086] pagecache_get_page+0xe/0x30
[ 363.427048] alloc_extent_buffer+0x1cd/0x6a0
[ 363.435704] read_tree_block+0x43/0xc0
[ 363.443316] read_block_for_search+0x361/0x510
[ 363.466690] btrfs_search_slot+0xc8c/0x1520
This is caused by the mem_cgroup_handle_over_high() not respecting the
gfp_mask of the allocation context. We used to only call this function on
resume to userspace, where no locks were held. But c9afe31ec443 ("memcg:
synchronously enforce memory.high for large overcharges") added a call
from the allocation context without considering the gfp.
Link: https://lkml.kernel.org/r/20230914152139.100822-1-hannes@cmpxchg.org
Fixes: c9afe31ec443 ("memcg: synchronously enforce memory.high for large overcharges")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Breno Leitao <leitao@debian.org>
Reported-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org> [5.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 46a9ea6681907a3be6b6b0d43776dccc62cad6cf upstream.
After the commit in Fixes:, if a module that created a slab cache does not
release all of its allocated objects before destroying the cache (at rmmod
time), we might end up releasing the kmem_cache object without removing it
from the slab_caches list thus corrupting the list as kmem_cache_destroy()
ignores the return value from shutdown_cache(), which in turn never removes
the kmem_cache object from slabs_list in case __kmem_cache_shutdown() fails
to release all of the cache's slabs.
This is easily observable on a kernel built with CONFIG_DEBUG_LIST=y
as after that ill release the system will immediately trip on list_add,
or list_del, assertions similar to the one shown below as soon as another
kmem_cache gets created, or destroyed:
[ 1041.213632] list_del corruption. next->prev should be ffff89f596fb5768, but was 52f1e5016aeee75d. (next=ffff89f595a1b268)
[ 1041.219165] ------------[ cut here ]------------
[ 1041.221517] kernel BUG at lib/list_debug.c:62!
[ 1041.223452] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 1041.225408] CPU: 2 PID: 1852 Comm: rmmod Kdump: loaded Tainted: G B W OE 6.5.0 #15
[ 1041.228244] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc37 05/24/2023
[ 1041.231212] RIP: 0010:__list_del_entry_valid+0xae/0xb0
Another quick way to trigger this issue, in a kernel with CONFIG_SLUB=y,
is to set slub_debug to poison the released objects and then just run
cat /proc/slabinfo after removing the module that leaks slab objects,
in which case the kernel will panic:
[ 50.954843] general protection fault, probably for non-canonical address 0xa56b6b6b6b6b6b8b: 0000 [#1] PREEMPT SMP PTI
[ 50.961545] CPU: 2 PID: 1495 Comm: cat Kdump: loaded Tainted: G B W OE 6.5.0 #15
[ 50.966808] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc37 05/24/2023
[ 50.972663] RIP: 0010:get_slabinfo+0x42/0xf0
This patch fixes this issue by properly checking shutdown_cache()'s
return value before taking the kmem_cache_release() branch.
Fixes: 0495e337b703 ("mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock")
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: stable@vger.kernel.org
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 45120b15743fa7c0aa53d5db6dfb4c8f87be4abd upstream.
When CONFIG_DAMON_VADDR_KUNIT_TEST=y and making CONFIG_DEBUG_KMEMLEAK=y
and CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN=y, the below memory leak is detected.
Since commit 9f86d624292c ("mm/damon/vaddr-test: remove unnecessary
variables"), the damon_destroy_ctx() is removed, but still call
damon_new_target() and damon_new_region(), the damon_region which is
allocated by kmem_cache_alloc() in damon_new_region() and the damon_target
which is allocated by kmalloc in damon_new_target() are not freed. And
the damon_region which is allocated in damon_new_region() in
damon_set_regions() is also not freed.
So use damon_destroy_target to free all the damon_regions and damon_target.
unreferenced object 0xffff888107c9a940 (size 64):
comm "kunit_try_catch", pid 1069, jiffies 4294670592 (age 732.761s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk
60 c7 9c 07 81 88 ff ff f8 cb 9c 07 81 88 ff ff `...............
backtrace:
[<ffffffff817e0167>] kmalloc_trace+0x27/0xa0
[<ffffffff819c11cf>] damon_new_target+0x3f/0x1b0
[<ffffffff819c7d55>] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0
[<ffffffff819c82be>] damon_test_apply_three_regions1+0x21e/0x260
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff8881079cc740 (size 56):
comm "kunit_try_catch", pid 1069, jiffies 4294670592 (age 732.761s)
hex dump (first 32 bytes):
05 00 00 00 00 00 00 00 14 00 00 00 00 00 00 00 ................
6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk
backtrace:
[<ffffffff819bc492>] damon_new_region+0x22/0x1c0
[<ffffffff819c7d91>] damon_do_test_apply_three_regions.constprop.0+0xd1/0x3e0
[<ffffffff819c82be>] damon_test_apply_three_regions1+0x21e/0x260
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff888107c9ac40 (size 64):
comm "kunit_try_catch", pid 1071, jiffies 4294670595 (age 732.843s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk
a0 cc 9c 07 81 88 ff ff 78 a1 76 07 81 88 ff ff ........x.v.....
backtrace:
[<ffffffff817e0167>] kmalloc_trace+0x27/0xa0
[<ffffffff819c11cf>] damon_new_target+0x3f/0x1b0
[<ffffffff819c7d55>] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0
[<ffffffff819c851e>] damon_test_apply_three_regions2+0x21e/0x260
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff8881079ccc80 (size 56):
comm "kunit_try_catch", pid 1071, jiffies 4294670595 (age 732.843s)
hex dump (first 32 bytes):
05 00 00 00 00 00 00 00 14 00 00 00 00 00 00 00 ................
6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk
backtrace:
[<ffffffff819bc492>] damon_new_region+0x22/0x1c0
[<ffffffff819c7d91>] damon_do_test_apply_three_regions.constprop.0+0xd1/0x3e0
[<ffffffff819c851e>] damon_test_apply_three_regions2+0x21e/0x260
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff888107c9af40 (size 64):
comm "kunit_try_catch", pid 1073, jiffies 4294670597 (age 733.011s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk
20 a2 76 07 81 88 ff ff b8 a6 76 07 81 88 ff ff .v.......v.....
backtrace:
[<ffffffff817e0167>] kmalloc_trace+0x27/0xa0
[<ffffffff819c11cf>] damon_new_target+0x3f/0x1b0
[<ffffffff819c7d55>] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0
[<ffffffff819c877e>] damon_test_apply_three_regions3+0x21e/0x260
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff88810776a200 (size 56):
comm "kunit_try_catch", pid 1073, jiffies 4294670597 (age 733.011s)
hex dump (first 32 bytes):
05 00 00 00 00 00 00 00 14 00 00 00 00 00 00 00 ................
6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk
backtrace:
[<ffffffff819bc492>] damon_new_region+0x22/0x1c0
[<ffffffff819c7d91>] damon_do_test_apply_three_regions.constprop.0+0xd1/0x3e0
[<ffffffff819c877e>] damon_test_apply_three_regions3+0x21e/0x260
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff88810776a740 (size 56):
comm "kunit_try_catch", pid 1073, jiffies 4294670597 (age 733.025s)
hex dump (first 32 bytes):
3d 00 00 00 00 00 00 00 3f 00 00 00 00 00 00 00 =.......?.......
6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk
backtrace:
[<ffffffff819bc492>] damon_new_region+0x22/0x1c0
[<ffffffff819bfcc2>] damon_set_regions+0x4c2/0x8e0
[<ffffffff819c7dbb>] damon_do_test_apply_three_regions.constprop.0+0xfb/0x3e0
[<ffffffff819c877e>] damon_test_apply_three_regions3+0x21e/0x260
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff888108038240 (size 64):
comm "kunit_try_catch", pid 1075, jiffies 4294670600 (age 733.022s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 03 00 00 00 6b 6b 6b 6b ............kkkk
48 ad 76 07 81 88 ff ff 98 ae 76 07 81 88 ff ff H.v.......v.....
backtrace:
[<ffffffff817e0167>] kmalloc_trace+0x27/0xa0
[<ffffffff819c11cf>] damon_new_target+0x3f/0x1b0
[<ffffffff819c7d55>] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0
[<ffffffff819c898d>] damon_test_apply_three_regions4+0x1cd/0x210
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
unreferenced object 0xffff88810776ad28 (size 56):
comm "kunit_try_catch", pid 1075, jiffies 4294670600 (age 733.022s)
hex dump (first 32 bytes):
05 00 00 00 00 00 00 00 07 00 00 00 00 00 00 00 ................
6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk
backtrace:
[<ffffffff819bc492>] damon_new_region+0x22/0x1c0
[<ffffffff819bfcc2>] damon_set_regions+0x4c2/0x8e0
[<ffffffff819c7dbb>] damon_do_test_apply_three_regions.constprop.0+0xfb/0x3e0
[<ffffffff819c898d>] damon_test_apply_three_regions4+0x1cd/0x210
[<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90
[<ffffffff81237cf6>] kthread+0x2b6/0x380
[<ffffffff81097add>] ret_from_fork+0x2d/0x70
[<ffffffff81003791>] ret_from_fork_asm+0x11/0x20
Link: https://lkml.kernel.org/r/20230925072100.3725620-1-ruanjinjie@huawei.com
Fixes: 9f86d624292c ("mm/damon/vaddr-test: remove unnecessary variables")
Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 21ef9e11205fca43785eecf7d4a99528d4de5701 which is
commit 86327e8eb94c52eca4f93cfece2e29d1bf52acbf upstream.
It breaks existing runc systems, as the tool always thinks the file
should be present.
Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/r/20230920081101.GA12096@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bb5e7f234eacf34b65be67ebb3613e3b8cf11b87 upstream.
inc_max_seq() will try to inc_min_seq() if nr_gens == MAX_NR_GENS. This
is because the generations are reused (the last oldest now empty
generation will become the next youngest generation).
inc_min_seq() is retried until successful, dropping the lru_lock
and yielding the CPU on each failure, and retaking the lock before
trying again:
while (!inc_min_seq(lruvec, type, can_swap)) {
spin_unlock_irq(&lruvec->lru_lock);
cond_resched();
spin_lock_irq(&lruvec->lru_lock);
}
However, the initial condition that required incrementing the min_seq
(nr_gens == MAX_NR_GENS) is not retested. This can change by another
call to inc_max_seq() from run_aging() with force_scan=true from the
debugfs interface.
Since the eviction stalls when the nr_gens == MIN_NR_GENS, avoid
unnecessarily incrementing the min_seq by rechecking the number of
generations before each attempt.
This issue was uncovered in previous discussion on the list by Yu Zhao
and Aneesh Kumar [1].
[1] https://lore.kernel.org/linux-mm/CAOUHufbO7CaVm=xjEb1avDhHVvnC8pJmGyKcFf2iY_dpf+zR3w@mail.gmail.com/
Link: https://lkml.kernel.org/r/20230802025606.346758-2-kaleshsingh@google.com
Fixes: d6c3af7d8a2b ("mm: multi-gen LRU: debugfs interface")
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> [mediatek]
Tested-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Aneesh Kumar K V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Steven Barrett <steven@liquorix.net>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3ce2c24cb68f228590a053d6058a5901cd31af61 upstream.
The local variable @page in __split_vmemmap_huge_pmd() to obtain a pmd
page without holding page_table_lock may possiblely get the page table
page instead of a huge pmd page.
The effect may be in set_pte_at() since we may pass an invalid page
struct, if set_pte_at() wants to access the page struct (e.g.
CONFIG_PAGE_TABLE_CHECK is enabled), it may crash the kernel.
So fix it. And inline __split_vmemmap_huge_pmd() since it only has one
user.
Link: https://lkml.kernel.org/r/20230707033859.16148-1-songmuchun@bytedance.com
Fixes: d8d55f5616cf ("mm: sparsemem: use page table lock to protect kernel pmd operations")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 86327e8eb94c52eca4f93cfece2e29d1bf52acbf upstream.
kmem.limit_in_bytes (v1 way to limit kernel memory usage) has been
deprecated since 58056f77502f ("memcg, kmem: further deprecate
kmem.limit_in_bytes") merged in 5.16. We haven't heard about any serious
users since then but it seems that the mere presence of the file is
causing more harm thatn good. We (SUSE) have had several bug reports from
customers where Docker based containers started to fail because a write to
kmem.limit_in_bytes has failed.
This was unexpected because runc code only expects ENOENT (kmem disabled)
or EBUSY (tasks already running within cgroup). So a new error code was
unexpected and the whole container startup failed. This has been later
addressed by
https://github.com/opencontainers/runc/commit/52390d68040637dfc77f9fda6bbe70952423d380
so current Docker runtimes do not suffer from the problem anymore. There
are still older version of Docker in use and likely hard to get rid of
completely.
Address this by wiping out the file completely and effectively get back to
pre 4.5 era and CONFIG_MEMCG_KMEM=n configuration.
I would recommend backporting to stable trees which have picked up
58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes").
[mhocko@suse.com: restore _KMEM switch case]
Link: https://lkml.kernel.org/r/ZKe5wxdbvPi5Cwd7@dhcp22.suse.cz
Link: https://lkml.kernel.org/r/20230704115240.14672-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 669281ee7ef731fb5204df9d948669bf32a5e68d upstream.
MGLRU has a LRU list for each zone for each type (anon/file) in each
generation:
long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
The min_seq (oldest generation) can progress independently for each
type but the max_seq (youngest generation) is shared for both anon and
file. This is to maintain a common frame of reference.
In order for eviction to advance the min_seq of a type, all the per-zone
lists in the oldest generation of that type must be empty.
The eviction logic only considers pages from eligible zones for
eviction or promotion.
scan_folios() {
...
for (zone = sc->reclaim_idx; zone >= 0; zone--) {
...
sort_folio(); // Promote
...
isolate_folio(); // Evict
}
...
}
Consider the system has the movable zone configured and default 4
generations. The current state of the system is as shown below
(only illustrating one type for simplicity):
Type: ANON
Zone DMA32 Normal Movable Device
Gen 0 0 0 4GB 0
Gen 1 0 1GB 1MB 0
Gen 2 1MB 4GB 1MB 0
Gen 3 1MB 1MB 1MB 0
Now consider there is a GFP_KERNEL allocation request (eligible zone
index <= Normal), evict_folios() will return without doing any work
since there are no pages to scan in the eligible zones of the oldest
generation. Reclaim won't make progress until triggered from a ZONE_MOVABLE
allocation request; which may not happen soon if there is a lot of free
memory in the movable zone. This can lead to OOM kills, although there
is 1GB pages in the Normal zone of Gen 1 that we have not yet tried to
reclaim.
This issue is not seen in the conventional active/inactive LRU since
there are no per-zone lists.
If there are no (not enough) folios to scan in the eligible zones, move
folios from ineligible zone (zone_index > reclaim_index) to the next
generation. This allows for the progression of min_seq and reclaiming
from the next generation (Gen 1).
Qualcomm, Mediatek and raspberrypi [1] discovered this issue independently.
[1] https://github.com/raspberrypi/linux/issues/5395
Link: https://lkml.kernel.org/r/20230802025606.346758-1-kaleshsingh@google.com
Fixes: ac35a4902374 ("mm: multi-gen LRU: minimal implementation")
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reported-by: Charan Teja Kalla <quic_charante@quicinc.com>
Reported-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> [mediatek]
Tested-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Steven Barrett <steven@liquorix.net>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Aneesh Kumar K V <aneesh.kumar@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6df1b2212950aae2b2188c6645ea18e2a9e3fdd5 upstream.
lru_gen_folio will be chained into per-node lists by the coming
lrugen->list.
Link: https://lkml.kernel.org/r/20221222041905.2431096-3-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0818e739b5c061b0251c30152380600fb9b84c0c upstream.
It is unsafe to dump vmalloc area information when trying to do so from
some contexts. Add a safer trylock version of the same function to do a
best-effort VMA finding and use it from vmalloc_dump_obj().
[applied test robot feedback on unused function fix.]
[applied Uladzislau feedback on locking.]
Link: https://lkml.kernel.org/r/20230904180806.1002832-1-joel@joelfernandes.org
Fixes: 98f180837a89 ("mm: Make mem_dump_obj() handle vmalloc() memory")
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reported-by: Zhen Lei <thunder.leizhen@huaweicloud.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Zqiang <qiang.zhang1211@gmail.com>
Cc: <stable@vger.kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c83ad36a18c02c0f51280b50272327807916987f upstream.
Currently, for double invoke call_rcu(), will dump rcu_head objects memory
info, if the objects is not allocated from the slab allocator, the
vmalloc_dump_obj() will be invoke and the vmap_area_lock spinlock need to
be held, since the call_rcu() can be invoked in interrupt context,
therefore, there is a possibility of spinlock deadlock scenarios.
And in Preempt-RT kernel, the rcutorture test also trigger the following
lockdep warning:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 1, expected: 1
3 locks held by swapper/0/1:
#0: ffffffffb534ee80 (fullstop_mutex){+.+.}-{4:4}, at: torture_init_begin+0x24/0xa0
#1: ffffffffb5307940 (rcu_read_lock){....}-{1:3}, at: rcu_torture_init+0x1ec7/0x2370
#2: ffffffffb536af40 (vmap_area_lock){+.+.}-{3:3}, at: find_vmap_area+0x1f/0x70
irq event stamp: 565512
hardirqs last enabled at (565511): [<ffffffffb379b138>] __call_rcu_common+0x218/0x940
hardirqs last disabled at (565512): [<ffffffffb5804262>] rcu_torture_init+0x20b2/0x2370
softirqs last enabled at (399112): [<ffffffffb36b2586>] __local_bh_enable_ip+0x126/0x170
softirqs last disabled at (399106): [<ffffffffb43fef59>] inet_register_protosw+0x9/0x1d0
Preemption disabled at:
[<ffffffffb58040c3>] rcu_torture_init+0x1f13/0x2370
CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.5.0-rc4-rt2-yocto-preempt-rt+ #15
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x68/0xb0
dump_stack+0x14/0x20
__might_resched+0x1aa/0x280
? __pfx_rcu_torture_err_cb+0x10/0x10
rt_spin_lock+0x53/0x130
? find_vmap_area+0x1f/0x70
find_vmap_area+0x1f/0x70
vmalloc_dump_obj+0x20/0x60
mem_dump_obj+0x22/0x90
__call_rcu_common+0x5bf/0x940
? debug_smp_processor_id+0x1b/0x30
call_rcu_hurry+0x14/0x20
rcu_torture_init+0x1f82/0x2370
? __pfx_rcu_torture_leak_cb+0x10/0x10
? __pfx_rcu_torture_leak_cb+0x10/0x10
? __pfx_rcu_torture_init+0x10/0x10
do_one_initcall+0x6c/0x300
? debug_smp_processor_id+0x1b/0x30
kernel_init_freeable+0x2b9/0x540
? __pfx_kernel_init+0x10/0x10
kernel_init+0x1f/0x150
ret_from_fork+0x40/0x50
? __pfx_kernel_init+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The previous patch fixes this by using the deadlock-safe best-effort
version of find_vm_area. However, in case of failure print the fact that
the pointer was a vmalloc pointer so that we print at least something.
Link: https://lkml.kernel.org/r/20230904180806.1002832-2-joel@joelfernandes.org
Fixes: 98f180837a89 ("mm: Make mem_dump_obj() handle vmalloc() memory")
Signed-off-by: Zqiang <qiang.zhang1211@gmail.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reported-by: Zhen Lei <thunder.leizhen@huaweicloud.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit ac8a52962164a50e693fa021d3564d7745b83a7f ]
Now there are two indicators of socket memory pressure sit inside
struct mem_cgroup, socket_pressure and tcpmem_pressure, indicating
memory reclaim pressure in memcg->memory and ->tcpmem respectively.
When in legacy mode (cgroupv1), the socket memory is charged into
->tcpmem which is independent of ->memory, so socket_pressure has
nothing to do with socket's pressure at all. Things could be worse
by taking socket_pressure into consideration in legacy mode, as a
pressure in ->memory can lead to premature reclamation/throttling
in socket.
While for the default mode (cgroupv2), the socket memory is charged
into ->memory, and ->tcpmem/->tcpmem_pressure are simply not used.
So {socket,tcpmem}_pressure are only used in default/legacy mode
respectively for indicating socket memory pressure. This patch fixes
the pieces of code that make mixed use of both.
Fixes: 8e8ae645249b ("mm: memcontrol: hook up vmpressure to socket pressure")
Signed-off-by: Abel Wu <wuyun.abel@bytedance.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0200679fc7953177941e41c2a4241d0b6c2c5de8 ]
A while ago we received the following report:
"The other outstanding issue I noticed comes from the fact that
fsconfig syscalls may occur in a different userns than that which
called fsopen. That means that resolving the uid/gid via
current_user_ns() can save a kuid that isn't mapped in the associated
namespace when the filesystem is finally mounted. This means that it
is possible for an unprivileged user to create files owned by any
group in a tmpfs mount (since we can set the SUID bit on the tmpfs
directory), or a tmpfs that is owned by any user, including the root
group/user."
The contract for {g,u}id mount options and {g,u}id values in general set
from userspace has always been that they are translated according to the
caller's idmapping. In so far, tmpfs has been doing the correct thing.
But since tmpfs is mountable in unprivileged contexts it is also
necessary to verify that the resulting {k,g}uid is representable in the
namespace of the superblock to avoid such bugs as above.
The new mount api's cross-namespace delegation abilities are already
widely used. After having talked to a bunch of userspace this is the
most faithful solution with minimal regression risks. I know of one
users - systemd - that makes use of the new mount api in this way and
they don't set unresolable {g,u}ids. So the regression risk is minimal.
Link: https://lore.kernel.org/lkml/CALxfFW4BXhEwxR0Q5LSkg-8Vb4r2MONKCcUCVioehXQKr35eHg@mail.gmail.com
Fixes: f32356261d44 ("vfs: Convert ramfs, shmem, tmpfs, devtmpfs, rootfs to use the new mount API")
Reviewed-by: "Seth Forshee (DigitalOcean)" <sforshee@kernel.org>
Reported-by: Seth Jenkins <sethjenkins@google.com>
Message-Id: <20230801-vfs-fs_context-uidgid-v1-1-daf46a050bbf@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
for sharing check
commit 0e0e9bd5f7b9d40fd03b70092367247d52da1db0 upstream.
Commit 98b211d6415f ("madvise: convert madvise_free_pte_range() to use a
folio") replaced the page_mapcount() with folio_mapcount() to check
whether the folio is shared by other mapping.
It's not correct for large folios. folio_mapcount() returns the total
mapcount of large folio which is not suitable to detect whether the folio
is shared.
Use folio_estimated_sharers() which returns a estimated number of shares.
That means it's not 100% correct. It should be OK for madvise case here.
User-visible effects is that the THP is skipped when user call madvise.
But the correct behavior is THP should be split and processed then.
NOTE: this change is a temporary fix to reduce the user-visible effects
before the long term fix from David is ready.
Link: https://lkml.kernel.org/r/20230808020917.2230692-4-fengwei.yin@intel.com
Fixes: 98b211d6415f ("madvise: convert madvise_free_pte_range() to use a folio")
Signed-off-by: Yin Fengwei <fengwei.yin@intel.com>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e2c1ab070fdc81010ec44634838d24fce9ff9e53 upstream.
When page_handle_poison() fails to handle the hugepage or free page in
retry path, soft_offline_page() will return 0 while -EBUSY is expected in
this case.
Consequently the user will think soft_offline_page succeeds while it in
fact failed. So the user will not try again later in this case.
Link: https://lkml.kernel.org/r/20230627112808.1275241-1-linmiaohe@huawei.com
Fixes: b94e02822deb ("mm,hwpoison: try to narrow window race for free pages")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a50420c79731fc5cf27ad43719c1091e842a2606 upstream.
flush_cache_vmap() must be called after new vmalloc mappings are installed
in the page table in order to allow architectures to make sure the new
mapping is visible.
It could lead to a panic since on some architectures (like powerpc),
the page table walker could see the wrong pte value and trigger a
spurious page fault that can not be resolved (see commit f1cb8f9beba8
("powerpc/64s/radix: avoid ptesync after set_pte and
ptep_set_access_flags")).
But actually the patch is aiming at riscv: the riscv specification
allows the caching of invalid entries in the TLB, and since we recently
removed the vmalloc page fault handling, we now need to emit a tlb
shootdown whenever a new vmalloc mapping is emitted
(https://lore.kernel.org/linux-riscv/20230725132246.817726-1-alexghiti@rivosinc.com/).
That's a temporary solution, there are ways to avoid that :)
Link: https://lkml.kernel.org/r/20230809164633.1556126-1-alexghiti@rivosinc.com
Fixes: 3e9a9e256b1e ("mm: add a vmap_pfn function")
Reported-by: Dylan Jhong <dylan@andestech.com>
Closes: https://lore.kernel.org/linux-riscv/ZMytNY2J8iyjbPPy@atctrx.andestech.com/
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Palmer Dabbelt <palmer@rivosinc.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Reviewed-by: Dylan Jhong <dylan@andestech.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e5548f85b4527c4c803b7eae7887c10bf8f90c97 upstream.
smaps_pte_hole_lookup() is calling shmem_partial_swap_usage() with page
table lock held: but shmem_partial_swap_usage() does cond_resched_rcu() if
need_resched(): "BUG: sleeping function called from invalid context".
Since shmem_partial_swap_usage() is designed to count across a range, but
smaps_pte_hole_lookup() only calls it for a single page slot, just break
out of the loop on the last or only page, before checking need_resched().
Link: https://lkml.kernel.org/r/6fe3b3ec-abdf-332f-5c23-6a3b3a3b11a9@google.com
Fixes: 230100321518 ("mm/smaps: simplify shmem handling of pte holes")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org> [5.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 32c877191e022b55fe3a374f3d7e9fb5741c514d upstream.
Patch series "Fix hugetlb free path race with memory errors".
In the discussion of Jiaqi Yan's series "Improve hugetlbfs read on
HWPOISON hugepages" the race window was discovered.
https://lore.kernel.org/linux-mm/20230616233447.GB7371@monkey/
Freeing a hugetlb page back to low level memory allocators is performed
in two steps.
1) Under hugetlb lock, remove page from hugetlb lists and clear destructor
2) Outside lock, allocate vmemmap if necessary and call low level free
Between these two steps, the hugetlb page will appear as a normal
compound page. However, vmemmap for tail pages could be missing.
If a memory error occurs at this time, we could try to update page
flags non-existant page structs.
A much more detailed description is in the first patch.
The first patch addresses the race window. However, it adds a
hugetlb_lock lock/unlock cycle to every vmemmap optimized hugetlb page
free operation. This could lead to slowdowns if one is freeing a large
number of hugetlb pages.
The second path optimizes the update_and_free_pages_bulk routine to only
take the lock once in bulk operations.
The second patch is technically not a bug fix, but includes a Fixes tag
and Cc stable to avoid a performance regression. It can be combined with
the first, but was done separately make reviewing easier.
This patch (of 2):
Freeing a hugetlb page and releasing base pages back to the underlying
allocator such as buddy or cma is performed in two steps:
- remove_hugetlb_folio() is called to remove the folio from hugetlb
lists, get a ref on the page and remove hugetlb destructor. This
all must be done under the hugetlb lock. After this call, the page
can be treated as a normal compound page or a collection of base
size pages.
- update_and_free_hugetlb_folio() is called to allocate vmemmap if
needed and the free routine of the underlying allocator is called
on the resulting page. We can not hold the hugetlb lock here.
One issue with this scheme is that a memory error could occur between
these two steps. In this case, the memory error handling code treats
the old hugetlb page as a normal compound page or collection of base
pages. It will then try to SetPageHWPoison(page) on the page with an
error. If the page with error is a tail page without vmemmap, a write
error will occur when trying to set the flag.
Address this issue by modifying remove_hugetlb_folio() and
update_and_free_hugetlb_folio() such that the hugetlb destructor is not
cleared until after allocating vmemmap. Since clearing the destructor
requires holding the hugetlb lock, the clearing is done in
remove_hugetlb_folio() if the vmemmap is present. This saves a
lock/unlock cycle. Otherwise, destructor is cleared in
update_and_free_hugetlb_folio() after allocating vmemmap.
Note that this will leave hugetlb pages in a state where they are marked
free (by hugetlb specific page flag) and have a ref count. This is not
a normal state. The only code that would notice is the memory error
code, and it is set up to retry in such a case.
A subsequent patch will create a routine to do bulk processing of
vmemmap allocation. This will eliminate a lock/unlock cycle for each
hugetlb page in the case where we are freeing a large number of pages.
Link: https://lkml.kernel.org/r/20230711220942.43706-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20230711220942.43706-2-mike.kravetz@oracle.com
Fixes: ad2fa3717b74 ("mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d2658f2052c7db6ec0a79977205f8cf1cb9effc2 upstream.
zsmalloc pool can be compacted concurrently by many contexts,
e.g.
cc1 handle_mm_fault()
do_anonymous_page()
__alloc_pages_slowpath()
try_to_free_pages()
do_try_to_free_pages(
lru_gen_shrink_node()
shrink_slab()
do_shrink_slab()
zs_shrinker_scan()
zs_compact()
Pool compaction is currently (basically) single-threaded as
it is performed under pool->lock. Having multiple compaction
threads results in unnecessary contention, as each thread
competes for pool->lock. This, in turn, affects all zsmalloc
operations such as zs_malloc(), zs_map_object(), zs_free(), etc.
Introduce the pool->compaction_in_progress atomic variable,
which ensures that only one compaction context can run at a
time. This reduces overall pool->lock contention in (corner)
cases when many contexts attempt to shrink zspool simultaneously.
Link: https://lkml.kernel.org/r/20230418074639.1903197-1-senozhatsky@chromium.org
Fixes: c0547d0b6a4b ("zsmalloc: consolidate zs_pool's migrate_lock and size_class's locks")
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4b5d1e47b69426c0f7491d97d73ad0152d02d437 ]
We encountered many kernel exceptions of VM_BUG_ON(zspage->isolated ==
0) in dec_zspage_isolation() and BUG_ON(!pages[1]) in zs_unmap_object()
lately. This issue only occurs when migration and reclamation occur at
the same time.
With our memory stress test, we can reproduce this issue several times
a day. We have no idea why no one else encountered this issue. BTW,
we switched to the new kernel version with this defect a few months
ago.
Since fullness and isolated share the same unsigned int, modifications of
them should be protected by the same lock.
[andrew.yang@mediatek.com: move comment]
Link: https://lkml.kernel.org/r/20230727062910.6337-1-andrew.yang@mediatek.com
Link: https://lkml.kernel.org/r/20230721063705.11455-1-andrew.yang@mediatek.com
Fixes: c4549b871102 ("zsmalloc: remove zspage isolation for migration")
Signed-off-by: Andrew Yang <andrew.yang@mediatek.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|