aboutsummaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2023-10-10mm: page_alloc: fix CMA and HIGHATOMIC landing on the wrong buddy listJohannes Weiner
[ Upstream commit 7b086755fb8cdbb6b3e45a1bbddc00e7f9b1dc03 ] Commit 4b23a68f9536 ("mm/page_alloc: protect PCP lists with a spinlock") bypasses the pcplist on lock contention and returns the page directly to the buddy list of the page's migratetype. For pages that don't have their own pcplist, such as CMA and HIGHATOMIC, the migratetype is temporarily updated such that the page can hitch a ride on the MOVABLE pcplist. Their true type is later reassessed when flushing in free_pcppages_bulk(). However, when lock contention is detected after the type was already overridden, the bypass will then put the page on the wrong buddy list. Once on the MOVABLE buddy list, the page becomes eligible for fallbacks and even stealing. In the case of HIGHATOMIC, otherwise ineligible allocations can dip into the highatomic reserves. In the case of CMA, the page can be lost from the CMA region permanently. Use a separate pcpmigratetype variable for the pcplist override. Use the original migratetype when going directly to the buddy. This fixes the bug and should make the intentions more obvious in the code. Originally sent here to address the HIGHATOMIC case: https://lore.kernel.org/lkml/20230821183733.106619-4-hannes@cmpxchg.org/ Changelog updated in response to the CMA-specific bug report. [mgorman@techsingularity.net: updated changelog] Link: https://lkml.kernel.org/r/20230911181108.GA104295@cmpxchg.org Fixes: 4b23a68f9536 ("mm/page_alloc: protect PCP lists with a spinlock") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Joe Liu <joe.liu@mediatek.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10mm/page_alloc: leave IRQs enabled for per-cpu page allocationsMel Gorman
[ Upstream commit 5749077415994eb02d660b2559b9d8278521e73d ] The pcp_spin_lock_irqsave protecting the PCP lists is IRQ-safe as a task allocating from the PCP must not re-enter the allocator from IRQ context. In each instance where IRQ-reentrancy is possible, the lock is acquired using pcp_spin_trylock_irqsave() even though IRQs are disabled and re-entrancy is impossible. Demote the lock to pcp_spin_lock avoids an IRQ disable/enable in the common case at the cost of some IRQ allocations taking a slower path. If the PCP lists need to be refilled, the zone lock still needs to disable IRQs but that will only happen on PCP refill and drain. If an IRQ is raised when a PCP allocation is in progress, the trylock will fail and fallback to using the buddy lists directly. Note that this may not be a universal win if an interrupt-intensive workload also allocates heavily from interrupt context and contends heavily on the zone->lock as a result. [mgorman@techsingularity.net: migratetype might be wrong if a PCP was locked] Link: https://lkml.kernel.org/r/20221122131229.5263-2-mgorman@techsingularity.net [yuzhao@google.com: reported lockdep issue on IO completion from softirq] [hughd@google.com: fix list corruption, lock improvements, micro-optimsations] Link: https://lkml.kernel.org/r/20221118101714.19590-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Stable-dep-of: 7b086755fb8c ("mm: page_alloc: fix CMA and HIGHATOMIC landing on the wrong buddy list") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10mm/page_alloc: always remove pages from temporary listMel Gorman
[ Upstream commit c3e58a70425ac6ddaae1529c8146e88b4f7252bb ] Patch series "Leave IRQs enabled for per-cpu page allocations", v3. This patch (of 2): free_unref_page_list() has neglected to remove pages properly from the list of pages to free since forever. It works by coincidence because list_add happened to do the right thing adding the pages to just the PCP lists. However, a later patch added pages to either the PCP list or the zone list but only properly deleted the page from the list in one path leading to list corruption and a subsequent failure. As a preparation patch, always delete the pages from one list properly before adding to another. On its own, this fixes nothing although it adds a fractional amount of overhead but is critical to the next patch. Link: https://lkml.kernel.org/r/20221118101714.19590-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20221118101714.19590-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reported-by: Hugh Dickins <hughd@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Stable-dep-of: 7b086755fb8c ("mm: page_alloc: fix CMA and HIGHATOMIC landing on the wrong buddy list") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are ↵Yang Shi
specified [ Upstream commit 24526268f4e38c9ec0c4a30de4f37ad2a2a84e47 ] When calling mbind() with MPOL_MF_{MOVE|MOVEALL} | MPOL_MF_STRICT, kernel should attempt to migrate all existing pages, and return -EIO if there is misplaced or unmovable page. Then commit 6f4576e3687b ("mempolicy: apply page table walker on queue_pages_range()") messed up the return value and didn't break VMA scan early ianymore when MPOL_MF_STRICT alone. The return value problem was fixed by commit a7f40cfe3b7a ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified"), but it broke the VMA walk early if unmovable page is met, it may cause some pages are not migrated as expected. The code should conceptually do: if (MPOL_MF_MOVE|MOVEALL) scan all vmas try to migrate the existing pages return success else if (MPOL_MF_MOVE* | MPOL_MF_STRICT) scan all vmas try to migrate the existing pages return -EIO if unmovable or migration failed else /* MPOL_MF_STRICT alone */ break early if meets unmovable and don't call mbind_range() at all else /* none of those flags */ check the ranges in test_walk, EFAULT without mbind_range() if discontig. Fixed the behavior. Link: https://lkml.kernel.org/r/20230920223242.3425775-1-yang@os.amperecomputing.com Fixes: a7f40cfe3b7a ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified") Signed-off-by: Yang Shi <yang@os.amperecomputing.com> Cc: Hugh Dickins <hughd@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Oscar Salvador <osalvador@suse.de> Cc: Rafael Aquini <aquini@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [4.9+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10mm/mempolicy: convert migrate_page_add() to migrate_folio_add()Vishal Moola (Oracle)
[ Upstream commit 4a64981dfee9119aa2c1f243b48f34cbbd67779c ] Replace migrate_page_add() with migrate_folio_add(). migrate_folio_add() does the same a migrate_page_add() but takes in a folio instead of a page. This removes a couple of calls to compound_head(). Link: https://lkml.kernel.org/r/20230130201833.27042-7-vishal.moola@gmail.com Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Reviewed-by: Yin Fengwei <fengwei.yin@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Stable-dep-of: 24526268f4e3 ("mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10mm/mempolicy: convert queue_pages_pte_range() to queue_folios_pte_range()Vishal Moola (Oracle)
[ Upstream commit 3dae02bbd07f40e37bbfec2d77119628db461eaa ] This function now operates on folios associated with ptes instead of pages. This change is in preparation for the conversion of queue_pages_required() to queue_folio_required() and migrate_page_add() to migrate_folio_add(). Link: https://lkml.kernel.org/r/20230130201833.27042-4-vishal.moola@gmail.com Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: "Yin, Fengwei" <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Stable-dep-of: 24526268f4e3 ("mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10mm/mempolicy: convert queue_pages_pmd() to queue_folios_pmd()Vishal Moola (Oracle)
[ Upstream commit de1f5055523e9a035b38533f25a56df03d45034a ] The function now operates on a folio instead of the page associated with a pmd. This change is in preparation for the conversion of queue_pages_required() to queue_folio_required() and migrate_page_add() to migrate_folio_add(). Link: https://lkml.kernel.org/r/20230130201833.27042-3-vishal.moola@gmail.com Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: "Yin, Fengwei" <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Stable-dep-of: 24526268f4e3 ("mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10mm/memory: add vm_normal_folio()Vishal Moola (Oracle)
[ Upstream commit 318e9342fbbb6888d903d86e83865609901a1c65 ] Patch series "Convert deactivate_page() to folio_deactivate()", v4. Deactivate_page() has already been converted to use folios. This patch series modifies the callers of deactivate_page() to use folios. It also introduces vm_normal_folio() to assist with folio conversions, and converts deactivate_page() to folio_deactivate() which takes in a folio. This patch (of 4): Introduce a wrapper function called vm_normal_folio(). This function calls vm_normal_page() and returns the folio of the page found, or null if no page is found. This function allows callers to get a folio from a pte, which will eventually allow them to completely replace their struct page variables with struct folio instead. Link: https://lkml.kernel.org/r/20221221180848.20774-1-vishal.moola@gmail.com Link: https://lkml.kernel.org/r/20221221180848.20774-2-vishal.moola@gmail.com Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Stable-dep-of: 24526268f4e3 ("mm: mempolicy: keep VMA walk if both MPOL_MF_STRICT and MPOL_MF_MOVE are specified") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-06mm, memcg: reconsider kmem.limit_in_bytes deprecationMichal Hocko
commit 4597648fddeadef5877610d693af11906aa666ac upstream. This reverts commits 86327e8eb94c ("memcg: drop kmem.limit_in_bytes") and partially reverts 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes") which have incrementally removed support for the kernel memory accounting hard limit. Unfortunately it has turned out that there is still userspace depending on the existence of memory.kmem.limit_in_bytes [1]. The underlying functionality is not really required but the non-existent file just confuses the userspace which fails in the result. The patch to fix this on the userspace side has been submitted but it is hard to predict how it will propagate through the maze of 3rd party consumers of the software. Now, reverting alone 86327e8eb94c is not an option because there is another set of userspace which cannot cope with ENOTSUPP returned when writing to the file. Therefore we have to go and revisit 58056f77502f as well. There are two ways to go ahead. Either we give up on the deprecation and fully revert 58056f77502f as well or we can keep kmem.limit_in_bytes but make the write a noop and warn about the fact. This should work for both known breaking workloads which depend on the existence but do not depend on the hard limit enforcement. Note to backporters to stable trees. a8c49af3be5f ("memcg: add per-memcg total kernel memory stat") introduced in 4.18 has added memcg_account_kmem so the accounting is not done by obj_cgroup_charge_pages directly for v1 anymore. Prior kernels need to add it explicitly (thanks to Johannes for pointing this out). [akpm@linux-foundation.org: fix build - remove unused local] Link: http://lkml.kernel.org/r/20230920081101.GA12096@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net [1] Link: https://lkml.kernel.org/r/ZRE5VJozPZt9bRPy@dhcp22.suse.cz Fixes: 86327e8eb94c ("memcg: drop kmem.limit_in_bytes") Fixes: 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes") Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Tejun heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-06memcg: drop kmem.limit_in_bytesMichal Hocko
commit 86327e8eb94c52eca4f93cfece2e29d1bf52acbf upstream. kmem.limit_in_bytes (v1 way to limit kernel memory usage) has been deprecated since 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes") merged in 5.16. We haven't heard about any serious users since then but it seems that the mere presence of the file is causing more harm thatn good. We (SUSE) have had several bug reports from customers where Docker based containers started to fail because a write to kmem.limit_in_bytes has failed. This was unexpected because runc code only expects ENOENT (kmem disabled) or EBUSY (tasks already running within cgroup). So a new error code was unexpected and the whole container startup failed. This has been later addressed by https://github.com/opencontainers/runc/commit/52390d68040637dfc77f9fda6bbe70952423d380 so current Docker runtimes do not suffer from the problem anymore. There are still older version of Docker in use and likely hard to get rid of completely. Address this by wiping out the file completely and effectively get back to pre 4.5 era and CONFIG_MEMCG_KMEM=n configuration. I would recommend backporting to stable trees which have picked up 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes"). [mhocko@suse.com: restore _KMEM switch case] Link: https://lkml.kernel.org/r/ZKe5wxdbvPi5Cwd7@dhcp22.suse.cz Link: https://lkml.kernel.org/r/20230704115240.14672-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Muchun Song <muchun.song@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-06mm: memcontrol: fix GFP_NOFS recursion in memory.high enforcementJohannes Weiner
commit 9ea9cb00a82b53ec39630eac718776d37e41b35a upstream. Breno and Josef report a deadlock scenario from cgroup reclaim re-entering the filesystem: [ 361.546690] ====================================================== [ 361.559210] WARNING: possible circular locking dependency detected [ 361.571703] 6.5.0-0_fbk700_debug_rc0_kbuilder_13159_gbf787a128001 #1 Tainted: G S E [ 361.589704] ------------------------------------------------------ [ 361.602277] find/9315 is trying to acquire lock: [ 361.611625] ffff88837ba140c0 (&delayed_node->mutex){+.+.}-{4:4}, at: __btrfs_release_delayed_node+0x68/0x4f0 [ 361.631437] [ 361.631437] but task is already holding lock: [ 361.643243] ffff8881765b8678 (btrfs-tree-01){++++}-{4:4}, at: btrfs_tree_read_lock+0x1e/0x40 [ 362.904457] mutex_lock_nested+0x1c/0x30 [ 362.912414] __btrfs_release_delayed_node+0x68/0x4f0 [ 362.922460] btrfs_evict_inode+0x301/0x770 [ 362.982726] evict+0x17c/0x380 [ 362.988944] prune_icache_sb+0x100/0x1d0 [ 363.005559] super_cache_scan+0x1f8/0x260 [ 363.013695] do_shrink_slab+0x2a2/0x540 [ 363.021489] shrink_slab_memcg+0x237/0x3d0 [ 363.050606] shrink_slab+0xa7/0x240 [ 363.083382] shrink_node_memcgs+0x262/0x3b0 [ 363.091870] shrink_node+0x1a4/0x720 [ 363.099150] shrink_zones+0x1f6/0x5d0 [ 363.148798] do_try_to_free_pages+0x19b/0x5e0 [ 363.157633] try_to_free_mem_cgroup_pages+0x266/0x370 [ 363.190575] reclaim_high+0x16f/0x1f0 [ 363.208409] mem_cgroup_handle_over_high+0x10b/0x270 [ 363.246678] try_charge_memcg+0xaf2/0xc70 [ 363.304151] charge_memcg+0xf0/0x350 [ 363.320070] __mem_cgroup_charge+0x28/0x40 [ 363.328371] __filemap_add_folio+0x870/0xd50 [ 363.371303] filemap_add_folio+0xdd/0x310 [ 363.399696] __filemap_get_folio+0x2fc/0x7d0 [ 363.419086] pagecache_get_page+0xe/0x30 [ 363.427048] alloc_extent_buffer+0x1cd/0x6a0 [ 363.435704] read_tree_block+0x43/0xc0 [ 363.443316] read_block_for_search+0x361/0x510 [ 363.466690] btrfs_search_slot+0xc8c/0x1520 This is caused by the mem_cgroup_handle_over_high() not respecting the gfp_mask of the allocation context. We used to only call this function on resume to userspace, where no locks were held. But c9afe31ec443 ("memcg: synchronously enforce memory.high for large overcharges") added a call from the allocation context without considering the gfp. Link: https://lkml.kernel.org/r/20230914152139.100822-1-hannes@cmpxchg.org Fixes: c9afe31ec443 ("memcg: synchronously enforce memory.high for large overcharges") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Breno Leitao <leitao@debian.org> Reported-by: Josef Bacik <josef@toxicpanda.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> [5.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-06mm/slab_common: fix slab_caches list corruption after kmem_cache_destroy()Rafael Aquini
commit 46a9ea6681907a3be6b6b0d43776dccc62cad6cf upstream. After the commit in Fixes:, if a module that created a slab cache does not release all of its allocated objects before destroying the cache (at rmmod time), we might end up releasing the kmem_cache object without removing it from the slab_caches list thus corrupting the list as kmem_cache_destroy() ignores the return value from shutdown_cache(), which in turn never removes the kmem_cache object from slabs_list in case __kmem_cache_shutdown() fails to release all of the cache's slabs. This is easily observable on a kernel built with CONFIG_DEBUG_LIST=y as after that ill release the system will immediately trip on list_add, or list_del, assertions similar to the one shown below as soon as another kmem_cache gets created, or destroyed: [ 1041.213632] list_del corruption. next->prev should be ffff89f596fb5768, but was 52f1e5016aeee75d. (next=ffff89f595a1b268) [ 1041.219165] ------------[ cut here ]------------ [ 1041.221517] kernel BUG at lib/list_debug.c:62! [ 1041.223452] invalid opcode: 0000 [#1] PREEMPT SMP PTI [ 1041.225408] CPU: 2 PID: 1852 Comm: rmmod Kdump: loaded Tainted: G B W OE 6.5.0 #15 [ 1041.228244] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc37 05/24/2023 [ 1041.231212] RIP: 0010:__list_del_entry_valid+0xae/0xb0 Another quick way to trigger this issue, in a kernel with CONFIG_SLUB=y, is to set slub_debug to poison the released objects and then just run cat /proc/slabinfo after removing the module that leaks slab objects, in which case the kernel will panic: [ 50.954843] general protection fault, probably for non-canonical address 0xa56b6b6b6b6b6b8b: 0000 [#1] PREEMPT SMP PTI [ 50.961545] CPU: 2 PID: 1495 Comm: cat Kdump: loaded Tainted: G B W OE 6.5.0 #15 [ 50.966808] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc37 05/24/2023 [ 50.972663] RIP: 0010:get_slabinfo+0x42/0xf0 This patch fixes this issue by properly checking shutdown_cache()'s return value before taking the kmem_cache_release() branch. Fixes: 0495e337b703 ("mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock") Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: stable@vger.kernel.org Reviewed-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-06mm/damon/vaddr-test: fix memory leak in damon_do_test_apply_three_regions()Jinjie Ruan
commit 45120b15743fa7c0aa53d5db6dfb4c8f87be4abd upstream. When CONFIG_DAMON_VADDR_KUNIT_TEST=y and making CONFIG_DEBUG_KMEMLEAK=y and CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN=y, the below memory leak is detected. Since commit 9f86d624292c ("mm/damon/vaddr-test: remove unnecessary variables"), the damon_destroy_ctx() is removed, but still call damon_new_target() and damon_new_region(), the damon_region which is allocated by kmem_cache_alloc() in damon_new_region() and the damon_target which is allocated by kmalloc in damon_new_target() are not freed. And the damon_region which is allocated in damon_new_region() in damon_set_regions() is also not freed. So use damon_destroy_target to free all the damon_regions and damon_target. unreferenced object 0xffff888107c9a940 (size 64): comm "kunit_try_catch", pid 1069, jiffies 4294670592 (age 732.761s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk 60 c7 9c 07 81 88 ff ff f8 cb 9c 07 81 88 ff ff `............... backtrace: [<ffffffff817e0167>] kmalloc_trace+0x27/0xa0 [<ffffffff819c11cf>] damon_new_target+0x3f/0x1b0 [<ffffffff819c7d55>] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0 [<ffffffff819c82be>] damon_test_apply_three_regions1+0x21e/0x260 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 unreferenced object 0xffff8881079cc740 (size 56): comm "kunit_try_catch", pid 1069, jiffies 4294670592 (age 732.761s) hex dump (first 32 bytes): 05 00 00 00 00 00 00 00 14 00 00 00 00 00 00 00 ................ 6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk backtrace: [<ffffffff819bc492>] damon_new_region+0x22/0x1c0 [<ffffffff819c7d91>] damon_do_test_apply_three_regions.constprop.0+0xd1/0x3e0 [<ffffffff819c82be>] damon_test_apply_three_regions1+0x21e/0x260 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 unreferenced object 0xffff888107c9ac40 (size 64): comm "kunit_try_catch", pid 1071, jiffies 4294670595 (age 732.843s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk a0 cc 9c 07 81 88 ff ff 78 a1 76 07 81 88 ff ff ........x.v..... backtrace: [<ffffffff817e0167>] kmalloc_trace+0x27/0xa0 [<ffffffff819c11cf>] damon_new_target+0x3f/0x1b0 [<ffffffff819c7d55>] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0 [<ffffffff819c851e>] damon_test_apply_three_regions2+0x21e/0x260 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 unreferenced object 0xffff8881079ccc80 (size 56): comm "kunit_try_catch", pid 1071, jiffies 4294670595 (age 732.843s) hex dump (first 32 bytes): 05 00 00 00 00 00 00 00 14 00 00 00 00 00 00 00 ................ 6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk backtrace: [<ffffffff819bc492>] damon_new_region+0x22/0x1c0 [<ffffffff819c7d91>] damon_do_test_apply_three_regions.constprop.0+0xd1/0x3e0 [<ffffffff819c851e>] damon_test_apply_three_regions2+0x21e/0x260 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 unreferenced object 0xffff888107c9af40 (size 64): comm "kunit_try_catch", pid 1073, jiffies 4294670597 (age 733.011s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 06 00 00 00 6b 6b 6b 6b ............kkkk 20 a2 76 07 81 88 ff ff b8 a6 76 07 81 88 ff ff .v.......v..... backtrace: [<ffffffff817e0167>] kmalloc_trace+0x27/0xa0 [<ffffffff819c11cf>] damon_new_target+0x3f/0x1b0 [<ffffffff819c7d55>] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0 [<ffffffff819c877e>] damon_test_apply_three_regions3+0x21e/0x260 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 unreferenced object 0xffff88810776a200 (size 56): comm "kunit_try_catch", pid 1073, jiffies 4294670597 (age 733.011s) hex dump (first 32 bytes): 05 00 00 00 00 00 00 00 14 00 00 00 00 00 00 00 ................ 6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk backtrace: [<ffffffff819bc492>] damon_new_region+0x22/0x1c0 [<ffffffff819c7d91>] damon_do_test_apply_three_regions.constprop.0+0xd1/0x3e0 [<ffffffff819c877e>] damon_test_apply_three_regions3+0x21e/0x260 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 unreferenced object 0xffff88810776a740 (size 56): comm "kunit_try_catch", pid 1073, jiffies 4294670597 (age 733.025s) hex dump (first 32 bytes): 3d 00 00 00 00 00 00 00 3f 00 00 00 00 00 00 00 =.......?....... 6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk backtrace: [<ffffffff819bc492>] damon_new_region+0x22/0x1c0 [<ffffffff819bfcc2>] damon_set_regions+0x4c2/0x8e0 [<ffffffff819c7dbb>] damon_do_test_apply_three_regions.constprop.0+0xfb/0x3e0 [<ffffffff819c877e>] damon_test_apply_three_regions3+0x21e/0x260 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 unreferenced object 0xffff888108038240 (size 64): comm "kunit_try_catch", pid 1075, jiffies 4294670600 (age 733.022s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 03 00 00 00 6b 6b 6b 6b ............kkkk 48 ad 76 07 81 88 ff ff 98 ae 76 07 81 88 ff ff H.v.......v..... backtrace: [<ffffffff817e0167>] kmalloc_trace+0x27/0xa0 [<ffffffff819c11cf>] damon_new_target+0x3f/0x1b0 [<ffffffff819c7d55>] damon_do_test_apply_three_regions.constprop.0+0x95/0x3e0 [<ffffffff819c898d>] damon_test_apply_three_regions4+0x1cd/0x210 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 unreferenced object 0xffff88810776ad28 (size 56): comm "kunit_try_catch", pid 1075, jiffies 4294670600 (age 733.022s) hex dump (first 32 bytes): 05 00 00 00 00 00 00 00 07 00 00 00 00 00 00 00 ................ 6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 6b 6b 6b 6b kkkkkkkk....kkkk backtrace: [<ffffffff819bc492>] damon_new_region+0x22/0x1c0 [<ffffffff819bfcc2>] damon_set_regions+0x4c2/0x8e0 [<ffffffff819c7dbb>] damon_do_test_apply_three_regions.constprop.0+0xfb/0x3e0 [<ffffffff819c898d>] damon_test_apply_three_regions4+0x1cd/0x210 [<ffffffff829fce6a>] kunit_generic_run_threadfn_adapter+0x4a/0x90 [<ffffffff81237cf6>] kthread+0x2b6/0x380 [<ffffffff81097add>] ret_from_fork+0x2d/0x70 [<ffffffff81003791>] ret_from_fork_asm+0x11/0x20 Link: https://lkml.kernel.org/r/20230925072100.3725620-1-ruanjinjie@huawei.com Fixes: 9f86d624292c ("mm/damon/vaddr-test: remove unnecessary variables") Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-23Revert "memcg: drop kmem.limit_in_bytes"Greg Kroah-Hartman
This reverts commit 21ef9e11205fca43785eecf7d4a99528d4de5701 which is commit 86327e8eb94c52eca4f93cfece2e29d1bf52acbf upstream. It breaks existing runc systems, as the tool always thinks the file should be present. Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Link: https://lore.kernel.org/r/20230920081101.GA12096@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net Cc: Michal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Muchun Song <muchun.song@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19Multi-gen LRU: avoid race in inc_min_seq()Kalesh Singh
commit bb5e7f234eacf34b65be67ebb3613e3b8cf11b87 upstream. inc_max_seq() will try to inc_min_seq() if nr_gens == MAX_NR_GENS. This is because the generations are reused (the last oldest now empty generation will become the next youngest generation). inc_min_seq() is retried until successful, dropping the lru_lock and yielding the CPU on each failure, and retaking the lock before trying again: while (!inc_min_seq(lruvec, type, can_swap)) { spin_unlock_irq(&lruvec->lru_lock); cond_resched(); spin_lock_irq(&lruvec->lru_lock); } However, the initial condition that required incrementing the min_seq (nr_gens == MAX_NR_GENS) is not retested. This can change by another call to inc_max_seq() from run_aging() with force_scan=true from the debugfs interface. Since the eviction stalls when the nr_gens == MIN_NR_GENS, avoid unnecessarily incrementing the min_seq by rechecking the number of generations before each attempt. This issue was uncovered in previous discussion on the list by Yu Zhao and Aneesh Kumar [1]. [1] https://lore.kernel.org/linux-mm/CAOUHufbO7CaVm=xjEb1avDhHVvnC8pJmGyKcFf2iY_dpf+zR3w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20230802025606.346758-2-kaleshsingh@google.com Fixes: d6c3af7d8a2b ("mm: multi-gen LRU: debugfs interface") Signed-off-by: Kalesh Singh <kaleshsingh@google.com> Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> [mediatek] Tested-by: Charan Teja Kalla <quic_charante@quicinc.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Aneesh Kumar K V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Steven Barrett <steven@liquorix.net> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19mm: hugetlb_vmemmap: fix a race between vmemmap pmd splitMuchun Song
commit 3ce2c24cb68f228590a053d6058a5901cd31af61 upstream. The local variable @page in __split_vmemmap_huge_pmd() to obtain a pmd page without holding page_table_lock may possiblely get the page table page instead of a huge pmd page. The effect may be in set_pte_at() since we may pass an invalid page struct, if set_pte_at() wants to access the page struct (e.g. CONFIG_PAGE_TABLE_CHECK is enabled), it may crash the kernel. So fix it. And inline __split_vmemmap_huge_pmd() since it only has one user. Link: https://lkml.kernel.org/r/20230707033859.16148-1-songmuchun@bytedance.com Fixes: d8d55f5616cf ("mm: sparsemem: use page table lock to protect kernel pmd operations") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19memcg: drop kmem.limit_in_bytesMichal Hocko
commit 86327e8eb94c52eca4f93cfece2e29d1bf52acbf upstream. kmem.limit_in_bytes (v1 way to limit kernel memory usage) has been deprecated since 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes") merged in 5.16. We haven't heard about any serious users since then but it seems that the mere presence of the file is causing more harm thatn good. We (SUSE) have had several bug reports from customers where Docker based containers started to fail because a write to kmem.limit_in_bytes has failed. This was unexpected because runc code only expects ENOENT (kmem disabled) or EBUSY (tasks already running within cgroup). So a new error code was unexpected and the whole container startup failed. This has been later addressed by https://github.com/opencontainers/runc/commit/52390d68040637dfc77f9fda6bbe70952423d380 so current Docker runtimes do not suffer from the problem anymore. There are still older version of Docker in use and likely hard to get rid of completely. Address this by wiping out the file completely and effectively get back to pre 4.5 era and CONFIG_MEMCG_KMEM=n configuration. I would recommend backporting to stable trees which have picked up 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes"). [mhocko@suse.com: restore _KMEM switch case] Link: https://lkml.kernel.org/r/ZKe5wxdbvPi5Cwd7@dhcp22.suse.cz Link: https://lkml.kernel.org/r/20230704115240.14672-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Muchun Song <muchun.song@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19Multi-gen LRU: fix per-zone reclaimKalesh Singh
commit 669281ee7ef731fb5204df9d948669bf32a5e68d upstream. MGLRU has a LRU list for each zone for each type (anon/file) in each generation: long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; The min_seq (oldest generation) can progress independently for each type but the max_seq (youngest generation) is shared for both anon and file. This is to maintain a common frame of reference. In order for eviction to advance the min_seq of a type, all the per-zone lists in the oldest generation of that type must be empty. The eviction logic only considers pages from eligible zones for eviction or promotion. scan_folios() { ... for (zone = sc->reclaim_idx; zone >= 0; zone--) { ... sort_folio(); // Promote ... isolate_folio(); // Evict } ... } Consider the system has the movable zone configured and default 4 generations. The current state of the system is as shown below (only illustrating one type for simplicity): Type: ANON Zone DMA32 Normal Movable Device Gen 0 0 0 4GB 0 Gen 1 0 1GB 1MB 0 Gen 2 1MB 4GB 1MB 0 Gen 3 1MB 1MB 1MB 0 Now consider there is a GFP_KERNEL allocation request (eligible zone index <= Normal), evict_folios() will return without doing any work since there are no pages to scan in the eligible zones of the oldest generation. Reclaim won't make progress until triggered from a ZONE_MOVABLE allocation request; which may not happen soon if there is a lot of free memory in the movable zone. This can lead to OOM kills, although there is 1GB pages in the Normal zone of Gen 1 that we have not yet tried to reclaim. This issue is not seen in the conventional active/inactive LRU since there are no per-zone lists. If there are no (not enough) folios to scan in the eligible zones, move folios from ineligible zone (zone_index > reclaim_index) to the next generation. This allows for the progression of min_seq and reclaiming from the next generation (Gen 1). Qualcomm, Mediatek and raspberrypi [1] discovered this issue independently. [1] https://github.com/raspberrypi/linux/issues/5395 Link: https://lkml.kernel.org/r/20230802025606.346758-1-kaleshsingh@google.com Fixes: ac35a4902374 ("mm: multi-gen LRU: minimal implementation") Signed-off-by: Kalesh Singh <kaleshsingh@google.com> Reported-by: Charan Teja Kalla <quic_charante@quicinc.com> Reported-by: Lecopzer Chen <lecopzer.chen@mediatek.com> Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> [mediatek] Tested-by: Charan Teja Kalla <quic_charante@quicinc.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Barry Song <baohua@kernel.org> Cc: Brian Geffon <bgeffon@google.com> Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Oleksandr Natalenko <oleksandr@natalenko.name> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Steven Barrett <steven@liquorix.net> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Aneesh Kumar K V <aneesh.kumar@linux.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19mm: multi-gen LRU: rename lrugen->lists[] to lrugen->folios[]Yu Zhao
commit 6df1b2212950aae2b2188c6645ea18e2a9e3fdd5 upstream. lru_gen_folio will be chained into per-node lists by the coming lrugen->list. Link: https://lkml.kernel.org/r/20221222041905.2431096-3-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-13mm/vmalloc: add a safer version of find_vm_area() for debugJoel Fernandes (Google)
commit 0818e739b5c061b0251c30152380600fb9b84c0c upstream. It is unsafe to dump vmalloc area information when trying to do so from some contexts. Add a safer trylock version of the same function to do a best-effort VMA finding and use it from vmalloc_dump_obj(). [applied test robot feedback on unused function fix.] [applied Uladzislau feedback on locking.] Link: https://lkml.kernel.org/r/20230904180806.1002832-1-joel@joelfernandes.org Fixes: 98f180837a89 ("mm: Make mem_dump_obj() handle vmalloc() memory") Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reported-by: Zhen Lei <thunder.leizhen@huaweicloud.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Zqiang <qiang.zhang1211@gmail.com> Cc: <stable@vger.kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-13rcu: dump vmalloc memory info safelyZqiang
commit c83ad36a18c02c0f51280b50272327807916987f upstream. Currently, for double invoke call_rcu(), will dump rcu_head objects memory info, if the objects is not allocated from the slab allocator, the vmalloc_dump_obj() will be invoke and the vmap_area_lock spinlock need to be held, since the call_rcu() can be invoked in interrupt context, therefore, there is a possibility of spinlock deadlock scenarios. And in Preempt-RT kernel, the rcutorture test also trigger the following lockdep warning: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0 preempt_count: 1, expected: 0 RCU nest depth: 1, expected: 1 3 locks held by swapper/0/1: #0: ffffffffb534ee80 (fullstop_mutex){+.+.}-{4:4}, at: torture_init_begin+0x24/0xa0 #1: ffffffffb5307940 (rcu_read_lock){....}-{1:3}, at: rcu_torture_init+0x1ec7/0x2370 #2: ffffffffb536af40 (vmap_area_lock){+.+.}-{3:3}, at: find_vmap_area+0x1f/0x70 irq event stamp: 565512 hardirqs last enabled at (565511): [<ffffffffb379b138>] __call_rcu_common+0x218/0x940 hardirqs last disabled at (565512): [<ffffffffb5804262>] rcu_torture_init+0x20b2/0x2370 softirqs last enabled at (399112): [<ffffffffb36b2586>] __local_bh_enable_ip+0x126/0x170 softirqs last disabled at (399106): [<ffffffffb43fef59>] inet_register_protosw+0x9/0x1d0 Preemption disabled at: [<ffffffffb58040c3>] rcu_torture_init+0x1f13/0x2370 CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.5.0-rc4-rt2-yocto-preempt-rt+ #15 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x68/0xb0 dump_stack+0x14/0x20 __might_resched+0x1aa/0x280 ? __pfx_rcu_torture_err_cb+0x10/0x10 rt_spin_lock+0x53/0x130 ? find_vmap_area+0x1f/0x70 find_vmap_area+0x1f/0x70 vmalloc_dump_obj+0x20/0x60 mem_dump_obj+0x22/0x90 __call_rcu_common+0x5bf/0x940 ? debug_smp_processor_id+0x1b/0x30 call_rcu_hurry+0x14/0x20 rcu_torture_init+0x1f82/0x2370 ? __pfx_rcu_torture_leak_cb+0x10/0x10 ? __pfx_rcu_torture_leak_cb+0x10/0x10 ? __pfx_rcu_torture_init+0x10/0x10 do_one_initcall+0x6c/0x300 ? debug_smp_processor_id+0x1b/0x30 kernel_init_freeable+0x2b9/0x540 ? __pfx_kernel_init+0x10/0x10 kernel_init+0x1f/0x150 ret_from_fork+0x40/0x50 ? __pfx_kernel_init+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> The previous patch fixes this by using the deadlock-safe best-effort version of find_vm_area. However, in case of failure print the fact that the pointer was a vmalloc pointer so that we print at least something. Link: https://lkml.kernel.org/r/20230904180806.1002832-2-joel@joelfernandes.org Fixes: 98f180837a89 ("mm: Make mem_dump_obj() handle vmalloc() memory") Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Reported-by: Zhen Lei <thunder.leizhen@huaweicloud.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-13net-memcg: Fix scope of sockmem pressure indicatorsAbel Wu
[ Upstream commit ac8a52962164a50e693fa021d3564d7745b83a7f ] Now there are two indicators of socket memory pressure sit inside struct mem_cgroup, socket_pressure and tcpmem_pressure, indicating memory reclaim pressure in memcg->memory and ->tcpmem respectively. When in legacy mode (cgroupv1), the socket memory is charged into ->tcpmem which is independent of ->memory, so socket_pressure has nothing to do with socket's pressure at all. Things could be worse by taking socket_pressure into consideration in legacy mode, as a pressure in ->memory can lead to premature reclamation/throttling in socket. While for the default mode (cgroupv2), the socket memory is charged into ->memory, and ->tcpmem/->tcpmem_pressure are simply not used. So {socket,tcpmem}_pressure are only used in default/legacy mode respectively for indicating socket memory pressure. This patch fixes the pieces of code that make mixed use of both. Fixes: 8e8ae645249b ("mm: memcontrol: hook up vmpressure to socket pressure") Signed-off-by: Abel Wu <wuyun.abel@bytedance.com> Acked-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-13tmpfs: verify {g,u}id mount options correctlyChristian Brauner
[ Upstream commit 0200679fc7953177941e41c2a4241d0b6c2c5de8 ] A while ago we received the following report: "The other outstanding issue I noticed comes from the fact that fsconfig syscalls may occur in a different userns than that which called fsopen. That means that resolving the uid/gid via current_user_ns() can save a kuid that isn't mapped in the associated namespace when the filesystem is finally mounted. This means that it is possible for an unprivileged user to create files owned by any group in a tmpfs mount (since we can set the SUID bit on the tmpfs directory), or a tmpfs that is owned by any user, including the root group/user." The contract for {g,u}id mount options and {g,u}id values in general set from userspace has always been that they are translated according to the caller's idmapping. In so far, tmpfs has been doing the correct thing. But since tmpfs is mountable in unprivileged contexts it is also necessary to verify that the resulting {k,g}uid is representable in the namespace of the superblock to avoid such bugs as above. The new mount api's cross-namespace delegation abilities are already widely used. After having talked to a bunch of userspace this is the most faithful solution with minimal regression risks. I know of one users - systemd - that makes use of the new mount api in this way and they don't set unresolable {g,u}ids. So the regression risk is minimal. Link: https://lore.kernel.org/lkml/CALxfFW4BXhEwxR0Q5LSkg-8Vb4r2MONKCcUCVioehXQKr35eHg@mail.gmail.com Fixes: f32356261d44 ("vfs: Convert ramfs, shmem, tmpfs, devtmpfs, rootfs to use the new mount API") Reviewed-by: "Seth Forshee (DigitalOcean)" <sforshee@kernel.org> Reported-by: Seth Jenkins <sethjenkins@google.com> Message-Id: <20230801-vfs-fs_context-uidgid-v1-1-daf46a050bbf@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-30madvise:madvise_free_pte_range(): don't use mapcount() against large folio ↵Yin Fengwei
for sharing check commit 0e0e9bd5f7b9d40fd03b70092367247d52da1db0 upstream. Commit 98b211d6415f ("madvise: convert madvise_free_pte_range() to use a folio") replaced the page_mapcount() with folio_mapcount() to check whether the folio is shared by other mapping. It's not correct for large folios. folio_mapcount() returns the total mapcount of large folio which is not suitable to detect whether the folio is shared. Use folio_estimated_sharers() which returns a estimated number of shares. That means it's not 100% correct. It should be OK for madvise case here. User-visible effects is that the THP is skipped when user call madvise. But the correct behavior is THP should be split and processed then. NOTE: this change is a temporary fix to reduce the user-visible effects before the long term fix from David is ready. Link: https://lkml.kernel.org/r/20230808020917.2230692-4-fengwei.yin@intel.com Fixes: 98b211d6415f ("madvise: convert madvise_free_pte_range() to use a folio") Signed-off-by: Yin Fengwei <fengwei.yin@intel.com> Reviewed-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-30mm: memory-failure: fix unexpected return value in soft_offline_page()Miaohe Lin
commit e2c1ab070fdc81010ec44634838d24fce9ff9e53 upstream. When page_handle_poison() fails to handle the hugepage or free page in retry path, soft_offline_page() will return 0 while -EBUSY is expected in this case. Consequently the user will think soft_offline_page succeeds while it in fact failed. So the user will not try again later in this case. Link: https://lkml.kernel.org/r/20230627112808.1275241-1-linmiaohe@huawei.com Fixes: b94e02822deb ("mm,hwpoison: try to narrow window race for free pages") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-30mm: add a call to flush_cache_vmap() in vmap_pfn()Alexandre Ghiti
commit a50420c79731fc5cf27ad43719c1091e842a2606 upstream. flush_cache_vmap() must be called after new vmalloc mappings are installed in the page table in order to allow architectures to make sure the new mapping is visible. It could lead to a panic since on some architectures (like powerpc), the page table walker could see the wrong pte value and trigger a spurious page fault that can not be resolved (see commit f1cb8f9beba8 ("powerpc/64s/radix: avoid ptesync after set_pte and ptep_set_access_flags")). But actually the patch is aiming at riscv: the riscv specification allows the caching of invalid entries in the TLB, and since we recently removed the vmalloc page fault handling, we now need to emit a tlb shootdown whenever a new vmalloc mapping is emitted (https://lore.kernel.org/linux-riscv/20230725132246.817726-1-alexghiti@rivosinc.com/). That's a temporary solution, there are ways to avoid that :) Link: https://lkml.kernel.org/r/20230809164633.1556126-1-alexghiti@rivosinc.com Fixes: 3e9a9e256b1e ("mm: add a vmap_pfn function") Reported-by: Dylan Jhong <dylan@andestech.com> Closes: https://lore.kernel.org/linux-riscv/ZMytNY2J8iyjbPPy@atctrx.andestech.com/ Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Palmer Dabbelt <palmer@rivosinc.com> Acked-by: Palmer Dabbelt <palmer@rivosinc.com> Reviewed-by: Dylan Jhong <dylan@andestech.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-30shmem: fix smaps BUG sleeping while atomicHugh Dickins
commit e5548f85b4527c4c803b7eae7887c10bf8f90c97 upstream. smaps_pte_hole_lookup() is calling shmem_partial_swap_usage() with page table lock held: but shmem_partial_swap_usage() does cond_resched_rcu() if need_resched(): "BUG: sleeping function called from invalid context". Since shmem_partial_swap_usage() is designed to count across a range, but smaps_pte_hole_lookup() only calls it for a single page slot, just break out of the loop on the last or only page, before checking need_resched(). Link: https://lkml.kernel.org/r/6fe3b3ec-abdf-332f-5c23-6a3b3a3b11a9@google.com Fixes: 230100321518 ("mm/smaps: simplify shmem handling of pte holes") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> [5.16+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-23hugetlb: do not clear hugetlb dtor until allocating vmemmapMike Kravetz
commit 32c877191e022b55fe3a374f3d7e9fb5741c514d upstream. Patch series "Fix hugetlb free path race with memory errors". In the discussion of Jiaqi Yan's series "Improve hugetlbfs read on HWPOISON hugepages" the race window was discovered. https://lore.kernel.org/linux-mm/20230616233447.GB7371@monkey/ Freeing a hugetlb page back to low level memory allocators is performed in two steps. 1) Under hugetlb lock, remove page from hugetlb lists and clear destructor 2) Outside lock, allocate vmemmap if necessary and call low level free Between these two steps, the hugetlb page will appear as a normal compound page. However, vmemmap for tail pages could be missing. If a memory error occurs at this time, we could try to update page flags non-existant page structs. A much more detailed description is in the first patch. The first patch addresses the race window. However, it adds a hugetlb_lock lock/unlock cycle to every vmemmap optimized hugetlb page free operation. This could lead to slowdowns if one is freeing a large number of hugetlb pages. The second path optimizes the update_and_free_pages_bulk routine to only take the lock once in bulk operations. The second patch is technically not a bug fix, but includes a Fixes tag and Cc stable to avoid a performance regression. It can be combined with the first, but was done separately make reviewing easier. This patch (of 2): Freeing a hugetlb page and releasing base pages back to the underlying allocator such as buddy or cma is performed in two steps: - remove_hugetlb_folio() is called to remove the folio from hugetlb lists, get a ref on the page and remove hugetlb destructor. This all must be done under the hugetlb lock. After this call, the page can be treated as a normal compound page or a collection of base size pages. - update_and_free_hugetlb_folio() is called to allocate vmemmap if needed and the free routine of the underlying allocator is called on the resulting page. We can not hold the hugetlb lock here. One issue with this scheme is that a memory error could occur between these two steps. In this case, the memory error handling code treats the old hugetlb page as a normal compound page or collection of base pages. It will then try to SetPageHWPoison(page) on the page with an error. If the page with error is a tail page without vmemmap, a write error will occur when trying to set the flag. Address this issue by modifying remove_hugetlb_folio() and update_and_free_hugetlb_folio() such that the hugetlb destructor is not cleared until after allocating vmemmap. Since clearing the destructor requires holding the hugetlb lock, the clearing is done in remove_hugetlb_folio() if the vmemmap is present. This saves a lock/unlock cycle. Otherwise, destructor is cleared in update_and_free_hugetlb_folio() after allocating vmemmap. Note that this will leave hugetlb pages in a state where they are marked free (by hugetlb specific page flag) and have a ref count. This is not a normal state. The only code that would notice is the memory error code, and it is set up to retry in such a case. A subsequent patch will create a routine to do bulk processing of vmemmap allocation. This will eliminate a lock/unlock cycle for each hugetlb page in the case where we are freeing a large number of pages. Link: https://lkml.kernel.org/r/20230711220942.43706-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20230711220942.43706-2-mike.kravetz@oracle.com Fixes: ad2fa3717b74 ("mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB page") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Tested-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-23zsmalloc: allow only one active pool compaction contextSergey Senozhatsky
commit d2658f2052c7db6ec0a79977205f8cf1cb9effc2 upstream. zsmalloc pool can be compacted concurrently by many contexts, e.g. cc1 handle_mm_fault() do_anonymous_page() __alloc_pages_slowpath() try_to_free_pages() do_try_to_free_pages( lru_gen_shrink_node() shrink_slab() do_shrink_slab() zs_shrinker_scan() zs_compact() Pool compaction is currently (basically) single-threaded as it is performed under pool->lock. Having multiple compaction threads results in unnecessary contention, as each thread competes for pool->lock. This, in turn, affects all zsmalloc operations such as zs_malloc(), zs_map_object(), zs_free(), etc. Introduce the pool->compaction_in_progress atomic variable, which ensures that only one compaction context can run at a time. This reduces overall pool->lock contention in (corner) cases when many contexts attempt to shrink zspool simultaneously. Link: https://lkml.kernel.org/r/20230418074639.1903197-1-senozhatsky@chromium.org Fixes: c0547d0b6a4b ("zsmalloc: consolidate zs_pool's migrate_lock and size_class's locks") Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-23zsmalloc: fix races between modifications of fullness and isolatedAndrew Yang
[ Upstream commit 4b5d1e47b69426c0f7491d97d73ad0152d02d437 ] We encountered many kernel exceptions of VM_BUG_ON(zspage->isolated == 0) in dec_zspage_isolation() and BUG_ON(!pages[1]) in zs_unmap_object() lately. This issue only occurs when migration and reclamation occur at the same time. With our memory stress test, we can reproduce this issue several times a day. We have no idea why no one else encountered this issue. BTW, we switched to the new kernel version with this defect a few months ago. Since fullness and isolated share the same unsigned int, modifications of them should be protected by the same lock. [andrew.yang@mediatek.com: move comment] Link: https://lkml.kernel.org/r/20230727062910.6337-1-andrew.yang@mediatek.com Link: https://lkml.kernel.org/r/20230721063705.11455-1-andrew.yang@mediatek.com Fixes: c4549b871102 ("zsmalloc: remove zspage isolation for migration") Signed-off-by: Andrew Yang <andrew.yang@mediatek.com> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-23zsmalloc: consolidate zs_pool's migrate_lock and size_class's locksNhat Pham
[ Upstream commit c0547d0b6a4b637db05406b90ba82e1b2e71de56 ] Currently, zsmalloc has a hierarchy of locks, which includes a pool-level migrate_lock, and a lock for each size class. We have to obtain both locks in the hotpath in most cases anyway, except for zs_malloc. This exception will no longer exist when we introduce a LRU into the zs_pool for the new writeback functionality - we will need to obtain a pool-level lock to synchronize LRU handling even in zs_malloc. In preparation for zsmalloc writeback, consolidate these locks into a single pool-level lock, which drastically reduces the complexity of synchronization in zsmalloc. We have also benchmarked the lock consolidation to see the performance effect of this change on zram. First, we ran a synthetic FS workload on a server machine with 36 cores (same machine for all runs), using fs_mark -d ../zram1mnt -s 100000 -n 2500 -t 32 -k before and after for btrfs and ext4 on zram (FS usage is 80%). Here is the result (unit is file/second): With lock consolidation (btrfs): Average: 13520.2, Median: 13531.0, Stddev: 137.5961482019028 Without lock consolidation (btrfs): Average: 13487.2, Median: 13575.0, Stddev: 309.08283679298665 With lock consolidation (ext4): Average: 16824.4, Median: 16839.0, Stddev: 89.97388510006668 Without lock consolidation (ext4) Average: 16958.0, Median: 16986.0, Stddev: 194.7370021336469 As you can see, we observe a 0.3% regression for btrfs, and a 0.9% regression for ext4. This is a small, barely measurable difference in my opinion. For a more realistic scenario, we also tries building the kernel on zram. Here is the time it takes (in seconds): With lock consolidation (btrfs): real Average: 319.6, Median: 320.0, Stddev: 0.8944271909999159 user Average: 6894.2, Median: 6895.0, Stddev: 25.528415540334656 sys Average: 521.4, Median: 522.0, Stddev: 1.51657508881031 Without lock consolidation (btrfs): real Average: 319.8, Median: 320.0, Stddev: 0.8366600265340756 user Average: 6896.6, Median: 6899.0, Stddev: 16.04057355583023 sys Average: 520.6, Median: 521.0, Stddev: 1.140175425099138 With lock consolidation (ext4): real Average: 320.0, Median: 319.0, Stddev: 1.4142135623730951 user Average: 6896.8, Median: 6878.0, Stddev: 28.621670111997307 sys Average: 521.2, Median: 521.0, Stddev: 1.7888543819998317 Without lock consolidation (ext4) real Average: 319.6, Median: 319.0, Stddev: 0.8944271909999159 user Average: 6886.2, Median: 6887.0, Stddev: 16.93221781102523 sys Average: 520.4, Median: 520.0, Stddev: 1.140175425099138 The difference is entirely within the noise of a typical run on zram. This hardly justifies the complexity of maintaining both the pool lock and the class lock. In fact, for writeback, we would need to introduce yet another lock to prevent data races on the pool's LRU, further complicating the lock handling logic. IMHO, it is just better to collapse all of these into a single pool-level lock. Link: https://lkml.kernel.org/r/20221128191616.1261026-4-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Stable-dep-of: 4b5d1e47b694 ("zsmalloc: fix races between modifications of fullness and isolated") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-11mm: kmem: fix a NULL pointer dereference in obj_stock_flush_required()Roman Gushchin
commit 3b8abb3239530c423c0b97e42af7f7e856e1ee96 upstream. KCSAN found an issue in obj_stock_flush_required(): stock->cached_objcg can be reset between the check and dereference: ================================================================== BUG: KCSAN: data-race in drain_all_stock / drain_obj_stock write to 0xffff888237c2a2f8 of 8 bytes by task 19625 on cpu 0: drain_obj_stock+0x408/0x4e0 mm/memcontrol.c:3306 refill_obj_stock+0x9c/0x1e0 mm/memcontrol.c:3340 obj_cgroup_uncharge+0xe/0x10 mm/memcontrol.c:3408 memcg_slab_free_hook mm/slab.h:587 [inline] __cache_free mm/slab.c:3373 [inline] __do_kmem_cache_free mm/slab.c:3577 [inline] kmem_cache_free+0x105/0x280 mm/slab.c:3602 __d_free fs/dcache.c:298 [inline] dentry_free fs/dcache.c:375 [inline] __dentry_kill+0x422/0x4a0 fs/dcache.c:621 dentry_kill+0x8d/0x1e0 dput+0x118/0x1f0 fs/dcache.c:913 __fput+0x3bf/0x570 fs/file_table.c:329 ____fput+0x15/0x20 fs/file_table.c:349 task_work_run+0x123/0x160 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop+0xcf/0xe0 kernel/entry/common.c:171 exit_to_user_mode_prepare+0x6a/0xa0 kernel/entry/common.c:203 __syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline] syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:296 do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff888237c2a2f8 of 8 bytes by task 19632 on cpu 1: obj_stock_flush_required mm/memcontrol.c:3319 [inline] drain_all_stock+0x174/0x2a0 mm/memcontrol.c:2361 try_charge_memcg+0x6d0/0xd10 mm/memcontrol.c:2703 try_charge mm/memcontrol.c:2837 [inline] mem_cgroup_charge_skmem+0x51/0x140 mm/memcontrol.c:7290 sock_reserve_memory+0xb1/0x390 net/core/sock.c:1025 sk_setsockopt+0x800/0x1e70 net/core/sock.c:1525 udp_lib_setsockopt+0x99/0x6c0 net/ipv4/udp.c:2692 udp_setsockopt+0x73/0xa0 net/ipv4/udp.c:2817 sock_common_setsockopt+0x61/0x70 net/core/sock.c:3668 __sys_setsockopt+0x1c3/0x230 net/socket.c:2271 __do_sys_setsockopt net/socket.c:2282 [inline] __se_sys_setsockopt net/socket.c:2279 [inline] __x64_sys_setsockopt+0x66/0x80 net/socket.c:2279 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0xffff8881382d52c0 -> 0xffff888138893740 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 19632 Comm: syz-executor.0 Not tainted 6.3.0-rc2-syzkaller-00387-g534293368afa #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023 Fix it by using READ_ONCE()/WRITE_ONCE() for all accesses to stock->cached_objcg. Link: https://lkml.kernel.org/r/20230502160839.361544-1-roman.gushchin@linux.dev Fixes: bf4f059954dc ("mm: memcg/slab: obj_cgroup API") Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Reported-by: syzbot+774c29891415ab0fd29d@syzkaller.appspotmail.com Reported-by: Dmitry Vyukov <dvyukov@google.com> Link: https://lore.kernel.org/linux-mm/CACT4Y+ZfucZhM60YPphWiCLJr6+SGFhT+jjm8k1P-a_8Kkxsjg@mail.gmail.com/T/#t Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23kasan: add kasan_tag_mismatch prototypeArnd Bergmann
commit fb646a4cd3f0ff27d19911bef7b6622263723df6 upstream. The kasan sw-tags implementation contains one function that is only called from assembler and has no prototype in a header. This causes a W=1 warning: mm/kasan/sw_tags.c:171:6: warning: no previous prototype for 'kasan_tag_mismatch' [-Wmissing-prototypes] 171 | void kasan_tag_mismatch(unsigned long addr, unsigned long access_info, Add a prototype in the local header to get a clean build. Link: https://lkml.kernel.org/r/20230509145735.9263-1-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-19mm/mmap: Fix extra maple tree writeLiam R. Howlett
based on commit 0503ea8f5ba73eb3ab13a81c1eefbaf51405385a upstream. This was inadvertently fixed during the removal of __vma_adjust(). When __vma_adjust() is adjusting next with a negative value (pushing vma->vm_end lower), there would be two writes to the maple tree. The first write is unnecessary and uses all allocated nodes in the maple state. The second write is necessary but will need to allocate nodes since the first write has used the allocated nodes. This may be a problem as it may not be safe to allocate at this time, such as a low memory situation. Fix the issue by avoiding the first write and only write the adjusted "next" VMA. Reported-by: John Hsu <John.Hsu@mediatek.com> Link: https://lore.kernel.org/lkml/9cb8c599b1d7f9c1c300d1a334d5eb70ec4d7357.camel@mediatek.com/ Cc: stable@vger.kernel.org Cc: linux-mm@kvack.org Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-19shmem: use ramfs_kill_sb() for kill_sb method of ramfs-based tmpfsRoberto Sassu
commit 36ce9d76b0a93bae799e27e4f5ac35478c676592 upstream. As the ramfs-based tmpfs uses ramfs_init_fs_context() for the init_fs_context method, which allocates fc->s_fs_info, use ramfs_kill_sb() to free it and avoid a memory leak. Link: https://lkml.kernel.org/r/20230607161523.2876433-1-roberto.sassu@huaweicloud.com Fixes: c3b1b1cbf002 ("ramfs: add support for "mode=" mount option") Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-19mm/damon/ops-common: atomically test and clear young on ptes and pmdsRyan Roberts
commit c11d34fa139e4b0fb4249a30f37b178353533fa1 upstream. It is racy to non-atomically read a pte, then clear the young bit, then write it back as this could discard dirty information. Further, it is bad practice to directly set a pte entry within a table. Instead clearing young must go through the arch-provided helper, ptep_test_and_clear_young() to ensure it is modified atomically and to give the arch code visibility and allow it to check (and potentially modify) the operation. Link: https://lkml.kernel.org/r/20230602092949.545577-3-ryan.roberts@arm.com Fixes: 3f49584b262c ("mm/damon: implement primitives for the virtual memory address spaces"). Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: SeongJae Park <sj@kernel.org> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-19mm/mmap: Fix VM_LOCKED check in do_vmi_align_munmap()Suren Baghdasaryan
6.1 backport of the patch [1] uses 'next' vma instead of 'split' vma. Fix the mistake. [1] commit 606c812eb1d5 ("mm/mmap: Fix error path in do_vmi_align_munmap()") Fixes: a149174ff8bb ("mm/mmap: Fix error path in do_vmi_align_munmap()") Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: stable@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-19mm: call arch_swap_restore() from do_swap_page()Peter Collingbourne
commit 6dca4ac6fc91fd41ea4d6c4511838d37f4e0eab2 upstream. Commit c145e0b47c77 ("mm: streamline COW logic in do_swap_page()") moved the call to swap_free() before the call to set_pte_at(), which meant that the MTE tags could end up being freed before set_pte_at() had a chance to restore them. Fix it by adding a call to the arch_swap_restore() hook before the call to swap_free(). Link: https://lkml.kernel.org/r/20230523004312.1807357-2-pcc@google.com Link: https://linux-review.googlesource.com/id/I6470efa669e8bd2f841049b8c61020c510678965 Fixes: c145e0b47c77 ("mm: streamline COW logic in do_swap_page()") Signed-off-by: Peter Collingbourne <pcc@google.com> Reported-by: Qun-wei Lin <Qun-wei.Lin@mediatek.com> Closes: https://lore.kernel.org/all/5050805753ac469e8d727c797c2218a9d780d434.camel@mediatek.com/ Acked-by: David Hildenbrand <david@redhat.com> Acked-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Steven Price <steven.price@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: <stable@vger.kernel.org> [6.1+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-05xtensa: fix lock_mm_and_find_vma in case VMA not foundMax Filippov
commit 03f889378f33aa9a9d8e5f49ba94134cf6158090 upstream. MMU version of lock_mm_and_find_vma releases the mm lock before returning when VMA is not found. Do the same in noMMU version. This fixes hang on an attempt to handle protection fault. Fixes: d85a143b69ab ("xtensa: fix NOMMU build with lock_mm_and_find_vma() conversion") Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01xtensa: fix NOMMU build with lock_mm_and_find_vma() conversionLinus Torvalds
commit d85a143b69abb4d7544227e26d12c4c7735ab27d upstream. It turns out that xtensa has a really odd configuration situation: you can do a no-MMU config, but still have the page fault code enabled. Which doesn't sound all that sensible, but it turns out that xtensa can have protection faults even without the MMU, and we have this: config PFAULT bool "Handle protection faults" if EXPERT && !MMU default y help Handle protection faults. MMU configurations must enable it. noMMU configurations may disable it if used memory map never generates protection faults or faults are always fatal. If unsure, say Y. which completely violated my expectations of the page fault handling. End result: Guenter reports that the xtensa no-MMU builds all fail with arch/xtensa/mm/fault.c: In function ‘do_page_fault’: arch/xtensa/mm/fault.c:133:8: error: implicit declaration of function ‘lock_mm_and_find_vma’ because I never exposed the new lock_mm_and_find_vma() function for the no-MMU case. Doing so is simple enough, and fixes the problem. Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net> Fixes: a050ba1e7422 ("mm/fault: convert remaining simple cases to lock_mm_and_find_vma()") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01mm: always expand the stack with the mmap write lock heldLinus Torvalds
commit 8d7071af890768438c14db6172cc8f9f4d04e184 upstream This finishes the job of always holding the mmap write lock when extending the user stack vma, and removes the 'write_locked' argument from the vm helper functions again. For some cases, we just avoid expanding the stack at all: drivers and page pinning really shouldn't be extending any stacks. Let's see if any strange users really wanted that. It's worth noting that architectures that weren't converted to the new lock_mm_and_find_vma() helper function are left using the legacy "expand_stack()" function, but it has been changed to drop the mmap_lock and take it for writing while expanding the vma. This makes it fairly straightforward to convert the remaining architectures. As a result of dropping and re-taking the lock, the calling conventions for this function have also changed, since the old vma may no longer be valid. So it will now return the new vma if successful, and NULL - and the lock dropped - if the area could not be extended. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [6.1: Patch drivers/iommu/io-pgfault.c instead] Signed-off-by: Samuel Mendoza-Jonas <samjonas@amazon.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01mm: make find_extend_vma() fail if write lock not heldLiam R. Howlett
commit f440fa1ac955e2898893f9301568435eb5cdfc4b upstream. Make calls to extend_vma() and find_extend_vma() fail if the write lock is required. To avoid making this a flag-day event, this still allows the old read-locking case for the trivial situations, and passes in a flag to say "is it write-locked". That way write-lockers can say "yes, I'm being careful", and legacy users will continue to work in all the common cases until they have been fully converted to the new world order. Co-Developed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Samuel Mendoza-Jonas <samjonas@amazon.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01arm/mm: Convert to using lock_mm_and_find_vma()Ben Hutchings
commit 8b35ca3e45e35a26a21427f35d4093606e93ad0a upstream. arm has an additional check for address < FIRST_USER_ADDRESS before expanding the stack. Since FIRST_USER_ADDRESS is defined everywhere (generally as 0), move that check to the generic expand_downwards(). Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Samuel Mendoza-Jonas <samjonas@amazon.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01mm: make the page fault mmap locking killableLinus Torvalds
commit eda0047296a16d65a7f2bc60a408f70d178b2014 upstream. This is done as a separate patch from introducing the new lock_mm_and_find_vma() helper, because while it's an obvious change, it's not what x86 used to do in this area. We already abort the page fault on fatal signals anyway, so why should we wait for the mmap lock only to then abort later? With the new helper function that returns without the lock held on failure anyway, this is particularly easy and straightforward. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Samuel Mendoza-Jonas <samjonas@amazon.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01mm: introduce new 'lock_mm_and_find_vma()' page fault helperLinus Torvalds
commit c2508ec5a58db67093f4fb8bf89a9a7c53a109e9 upstream. .. and make x86 use it. This basically extracts the existing x86 "find and expand faulting vma" code, but extends it to also take the mmap lock for writing in case we actually do need to expand the vma. We've historically short-circuited that case, and have some rather ugly special logic to serialize the stack segment expansion (since we only hold the mmap lock for reading) that doesn't match the normal VM locking. That slight violation of locking worked well, right up until it didn't: the maple tree code really does want proper locking even for simple extension of an existing vma. So extract the code for "look up the vma of the fault" from x86, fix it up to do the necessary write locking, and make it available as a helper function for other architectures that can use the common helper. Note: I say "common helper", but it really only handles the normal stack-grows-down case. Which is all architectures except for PA-RISC and IA64. So some rare architectures can't use the helper, but if they care they'll just need to open-code this logic. It's also worth pointing out that this code really would like to have an optimistic "mmap_upgrade_trylock()" to make it quicker to go from a read-lock (for the common case) to taking the write lock (for having to extend the vma) in the normal single-threaded situation where there is no other locking activity. But that _is_ all the very uncommon special case, so while it would be nice to have such an operation, it probably doesn't matter in reality. I did put in the skeleton code for such a possible future expansion, even if it only acts as pseudo-documentation for what we're doing. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [6.1: Ignore CONFIG_PER_VMA_LOCK context] Signed-off-by: Samuel Mendoza-Jonas <samjonas@amazon.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01mm, hwpoison: when copy-on-write hits poison, take page offlineTony Luck
commit d302c2398ba269e788a4f37ae57c07a7fcabaa42 upstream. Cannot call memory_failure() directly from the fault handler because mmap_lock (and others) are held. It is important, but not urgent, to mark the source page as h/w poisoned and unmap it from other tasks. Use memory_failure_queue() to request a call to memory_failure() for the page with the error. Also provide a stub version for CONFIG_MEMORY_FAILURE=n Link: https://lkml.kernel.org/r/20221021200120.175753-3-tony.luck@intel.com Signed-off-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Shuai Xue <xueshuai@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Due to missing commits e591ef7d96d6e ("mm,hwpoison,hugetlb,memory_hotplug: hotremove memory section with hwpoisoned hugepage") 5033091de814a ("mm/hwpoison: introduce per-memory_block hwpoison counter") The impact of e591ef7d96d6e is its introduction of an additional flag in __get_huge_page_for_hwpoison() that serves as an indication a hwpoisoned hugetlb page should have its migratable bit cleared. The impact of 5033091de814a is contexual. Resolve by ignoring both missing commits. - jane] Signed-off-by: Jane Chu <jane.chu@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01mm, hwpoison: try to recover from copy-on write faultsTony Luck
commit a873dfe1032a132bf89f9e19a6ac44f5a0b78754 upstream. Patch series "Copy-on-write poison recovery", v3. Part 1 deals with the process that triggered the copy on write fault with a store to a shared read-only page. That process is send a SIGBUS with the usual machine check decoration to specify the virtual address of the lost page, together with the scope. Part 2 sets up to asynchronously take the page with the uncorrected error offline to prevent additional machine check faults. H/t to Miaohe Lin <linmiaohe@huawei.com> and Shuai Xue <xueshuai@linux.alibaba.com> for pointing me to the existing function to queue a call to memory_failure(). On x86 there is some duplicate reporting (because the error is also signalled by the memory controller as well as by the core that triggered the machine check). Console logs look like this: This patch (of 2): If the kernel is copying a page as the result of a copy-on-write fault and runs into an uncorrectable error, Linux will crash because it does not have recovery code for this case where poison is consumed by the kernel. It is easy to set up a test case. Just inject an error into a private page, fork(2), and have the child process write to the page. I wrapped that neatly into a test at: git://git.kernel.org/pub/scm/linux/kernel/git/aegl/ras-tools.git just enable ACPI error injection and run: # ./einj_mem-uc -f copy-on-write Add a new copy_user_highpage_mc() function that uses copy_mc_to_kernel() on architectures where that is available (currently x86 and powerpc). When an error is detected during the page copy, return VM_FAULT_HWPOISON to caller of wp_page_copy(). This propagates up the call stack. Both x86 and powerpc have code in their fault handler to deal with this code by sending a SIGBUS to the application. Note that this patch avoids a system crash and signals the process that triggered the copy-on-write action. It does not take any action for the memory error that is still in the shared page. To handle that a call to memory_failure() is needed. But this cannot be done from wp_page_copy() because it holds mmap_lock(). Perhaps the architecture fault handlers can deal with this loose end in a subsequent patch? On Intel/x86 this loose end will often be handled automatically because the memory controller provides an additional notification of the h/w poison in memory, the handler for this will call memory_failure(). This isn't a 100% solution. If there are multiple errors, not all may be logged in this way. [tony.luck@intel.com: add call to kmsan_unpoison_memory(), per Miaohe Lin] Link: https://lkml.kernel.org/r/20221031201029.102123-2-tony.luck@intel.com Link: https://lkml.kernel.org/r/20221021200120.175753-1-tony.luck@intel.com Link: https://lkml.kernel.org/r/20221021200120.175753-2-tony.luck@intel.com Signed-off-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Shuai Xue <xueshuai@linux.alibaba.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Igned-off-by: Jane Chu <jane.chu@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01mm/mmap: Fix error return in do_vmi_align_munmap()David Woodhouse
commit 6c26bd4384da24841bac4f067741bbca18b0fb74 upstream, If mas_store_gfp() in the gather loop failed, the 'error' variable that ultimately gets returned was not being set. In many cases, its original value of -ENOMEM was still in place, and that was fine. But if VMAs had been split at the start or end of the range, then 'error' could be zero. Change to the 'error = foo(); if (error) goto …' idiom to fix the bug. Also clean up a later case which avoided the same bug by *explicitly* setting error = -ENOMEM right before calling the function that might return -ENOMEM. In a final cosmetic change, move the 'Point of no return' comment to *after* the goto. That's been in the wrong place since the preallocation was removed, and this new error path was added. Fixes: 606c812eb1d5 ("mm/mmap: Fix error path in do_vmi_align_munmap()") Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Cc: stable@vger.kernel.org Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-01mm/mmap: Fix error path in do_vmi_align_munmap()Liam R. Howlett
commit 606c812eb1d5b5fb0dd9e330ca94b52d7c227830 upstream The error unrolling was leaving the VMAs detached in many cases and leaving the locked_vm statistic altered, and skipping the unrolling entirely in the case of the vma tree write failing. Fix the error path by re-attaching the detached VMAs and adding the necessary goto for the failed vma tree write, and fix the locked_vm statistic by only updating after the vma tree write succeeds. Fixes: 763ecb035029 ("mm: remove the vma linked list") Reported-by: Vegard Nossum <vegard.nossum@oracle.com> Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [ dwmw2: Strictly, the original patch wasn't *re-attaching* the detached VMAs. They *were* still attached but just had the 'detached' flag set, which is an optimisation. Which doesn't exist in 6.3, so drop that. Also drop the call to vma_start_write() which came in with the per-VMA locking in 6.4. ] [ dwmw2 (6.1): It's do_mas_align_munmap() here. And has two call sites for the now-removed munmap_sidetree() function. Inline them both rather then trying to backport various dependencies with potentially subtle interactions. ] Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-06-28memfd: check for non-NULL file_seals in memfd_create() syscallRoberto Sassu
[ Upstream commit 935d44acf621aa0688fef8312dec3e5940f38f4e ] Ensure that file_seals is non-NULL before using it in the memfd_create() syscall. One situation in which memfd_file_seals_ptr() could return a NULL pointer when CONFIG_SHMEM=n, oopsing the kernel. Link: https://lkml.kernel.org/r/20230607132427.2867435-1-roberto.sassu@huaweicloud.com Fixes: 47b9012ecdc7 ("shmem: add sealing support to hugetlb-backed memfd") Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com> Cc: Marc-Andr Lureau <marcandre.lureau@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>