Age | Commit message (Collapse) | Author |
|
Utilize the xpo_release_rqst transport method to ensure that each
rqstp's svc_rdma_recv_ctxt object is released even when the server
cannot return a Reply for that rqstp.
Without this fix, each RPC whose Reply cannot be sent leaks one
svc_rdma_recv_ctxt. This is a 2.5KB structure, a 4KB DMA-mapped
Receive buffer, and any pages that might be part of the Reply
message.
The leak is infrequent unless the network fabric is unreliable or
Kerberos is in use, as GSS sequence window overruns, which result
in connection loss, are more common on fast transports.
Fixes: 3a88092ee319 ("svcrdma: Preserve Receive buffer until svc_rdma_sendto")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
I hit this while testing nfsd-5.7 with kernel memory debugging
enabled on my server:
Mar 30 13:21:45 klimt kernel: BUG: unable to handle page fault for address: ffff8887e6c279a8
Mar 30 13:21:45 klimt kernel: #PF: supervisor read access in kernel mode
Mar 30 13:21:45 klimt kernel: #PF: error_code(0x0000) - not-present page
Mar 30 13:21:45 klimt kernel: PGD 3601067 P4D 3601067 PUD 87c519067 PMD 87c3e2067 PTE 800ffff8193d8060
Mar 30 13:21:45 klimt kernel: Oops: 0000 [#1] SMP DEBUG_PAGEALLOC PTI
Mar 30 13:21:45 klimt kernel: CPU: 2 PID: 1933 Comm: nfsd Not tainted 5.6.0-rc6-00040-g881e87a3c6f9 #1591
Mar 30 13:21:45 klimt kernel: Hardware name: Supermicro Super Server/X10SRL-F, BIOS 1.0c 09/09/2015
Mar 30 13:21:45 klimt kernel: RIP: 0010:svc_rdma_post_chunk_ctxt+0xab/0x284 [rpcrdma]
Mar 30 13:21:45 klimt kernel: Code: c1 83 34 02 00 00 29 d0 85 c0 7e 72 48 8b bb a0 02 00 00 48 8d 54 24 08 4c 89 e6 48 8b 07 48 8b 40 20 e8 5a 5c 2b e1 41 89 c6 <8b> 45 20 89 44 24 04 8b 05 02 e9 01 00 85 c0 7e 33 e9 5e 01 00 00
Mar 30 13:21:45 klimt kernel: RSP: 0018:ffffc90000dfbdd8 EFLAGS: 00010286
Mar 30 13:21:45 klimt kernel: RAX: 0000000000000000 RBX: ffff8887db8db400 RCX: 0000000000000030
Mar 30 13:21:45 klimt kernel: RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000246
Mar 30 13:21:45 klimt kernel: RBP: ffff8887e6c27988 R08: 0000000000000000 R09: 0000000000000004
Mar 30 13:21:45 klimt kernel: R10: ffffc90000dfbdd8 R11: 00c068ef00000000 R12: ffff8887eb4e4a80
Mar 30 13:21:45 klimt kernel: R13: ffff8887db8db634 R14: 0000000000000000 R15: ffff8887fc931000
Mar 30 13:21:45 klimt kernel: FS: 0000000000000000(0000) GS:ffff88885bd00000(0000) knlGS:0000000000000000
Mar 30 13:21:45 klimt kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
Mar 30 13:21:45 klimt kernel: CR2: ffff8887e6c279a8 CR3: 000000081b72e002 CR4: 00000000001606e0
Mar 30 13:21:45 klimt kernel: Call Trace:
Mar 30 13:21:45 klimt kernel: ? svc_rdma_vec_to_sg+0x7f/0x7f [rpcrdma]
Mar 30 13:21:45 klimt kernel: svc_rdma_send_write_chunk+0x59/0xce [rpcrdma]
Mar 30 13:21:45 klimt kernel: svc_rdma_sendto+0xf9/0x3ae [rpcrdma]
Mar 30 13:21:45 klimt kernel: ? nfsd_destroy+0x51/0x51 [nfsd]
Mar 30 13:21:45 klimt kernel: svc_send+0x105/0x1e3 [sunrpc]
Mar 30 13:21:45 klimt kernel: nfsd+0xf2/0x149 [nfsd]
Mar 30 13:21:45 klimt kernel: kthread+0xf6/0xfb
Mar 30 13:21:45 klimt kernel: ? kthread_queue_delayed_work+0x74/0x74
Mar 30 13:21:45 klimt kernel: ret_from_fork+0x3a/0x50
Mar 30 13:21:45 klimt kernel: Modules linked in: ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm ocfs2_nodemanager ocfs2_stackglue ib_umad ib_ipoib mlx4_ib sb_edac x86_pkg_temp_thermal iTCO_wdt iTCO_vendor_support coretemp kvm_intel kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel glue_helper crypto_simd cryptd pcspkr rpcrdma i2c_i801 rdma_ucm lpc_ich mfd_core ib_iser rdma_cm iw_cm ib_cm mei_me raid0 libiscsi mei sg scsi_transport_iscsi ioatdma wmi ipmi_si ipmi_devintf ipmi_msghandler acpi_power_meter nfsd nfs_acl lockd auth_rpcgss grace sunrpc ip_tables xfs libcrc32c mlx4_en sd_mod sr_mod cdrom mlx4_core crc32c_intel igb nvme i2c_algo_bit ahci i2c_core libahci nvme_core dca libata t10_pi qedr dm_mirror dm_region_hash dm_log dm_mod dax qede qed crc8 ib_uverbs ib_core
Mar 30 13:21:45 klimt kernel: CR2: ffff8887e6c279a8
Mar 30 13:21:45 klimt kernel: ---[ end trace 87971d2ad3429424 ]---
It's absolutely not safe to use resources pointed to by the @send_wr
argument of ib_post_send() _after_ that function returns. Those
resources are typically freed by the Send completion handler, which
can run before ib_post_send() returns.
Thus the trace points currently around ib_post_send() in the
server's RPC/RDMA transport are a hazard, even when they are
disabled. Rearrange them so that they touch the Work Request only
_before_ ib_post_send() is invoked.
Fixes: bd2abef33394 ("svcrdma: Trace key RDMA API events")
Fixes: 4201c7464753 ("svcrdma: Introduce svc_rdma_send_ctxt")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Currently, after the forward channel connection goes away,
backchannel operations are causing soft lockups on the server
because call_transmit_status's SOFTCONN logic ignores ENOTCONN.
Such backchannel Calls are aggressively retried until the client
reconnects.
Backchannel Calls should use RPC_TASK_NOCONNECT rather than
RPC_TASK_SOFTCONN. If there is no forward connection, the server is
not capable of establishing a connection back to the client, thus
that backchannel request should fail before the server attempts to
send it. Commit 58255a4e3ce5 ("NFSD: NFSv4 callback client should
use RPC_TASK_SOFTCONN") was merged several years before
RPC_TASK_NOCONNECT was available.
Because setup_callback_client() explicitly sets NOPING, the NFSv4.0
callback connection depends on the first callback RPC to initiate
a connection to the client. Thus NFSv4.0 needs to continue to use
RPC_TASK_SOFTCONN.
Suggested-by: Trond Myklebust <trondmy@hammerspace.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: <stable@vger.kernel.org> # v4.20+
|
|
Deleting list entry within hlist_for_each_entry_safe is not safe unless
next pointer (tmp) is protected too. It's not, because once hash_lock
is released, cache_clean may delete the entry that tmp points to. Then
cache_purge can walk to a deleted entry and tries to double free it.
Fix this bug by holding only the deleted entry's reference.
Suggested-by: NeilBrown <neilb@suse.de>
Signed-off-by: Yihao Wu <wuyihao@linux.alibaba.com>
Reviewed-by: NeilBrown <neilb@suse.de>
[ cel: removed unused variable ]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable fixes:
- Fix a page leak in nfs_destroy_unlinked_subrequests()
- Fix use-after-free issues in nfs_pageio_add_request()
- Fix new mount code constant_table array definitions
- finish_automount() requires us to hold 2 refs to the mount record
Features:
- Improve the accuracy of telldir/seekdir by using 64-bit cookies
when possible.
- Allow one RDMA active connection and several zombie connections to
prevent blocking if the remote server is unresponsive.
- Limit the size of the NFS access cache by default
- Reduce the number of references to credentials that are taken by
NFS
- pNFS files and flexfiles drivers now support per-layout segment
COMMIT lists.
- Enable partial-file layout segments in the pNFS/flexfiles driver.
- Add support for CB_RECALL_ANY to the pNFS flexfiles layout type
- pNFS/flexfiles Report NFS4ERR_DELAY and NFS4ERR_GRACE errors from
the DS using the layouterror mechanism.
Bugfixes and cleanups:
- SUNRPC: Fix krb5p regressions
- Don't specify NFS version in "UDP not supported" error
- nfsroot: set tcp as the default transport protocol
- pnfs: Return valid stateids in nfs_layout_find_inode_by_stateid()
- alloc_nfs_open_context() must use the file cred when available
- Fix locking when dereferencing the delegation cred
- Fix memory leaks in O_DIRECT when nfs_get_lock_context() fails
- Various clean ups of the NFS O_DIRECT commit code
- Clean up RDMA connect/disconnect
- Replace zero-length arrays with C99-style flexible arrays"
* tag 'nfs-for-5.7-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (86 commits)
NFS: Clean up process of marking inode stale.
SUNRPC: Don't start a timer on an already queued rpc task
NFS/pnfs: Reference the layout cred in pnfs_prepare_layoutreturn()
NFS/pnfs: Fix dereference of layout cred in pnfs_layoutcommit_inode()
NFS: Beware when dereferencing the delegation cred
NFS: Add a module parameter to set nfs_mountpoint_expiry_timeout
NFS: finish_automount() requires us to hold 2 refs to the mount record
NFS: Fix a few constant_table array definitions
NFS: Try to join page groups before an O_DIRECT retransmission
NFS: Refactor nfs_lock_and_join_requests()
NFS: Reverse the submission order of requests in __nfs_pageio_add_request()
NFS: Clean up nfs_lock_and_join_requests()
NFS: Remove the redundant function nfs_pgio_has_mirroring()
NFS: Fix memory leaks in nfs_pageio_stop_mirroring()
NFS: Fix a request reference leak in nfs_direct_write_clear_reqs()
NFS: Fix use-after-free issues in nfs_pageio_add_request()
NFS: Fix races nfs_page_group_destroy() vs nfs_destroy_unlinked_subrequests()
NFS: Fix a page leak in nfs_destroy_unlinked_subrequests()
NFS: Remove unused FLUSH_SYNC support in nfs_initiate_pgio()
pNFS/flexfiles: Specify the layout segment range in LAYOUTGET
...
|
|
Move the test for whether a task is already queued to prevent
corruption of the timer list in __rpc_sleep_on_priority_timeout().
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
git://git.linux-nfs.org/projects/anna/linux-nfs
NFSoRDMA Client Updates for Linux 5.7
New Features:
- Allow one active connection and several zombie connections to prevent
blocking if the remote server is unresponsive.
Bugfixes and Cleanups:
- Enhance MR-related trace points
- Refactor connection set-up and disconnect functions
- Make Protection Domains per-connection instead of per-transport
- Merge struct rpcrdma_ia into rpcrdma_ep
|
|
Kernel memory leak detected:
unreferenced object 0xffff888849cdf480 (size 8):
comm "kworker/u8:3", pid 2086, jiffies 4297898756 (age 4269.856s)
hex dump (first 8 bytes):
30 00 cd 49 88 88 ff ff 0..I....
backtrace:
[<00000000acfc370b>] __kmalloc_track_caller+0x137/0x183
[<00000000a2724354>] kstrdup+0x2b/0x43
[<0000000082964f84>] xprt_rdma_format_addresses+0x114/0x17d [rpcrdma]
[<00000000dfa6ed00>] xprt_setup_rdma_bc+0xc0/0x10c [rpcrdma]
[<0000000073051a83>] xprt_create_transport+0x3f/0x1a0 [sunrpc]
[<0000000053531a8e>] rpc_create+0x118/0x1cd [sunrpc]
[<000000003a51b5f8>] setup_callback_client+0x1a5/0x27d [nfsd]
[<000000001bd410af>] nfsd4_process_cb_update.isra.7+0x16c/0x1ac [nfsd]
[<000000007f4bbd56>] nfsd4_run_cb_work+0x4c/0xbd [nfsd]
[<0000000055c5586b>] process_one_work+0x1b2/0x2fe
[<00000000b1e3e8ef>] worker_thread+0x1a6/0x25a
[<000000005205fb78>] kthread+0xf6/0xfb
[<000000006d2dc057>] ret_from_fork+0x3a/0x50
Introduce a call to xprt_rdma_free_addresses() similar to the way
that the TCP backchannel releases a transport's peer address
strings.
Fixes: 5d252f90a800 ("svcrdma: Add class for RDMA backwards direction transport")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
'maxlen' is the total size of the destination buffer. There is only one
caller and this value is 256.
When we compute the size already used and what we would like to add in
the buffer, the trailling NULL character is not taken into account.
However, this trailling character will be added by the 'strcat' once we
have checked that we have enough place.
So, there is a off-by-one issue and 1 byte of the stack could be
erroneously overwridden.
Take into account the trailling NULL, when checking if there is enough
place in the destination buffer.
While at it, also replace a 'sprintf' by a safer 'snprintf', check for
output truncation and avoid a superfluous 'strlen'.
Fixes: dc9a16e49dbba ("svc: Add /proc/sys/sunrpc/transport files")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
[ cel: very minor fix to documenting comment
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Change the rpcrdma_xprt_disconnect() function so that it no longer
waits for the DISCONNECTED event. This prevents blocking if the
remote is unresponsive.
In rpcrdma_xprt_disconnect(), the transport's rpcrdma_ep is
detached. Upon return from rpcrdma_xprt_disconnect(), the transport
(r_xprt) is ready immediately for a new connection.
The RDMA_CM_DEVICE_REMOVAL and RDMA_CM_DISCONNECTED events are now
handled almost identically.
However, because the lifetimes of rpcrdma_xprt structures and
rpcrdma_ep structures are now independent, creating an rpcrdma_ep
needs to take a module ref count. The ep now owns most of the
hardware resources for a transport.
Also, a kref is needed to ensure that rpcrdma_ep sticks around
long enough for the cm_event_handler to finish.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
rpcrdma_cm_event_handler() is always passed an @id pointer that is
valid. However, in a subsequent patch, we won't be able to extract
an r_xprt in every case. So instead of using the r_xprt's
presentation address strings, extract them from struct rdma_cm_id.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
I eventually want to allocate rpcrdma_ep separately from struct
rpcrdma_xprt so that on occasion there can be more than one ep per
xprt.
The new struct rpcrdma_ep will contain all the fields currently in
rpcrdma_ia and in rpcrdma_ep. This is all the device and CM settings
for the connection, in addition to per-connection settings
negotiated with the remote.
Take this opportunity to rename the existing ep fields from rep_* to
re_* to disambiguate these from struct rpcrdma_rep.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Completion errors after a disconnect often occur much sooner than a
CM_DISCONNECT event. Use this to try to detect connection loss more
quickly.
Note that other kernel ULPs do take care to disconnect explicitly
when a WR is flushed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Clean up:
The upper layer serializes calls to xprt_rdma_close, so there is no
need for an atomic bit operation, saving 8 bytes in rpcrdma_ia.
This enables merging rpcrdma_ia_remove directly into the disconnect
logic.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Move rdma_cm_id creation into rpcrdma_ep_create() so that it is now
responsible for allocating all per-connection hardware resources.
With this clean-up, all three arms of the switch statement in
rpcrdma_ep_connect are exactly the same now, thus the switch can be
removed.
Because device removal behaves a little differently than
disconnection, there is a little more work to be done before
rpcrdma_ep_destroy() can release the connection's rdma_cm_id. So
it is not quite symmetrical with rpcrdma_ep_create() yet.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Make a Protection Domain (PD) a per-connection resource rather than
a per-transport resource. In other words, when the connection
terminates, the PD is destroyed.
Thus there is one less HW resource that remains allocated to a
transport after a connection is closed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Clean up: Simplify the synopses of functions in the connect and
disconnect paths in preparation for combining the rpcrdma_ia and
struct rpcrdma_ep structures.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Clean up: Simplify the synopses of functions in the post_send path
by combining the struct rpcrdma_ia and struct rpcrdma_ep arguments.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Clean up: prepare for combining the rpcrdma_ia and rpcrdma_ep
structures. Take the opportunity to rename the function to be
consistent with the "subsystem _ object _ verb" naming scheme.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Refactor rpcrdma_ep_create(), rpcrdma_ep_disconnect(), and
rpcrdma_ep_destroy().
rpcrdma_ep_create will be invoked at connect time instead of at
transport set-up time. It will be responsible for allocating per-
connection resources. In this patch it allocates the CQs and
creates a QP. More to come.
rpcrdma_ep_destroy() is the inverse functionality that is
invoked at disconnect time. It will be responsible for releasing
the CQs and QP.
These changes should be safe to do because both connect and
disconnect is guaranteed to be serialized by the transport send
lock.
This takes us another step closer to resolving the address and route
only at connect time so that connection failover to another device
will work correctly.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Two changes:
- Show the number of SG entries that were mapped. This helps debug
DMA-related problems.
- Record the MR's resource ID instead of its memory address. This
groups each MR with its associated rdma-tool output, and reduces
needless exposure of memory addresses.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Ever since commit 2c94b8eca1a2 ("SUNRPC: Use au_rslack when computing
reply buffer size"). It changed how "req->rq_rcvsize" is calculated. It
used to use au_cslack value which was nice and large and changed it to
au_rslack value which turns out to be too small.
Since 5.1, v3 mount with sec=krb5p fails against an Ontap server
because client's receive buffer it too small.
For gss krb5p, we need to account for the mic token in the verifier,
and the wrap token in the wrap token.
RFC 4121 defines:
mic token
Octet no Name Description
--------------------------------------------------------------
0..1 TOK_ID Identification field. Tokens emitted by
GSS_GetMIC() contain the hex value 04 04
expressed in big-endian order in this
field.
2 Flags Attributes field, as described in section
4.2.2.
3..7 Filler Contains five octets of hex value FF.
8..15 SND_SEQ Sequence number field in clear text,
expressed in big-endian order.
16..last SGN_CKSUM Checksum of the "to-be-signed" data and
octet 0..15, as described in section 4.2.4.
that's 16bytes (GSS_KRB5_TOK_HDR_LEN) + chksum
wrap token
Octet no Name Description
--------------------------------------------------------------
0..1 TOK_ID Identification field. Tokens emitted by
GSS_Wrap() contain the hex value 05 04
expressed in big-endian order in this
field.
2 Flags Attributes field, as described in section
4.2.2.
3 Filler Contains the hex value FF.
4..5 EC Contains the "extra count" field, in big-
endian order as described in section 4.2.3.
6..7 RRC Contains the "right rotation count" in big-
endian order, as described in section
4.2.5.
8..15 SND_SEQ Sequence number field in clear text,
expressed in big-endian order.
16..last Data Encrypted data for Wrap tokens with
confidentiality, or plaintext data followed
by the checksum for Wrap tokens without
confidentiality, as described in section
4.2.4.
Also 16bytes of header (GSS_KRB5_TOK_HDR_LEN), encrypted data, and cksum
(other things like padding)
RFC 3961 defines known cksum sizes:
Checksum type sumtype checksum section or
value size reference
---------------------------------------------------------------------
CRC32 1 4 6.1.3
rsa-md4 2 16 6.1.2
rsa-md4-des 3 24 6.2.5
des-mac 4 16 6.2.7
des-mac-k 5 8 6.2.8
rsa-md4-des-k 6 16 6.2.6
rsa-md5 7 16 6.1.1
rsa-md5-des 8 24 6.2.4
rsa-md5-des3 9 24 ??
sha1 (unkeyed) 10 20 ??
hmac-sha1-des3-kd 12 20 6.3
hmac-sha1-des3 13 20 ??
sha1 (unkeyed) 14 20 ??
hmac-sha1-96-aes128 15 20 [KRB5-AES]
hmac-sha1-96-aes256 16 20 [KRB5-AES]
[reserved] 0x8003 ? [GSS-KRB5]
Linux kernel now mainly supports type 15,16 so max cksum size is 20bytes.
(GSS_KRB5_MAX_CKSUM_LEN)
Re-use already existing define of GSS_KRB5_MAX_SLACK_NEEDED that's used
for encoding the gss_wrap tokens (same tokens are used in reply).
Fixes: 2c94b8eca1a2 ("SUNRPC: Use au_rslack when computing reply buffer size")
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Add basic tracing for debugging the sunrpc cache events.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
If the cache entry never gets initialised, we want the garbage
collector to be able to evict it. Otherwise if the upcall daemon
fails to initialise the entry, we end up never expiring it.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
[ cel: resolved a merge conflict ]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
If the rpc.mountd daemon goes down, then that should not cause all
exports to start failing with ESTALE errors. Let's explicitly
distinguish between the cache upcall cases that need to time out,
and those that do not.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
xprt_sock_sendmsg uses the more efficient iov_iter-enabled kernel
socket API, and is a pre-requisite for server send-side support for
TLS.
Note that svc_process no longer needs to reserve a word for the
stream record marker, since the TCP transport now provides the
record marker automatically in a separate buffer.
The dprintk() in svc_send_common is also removed. It didn't seem
crucial for field troubleshooting. If more is needed there, a trace
point could be added in xprt_sock_sendmsg().
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Re-locate xs_sendpages() so that it can be shared with server code.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
On some platforms, DMA mapping part of a page is more costly than
copying bytes. Indeed, not involving the I/O MMU can help the
RPC/RDMA transport scale better for tiny I/Os across more RDMA
devices. This is because interaction with the I/O MMU is eliminated
for each of these small I/Os. Without the explicit unmapping, the
NIC no longer needs to do a costly internal TLB shoot down for
buffers that are just a handful of bytes.
Since pull-up is now a more a frequent operation, I've introduced a
trace point in the pull-up path. It can be used for debugging or
user-space tools that count pull-up frequency.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Performance optimization: Avoid syncing the transport buffer twice
when Reply buffer pull-up is necessary.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Same idea as the receive-side changes I did a while back: use
xdr_stream helpers rather than open-coding the XDR chunk list
encoders. This builds the Reply transport header from beginning to
end without backtracking.
As additional clean-ups, fill in documenting comments for the XDR
encoders and sprinkle some trace points in the new encoding
functions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Clean up. These are taken from the client-side RPC/RDMA transport
to a more global header file so they can be used elsewhere.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
These trace points are misnamed:
trace_svcrdma_encode_wseg
trace_svcrdma_encode_write
trace_svcrdma_encode_reply
trace_svcrdma_encode_rseg
trace_svcrdma_encode_read
trace_svcrdma_encode_pzr
Because they actually trace posting on the Send Queue. Let's rename
them so that I can add trace points in the chunk list encoders that
actually do trace chunk list encoding events.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Preparing for subsequent patches, no behavior change expected.
Pass the RPC Call's svc_rdma_recv_ctxt deeper into the sendto()
path. This enables passing more information about Requester-
provided Write and Reply chunks into those lower-level functions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Preparing for subsequent patches, no behavior change expected.
Pass the RPC Call's svc_rdma_recv_ctxt deeper into the sendto()
path. This enables passing more information about Requester-
provided Write and Reply chunks into those lower-level functions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Preparing for subsequent patches, no behavior change expected.
Pass the RPC Call's svc_rdma_recv_ctxt deeper into the sendto()
path. This enables passing more information about Requester-
provided Write and Reply chunks into the lower-level send
functions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Cache the locations of the Requester-provided Write list and Reply
chunk so that the Send path doesn't need to parse the Call header
again.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
The logic that checks incoming network headers has to be scrupulous.
De-duplicate: replace open-coded buffer overflow checks with the use
of xdr_stream helpers that are used most everywhere else XDR
decoding is done.
One minor change to the sanity checks: instead of checking the
length of individual segments, cap the length of the whole chunk
to be sure it can fit in the set of pages available in rq_pages.
This should be a better test of whether the server can handle the
chunks in each request.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Clean up. This trace point is no longer needed because the RDMA/core
CMA code has an equivalent trace point that was added by commit
ed999f820a6c ("RDMA/cma: Add trace points in RDMA Connection
Manager").
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
This class can be used to create trace points in either the RPC
client or RPC server paths. It simply displays the length of each
part of an xdr_buf, which is useful to determine that the transport
and XDR codecs are operating correctly.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
Introduce a helper function to compute the XDR pad size of a
variable-length XDR object.
Clean up: Replace open-coded calculation of XDR pad sizes.
I'm sure I haven't found every instance of this calculation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
This error path is almost never executed. Found by code inspection.
Fixes: 99722fe4d5a6 ("svcrdma: Persistently allocate and DMA-map Send buffers")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
svcrdma expects that the payload falls precisely into the xdr_buf
page vector. This does not seem to be the case for
nfsd4_encode_readv().
This code is called only when fops->splice_read is missing or when
RQ_SPLICE_OK is clear, so it's not a noticeable problem in many
common cases.
Add new transport method: ->xpo_read_payload so that when a READ
payload does not fit exactly in rq_res's page vector, the XDR
encoder can inform the RPC transport exactly where that payload is,
without the payload's XDR pad.
That way, when a Write chunk is present, the transport knows what
byte range in the Reply message is supposed to be matched with the
chunk.
Note that the Linux NFS server implementation of NFS/RDMA can
currently handle only one Write chunk per RPC-over-RDMA message.
This simplifies the implementation of this fix.
Fixes: b04209806384 ("nfsd4: allow exotic read compounds")
Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=198053
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
detail->hash_table[] is traversed using hlist_for_each_entry_rcu
outside an RCU read-side critical section but under the protection
of detail->hash_lock.
Hence, add corresponding lockdep expression to silence false-positive
warnings, and harden RCU lists.
Signed-off-by: Amol Grover <frextrite@gmail.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
|
|
By preventing compiler inlining of the integrity and privacy
helpers, stack utilization for the common case (authentication only)
goes way down.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Clean up: this function is no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
xdr_buf_read_mic() tries to find unused contiguous space in a
received xdr_buf in order to linearize the checksum for the call
to gss_verify_mic. However, the corner cases in this code are
numerous and we seem to keep missing them. I've just hit yet
another buffer overrun related to it.
This overrun is at the end of xdr_buf_read_mic():
1284 if (buf->tail[0].iov_len != 0)
1285 mic->data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1286 else
1287 mic->data = buf->head[0].iov_base + buf->head[0].iov_len;
1288 __read_bytes_from_xdr_buf(&subbuf, mic->data, mic->len);
1289 return 0;
This logic assumes the transport has set the length of the tail
based on the size of the received message. base + len is then
supposed to be off the end of the message but still within the
actual buffer.
In fact, the length of the tail is set by the upper layer when the
Call is encoded so that the end of the tail is actually the end of
the allocated buffer itself. This causes the logic above to set
mic->data to point past the end of the receive buffer.
The "mic->data = head" arm of this if statement is no less fragile.
As near as I can tell, this has been a problem forever. I'm not sure
that minimizing au_rslack recently changed this pathology much.
So instead, let's use a more straightforward approach: kmalloc a
separate buffer to linearize the checksum. This is similar to
how gss_validate() currently works.
Coming back to this code, I had some trouble understanding what
was going on. So I've cleaned up the variable naming and added
a few comments that point back to the XDR definition in RFC 2203
to help guide future spelunkers, including myself.
As an added clean up, the functionality that was in
xdr_buf_read_mic() is folded directly into gss_unwrap_resp_integ(),
as that is its only caller.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
The variable status is being initialized with a value that is never
read and it is being updated later with a new value. The initialization
is redundant and can be removed.
Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
If the RPC call is synchronous, assume the cred is already pinned
by the caller.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|