From b43a9990055958e70347c56f90ea2ae32c67334c Mon Sep 17 00:00:00 2001 From: Mike Kravetz Date: Fri, 28 Dec 2018 00:39:38 -0800 Subject: hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization While looking at BUGs associated with invalid huge page map counts, it was discovered and observed that a huge pte pointer could become 'invalid' and point to another task's page table. Consider the following: A task takes a page fault on a shared hugetlbfs file and calls huge_pte_alloc to get a ptep. Suppose the returned ptep points to a shared pmd. Now, another task truncates the hugetlbfs file. As part of truncation, it unmaps everyone who has the file mapped. If the range being truncated is covered by a shared pmd, huge_pmd_unshare will be called. For all but the last user of the shared pmd, huge_pmd_unshare will clear the pud pointing to the pmd. If the task in the middle of the page fault is not the last user, the ptep returned by huge_pte_alloc now points to another task's page table or worse. This leads to bad things such as incorrect page map/reference counts or invalid memory references. To fix, expand the use of i_mmap_rwsem as follows: - i_mmap_rwsem is held in read mode whenever huge_pmd_share is called. huge_pmd_share is only called via huge_pte_alloc, so callers of huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers of huge_pte_alloc continue to hold the semaphore until finished with the ptep. - i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is called. [mike.kravetz@oracle.com: add explicit check for mapping != null] Link: http://lkml.kernel.org/r/20181218223557.5202-2-mike.kravetz@oracle.com Fixes: 39dde65c9940 ("shared page table for hugetlb page") Signed-off-by: Mike Kravetz Acked-by: Kirill A. Shutemov Cc: Michal Hocko Cc: Hugh Dickins Cc: Naoya Horiguchi Cc: "Aneesh Kumar K . V" Cc: Andrea Arcangeli Cc: Davidlohr Bueso Cc: Prakash Sangappa Cc: Colin Ian King Cc: Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/hugetlb.c | 64 ++++++++++++++++++++++++++++++++++++++++------------- mm/memory-failure.c | 16 ++++++++++++-- mm/migrate.c | 13 ++++++++++- mm/rmap.c | 4 ++++ mm/userfaultfd.c | 11 +++++++-- 5 files changed, 88 insertions(+), 20 deletions(-) (limited to 'mm') diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 12000ba5c868..87fd3ab809c6 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -3238,6 +3238,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct page *ptepage; unsigned long addr; int cow; + struct address_space *mapping = vma->vm_file->f_mapping; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); struct mmu_notifier_range range; @@ -3249,13 +3250,23 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, mmu_notifier_range_init(&range, src, vma->vm_start, vma->vm_end); mmu_notifier_invalidate_range_start(&range); + } else { + /* + * For shared mappings i_mmap_rwsem must be held to call + * huge_pte_alloc, otherwise the returned ptep could go + * away if part of a shared pmd and another thread calls + * huge_pmd_unshare. + */ + i_mmap_lock_read(mapping); } for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { spinlock_t *src_ptl, *dst_ptl; + src_pte = huge_pte_offset(src, addr, sz); if (!src_pte) continue; + dst_pte = huge_pte_alloc(dst, addr, sz); if (!dst_pte) { ret = -ENOMEM; @@ -3326,6 +3337,8 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, if (cow) mmu_notifier_invalidate_range_end(&range); + else + i_mmap_unlock_read(mapping); return ret; } @@ -3771,14 +3784,18 @@ retry: }; /* - * hugetlb_fault_mutex must be dropped before - * handling userfault. Reacquire after handling - * fault to make calling code simpler. + * hugetlb_fault_mutex and i_mmap_rwsem must be + * dropped before handling userfault. Reacquire + * after handling fault to make calling code simpler. */ hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr); mutex_unlock(&hugetlb_fault_mutex_table[hash]); + i_mmap_unlock_read(mapping); + ret = handle_userfault(&vmf, VM_UFFD_MISSING); + + i_mmap_lock_read(mapping); mutex_lock(&hugetlb_fault_mutex_table[hash]); goto out; } @@ -3926,6 +3943,11 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); if (ptep) { + /* + * Since we hold no locks, ptep could be stale. That is + * OK as we are only making decisions based on content and + * not actually modifying content here. + */ entry = huge_ptep_get(ptep); if (unlikely(is_hugetlb_entry_migration(entry))) { migration_entry_wait_huge(vma, mm, ptep); @@ -3933,20 +3955,31 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) return VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); - } else { - ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); - if (!ptep) - return VM_FAULT_OOM; } + /* + * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold + * until finished with ptep. This prevents huge_pmd_unshare from + * being called elsewhere and making the ptep no longer valid. + * + * ptep could have already be assigned via huge_pte_offset. That + * is OK, as huge_pte_alloc will return the same value unless + * something changed. + */ mapping = vma->vm_file->f_mapping; - idx = vma_hugecache_offset(h, vma, haddr); + i_mmap_lock_read(mapping); + ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); + if (!ptep) { + i_mmap_unlock_read(mapping); + return VM_FAULT_OOM; + } /* * Serialize hugepage allocation and instantiation, so that we don't * get spurious allocation failures if two CPUs race to instantiate * the same page in the page cache. */ + idx = vma_hugecache_offset(h, vma, haddr); hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr); mutex_lock(&hugetlb_fault_mutex_table[hash]); @@ -4034,6 +4067,7 @@ out_ptl: } out_mutex: mutex_unlock(&hugetlb_fault_mutex_table[hash]); + i_mmap_unlock_read(mapping); /* * Generally it's safe to hold refcount during waiting page lock. But * here we just wait to defer the next page fault to avoid busy loop and @@ -4638,10 +4672,12 @@ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() * and returns the corresponding pte. While this is not necessary for the * !shared pmd case because we can allocate the pmd later as well, it makes the - * code much cleaner. pmd allocation is essential for the shared case because - * pud has to be populated inside the same i_mmap_rwsem section - otherwise - * racing tasks could either miss the sharing (see huge_pte_offset) or select a - * bad pmd for sharing. + * code much cleaner. + * + * This routine must be called with i_mmap_rwsem held in at least read mode. + * For hugetlbfs, this prevents removal of any page table entries associated + * with the address space. This is important as we are setting up sharing + * based on existing page table entries (mappings). */ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) { @@ -4658,7 +4694,6 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) if (!vma_shareable(vma, addr)) return (pte_t *)pmd_alloc(mm, pud, addr); - i_mmap_lock_write(mapping); vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { if (svma == vma) continue; @@ -4688,7 +4723,6 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) spin_unlock(ptl); out: pte = (pte_t *)pmd_alloc(mm, pud, addr); - i_mmap_unlock_write(mapping); return pte; } @@ -4699,7 +4733,7 @@ out: * indicated by page_count > 1, unmap is achieved by clearing pud and * decrementing the ref count. If count == 1, the pte page is not shared. * - * called with page table lock held. + * Called with page table lock held and i_mmap_rwsem held in write mode. * * returns: 1 successfully unmapped a shared pte page * 0 the underlying pte page is not shared, or it is the last user diff --git a/mm/memory-failure.c b/mm/memory-failure.c index 7c72f2a95785..6379fff1a5ff 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -966,7 +966,7 @@ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; struct address_space *mapping; LIST_HEAD(tokill); - bool unmap_success; + bool unmap_success = true; int kill = 1, forcekill; struct page *hpage = *hpagep; bool mlocked = PageMlocked(hpage); @@ -1028,7 +1028,19 @@ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, if (kill) collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); - unmap_success = try_to_unmap(hpage, ttu); + if (!PageHuge(hpage)) { + unmap_success = try_to_unmap(hpage, ttu); + } else if (mapping) { + /* + * For hugetlb pages, try_to_unmap could potentially call + * huge_pmd_unshare. Because of this, take semaphore in + * write mode here and set TTU_RMAP_LOCKED to indicate we + * have taken the lock at this higer level. + */ + i_mmap_lock_write(mapping); + unmap_success = try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED); + i_mmap_unlock_write(mapping); + } if (!unmap_success) pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", pfn, page_mapcount(hpage)); diff --git a/mm/migrate.c b/mm/migrate.c index 4389696fba0e..5d1839a9148d 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -1324,8 +1324,19 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, goto put_anon; if (page_mapped(hpage)) { + struct address_space *mapping = page_mapping(hpage); + + /* + * try_to_unmap could potentially call huge_pmd_unshare. + * Because of this, take semaphore in write mode here and + * set TTU_RMAP_LOCKED to let lower levels know we have + * taken the lock. + */ + i_mmap_lock_write(mapping); try_to_unmap(hpage, - TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); + TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| + TTU_RMAP_LOCKED); + i_mmap_unlock_write(mapping); page_was_mapped = 1; } diff --git a/mm/rmap.c b/mm/rmap.c index 68a1a5b869a5..21a26cf51114 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -25,6 +25,7 @@ * page->flags PG_locked (lock_page) * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) * mapping->i_mmap_rwsem + * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) * anon_vma->rwsem * mm->page_table_lock or pte_lock * zone_lru_lock (in mark_page_accessed, isolate_lru_page) @@ -1378,6 +1379,9 @@ static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, /* * If sharing is possible, start and end will be adjusted * accordingly. + * + * If called for a huge page, caller must hold i_mmap_rwsem + * in write mode as it is possible to call huge_pmd_unshare. */ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); diff --git a/mm/userfaultfd.c b/mm/userfaultfd.c index 458acda96f20..48368589f519 100644 --- a/mm/userfaultfd.c +++ b/mm/userfaultfd.c @@ -267,10 +267,14 @@ retry: VM_BUG_ON(dst_addr & ~huge_page_mask(h)); /* - * Serialize via hugetlb_fault_mutex + * Serialize via i_mmap_rwsem and hugetlb_fault_mutex. + * i_mmap_rwsem ensures the dst_pte remains valid even + * in the case of shared pmds. fault mutex prevents + * races with other faulting threads. */ - idx = linear_page_index(dst_vma, dst_addr); mapping = dst_vma->vm_file->f_mapping; + i_mmap_lock_read(mapping); + idx = linear_page_index(dst_vma, dst_addr); hash = hugetlb_fault_mutex_hash(h, dst_mm, dst_vma, mapping, idx, dst_addr); mutex_lock(&hugetlb_fault_mutex_table[hash]); @@ -279,6 +283,7 @@ retry: dst_pte = huge_pte_alloc(dst_mm, dst_addr, huge_page_size(h)); if (!dst_pte) { mutex_unlock(&hugetlb_fault_mutex_table[hash]); + i_mmap_unlock_read(mapping); goto out_unlock; } @@ -286,6 +291,7 @@ retry: dst_pteval = huge_ptep_get(dst_pte); if (!huge_pte_none(dst_pteval)) { mutex_unlock(&hugetlb_fault_mutex_table[hash]); + i_mmap_unlock_read(mapping); goto out_unlock; } @@ -293,6 +299,7 @@ retry: dst_addr, src_addr, &page); mutex_unlock(&hugetlb_fault_mutex_table[hash]); + i_mmap_unlock_read(mapping); vm_alloc_shared = vm_shared; cond_resched(); -- cgit v1.2.3