From e7950166e40271c025e0eec348cdf5c63ac734fa Mon Sep 17 00:00:00 2001 From: Thomas Richter Date: Tue, 10 Mar 2020 15:29:37 +0100 Subject: perf vendor events s390: Add new deflate counters for IBM z15 Add support for new deflate counters: - Counter 247: cycles CPU spent obtaining access to Deflate unit - Counter 252: cycles CPU is using Deflate unit - Counter 264: Increments by one for every DEFLATE CONVERSION CALL instruction executed. - Counter 265: Increments by one for every DEFLATE CONVERSION CALL instruction executed that ended in Condition Codes 0, 1 or 2. Also adjust the some crypto counter description to latest documentation. Signed-off-by: Thomas Richter Reviewed-by: Sumanth Korikkar Cc: Heiko Carstens Cc: Vasily Gorbik Link: http://lore.kernel.org/lkml/20200310142937.32045-1-tmricht@linux.ibm.com Signed-off-by: Arnaldo Carvalho de Melo --- .../perf/pmu-events/arch/s390/cf_z15/crypto6.json | 8 +++--- .../perf/pmu-events/arch/s390/cf_z15/extended.json | 30 +++++++++++++++++++++- 2 files changed, 33 insertions(+), 5 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/pmu-events/arch/s390/cf_z15/crypto6.json b/tools/perf/pmu-events/arch/s390/cf_z15/crypto6.json index 5e36bc2468d0..c998e4f1d1d2 100644 --- a/tools/perf/pmu-events/arch/s390/cf_z15/crypto6.json +++ b/tools/perf/pmu-events/arch/s390/cf_z15/crypto6.json @@ -4,27 +4,27 @@ "EventCode": "80", "EventName": "ECC_FUNCTION_COUNT", "BriefDescription": "ECC Function Count", - "PublicDescription": "Long ECC function Count" + "PublicDescription": "This counter counts the total number of the elliptic-curve cryptography (ECC) functions issued by the CPU." }, { "Unit": "CPU-M-CF", "EventCode": "81", "EventName": "ECC_CYCLES_COUNT", "BriefDescription": "ECC Cycles Count", - "PublicDescription": "Long ECC Function cycles count" + "PublicDescription": "This counter counts the total number of CPU cycles when the ECC coprocessor is busy performing the elliptic-curve cryptography (ECC) functions issued by the CPU." }, { "Unit": "CPU-M-CF", "EventCode": "82", "EventName": "ECC_BLOCKED_FUNCTION_COUNT", "BriefDescription": "Ecc Blocked Function Count", - "PublicDescription": "Long ECC blocked function count" + "PublicDescription": "This counter counts the total number of the elliptic-curve cryptography (ECC) functions that are issued by the CPU and are blocked because the ECC coprocessor is busy performing a function issued by another CPU." }, { "Unit": "CPU-M-CF", "EventCode": "83", "EventName": "ECC_BLOCKED_CYCLES_COUNT", "BriefDescription": "ECC Blocked Cycles Count", - "PublicDescription": "Long ECC blocked cycles count" + "PublicDescription": "This counter counts the total number of CPU cycles blocked for the elliptic-curve cryptography (ECC) functions issued by the CPU because the ECC coprocessor is busy performing a function issued by another CPU." }, ] diff --git a/tools/perf/pmu-events/arch/s390/cf_z15/extended.json b/tools/perf/pmu-events/arch/s390/cf_z15/extended.json index 89e070727e1b..2df2e231e9ee 100644 --- a/tools/perf/pmu-events/arch/s390/cf_z15/extended.json +++ b/tools/perf/pmu-events/arch/s390/cf_z15/extended.json @@ -25,7 +25,7 @@ "EventCode": "131", "EventName": "DTLB2_HPAGE_WRITES", "BriefDescription": "DTLB2 One-Megabyte Page Writes", - "PublicDescription": "A translation entry was written into the Combined Region and Segment Table Entry array in the Level-2 TLB for a one-megabyte page or a Last Host Translation was done" + "PublicDescription": "A translation entry was written into the Combined Region and Segment Table Entry array in the Level-2 TLB for a one-megabyte page" }, { "Unit": "CPU-M-CF", @@ -356,6 +356,34 @@ "BriefDescription": "Aborted transactions in constrained TX mode using special completion logic", "PublicDescription": "A transaction abort has occurred in a constrained transactional-execution mode and the CPU is using special logic to allow the transaction to complete" }, + { + "Unit": "CPU-M-CF", + "EventCode": "247", + "EventName": "DFLT_ACCESS", + "BriefDescription": "Cycles CPU spent obtaining access to Deflate unit", + "PublicDescription": "Cycles CPU spent obtaining access to Deflate unit" + }, + { + "Unit": "CPU-M-CF", + "EventCode": "252", + "EventName": "DFLT_CYCLES", + "BriefDescription": "Cycles CPU is using Deflate unit", + "PublicDescription": "Cycles CPU is using Deflate unit" + }, + { + "Unit": "CPU-M-CF", + "EventCode": "264", + "EventName": "DFLT_CC", + "BriefDescription": "Increments by one for every DEFLATE CONVERSION CALL instruction executed", + "PublicDescription": "Increments by one for every DEFLATE CONVERSION CALL instruction executed" + }, + { + "Unit": "CPU-M-CF", + "EventCode": "265", + "EventName": "DFLT_CCERROR", + "BriefDescription": "Increments by one for every DEFLATE CONVERSION CALL instruction executed that ended in Condition Codes 0, 1 or 2", + "PublicDescription": "Increments by one for every DEFLATE CONVERSION CALL instruction executed that ended in Condition Codes 0, 1 or 2" + }, { "Unit": "CPU-M-CF", "EventCode": "448", -- cgit v1.2.3 From 03fe02b113888576dc90c3e918d8e1a76b1ceb63 Mon Sep 17 00:00:00 2001 From: Kan Liang Date: Mon, 24 Feb 2020 13:59:20 -0800 Subject: perf jevents: Support metric constraint A new field "MetricConstraint" is introduced in JSON event list. Extend jevents to parse the field and save the value in metric_constraint. Signed-off-by: Kan Liang Acked-by: Jiri Olsa Cc: Andi Kleen Cc: Jin Yao Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Ravi Bangoria Link: http://lore.kernel.org/lkml/1582581564-184429-2-git-send-email-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/pmu-events/jevents.c | 19 +++++++++++++------ tools/perf/pmu-events/jevents.h | 2 +- tools/perf/pmu-events/pmu-events.h | 1 + 3 files changed, 15 insertions(+), 7 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/pmu-events/jevents.c b/tools/perf/pmu-events/jevents.c index 079c77b6a2fd..6d0f61ffee42 100644 --- a/tools/perf/pmu-events/jevents.c +++ b/tools/perf/pmu-events/jevents.c @@ -323,7 +323,7 @@ static int print_events_table_entry(void *data, char *name, char *event, char *pmu, char *unit, char *perpkg, char *metric_expr, char *metric_name, char *metric_group, - char *deprecated) + char *deprecated, char *metric_constraint) { struct perf_entry_data *pd = data; FILE *outfp = pd->outfp; @@ -357,6 +357,8 @@ static int print_events_table_entry(void *data, char *name, char *event, fprintf(outfp, "\t.metric_group = \"%s\",\n", metric_group); if (deprecated) fprintf(outfp, "\t.deprecated = \"%s\",\n", deprecated); + if (metric_constraint) + fprintf(outfp, "\t.metric_constraint = \"%s\",\n", metric_constraint); fprintf(outfp, "},\n"); return 0; @@ -375,6 +377,7 @@ struct event_struct { char *metric_name; char *metric_group; char *deprecated; + char *metric_constraint; }; #define ADD_EVENT_FIELD(field) do { if (field) { \ @@ -422,7 +425,7 @@ static int save_arch_std_events(void *data, char *name, char *event, char *desc, char *long_desc, char *pmu, char *unit, char *perpkg, char *metric_expr, char *metric_name, char *metric_group, - char *deprecated) + char *deprecated, char *metric_constraint) { struct event_struct *es; @@ -486,7 +489,7 @@ try_fixup(const char *fn, char *arch_std, char **event, char **desc, char **name, char **long_desc, char **pmu, char **filter, char **perpkg, char **unit, char **metric_expr, char **metric_name, char **metric_group, unsigned long long eventcode, - char **deprecated) + char **deprecated, char **metric_constraint) { /* try to find matching event from arch standard values */ struct event_struct *es; @@ -515,7 +518,7 @@ int json_events(const char *fn, char *pmu, char *unit, char *perpkg, char *metric_expr, char *metric_name, char *metric_group, - char *deprecated), + char *deprecated, char *metric_constraint), void *data) { int err; @@ -545,6 +548,7 @@ int json_events(const char *fn, char *metric_name = NULL; char *metric_group = NULL; char *deprecated = NULL; + char *metric_constraint = NULL; char *arch_std = NULL; unsigned long long eventcode = 0; struct msrmap *msr = NULL; @@ -629,6 +633,8 @@ int json_events(const char *fn, addfield(map, &metric_name, "", "", val); } else if (json_streq(map, field, "MetricGroup")) { addfield(map, &metric_group, "", "", val); + } else if (json_streq(map, field, "MetricConstraint")) { + addfield(map, &metric_constraint, "", "", val); } else if (json_streq(map, field, "MetricExpr")) { addfield(map, &metric_expr, "", "", val); for (s = metric_expr; *s; s++) @@ -670,13 +676,13 @@ int json_events(const char *fn, &long_desc, &pmu, &filter, &perpkg, &unit, &metric_expr, &metric_name, &metric_group, eventcode, - &deprecated); + &deprecated, &metric_constraint); if (err) goto free_strings; } err = func(data, name, real_event(name, event), desc, long_desc, pmu, unit, perpkg, metric_expr, metric_name, - metric_group, deprecated); + metric_group, deprecated, metric_constraint); free_strings: free(event); free(desc); @@ -691,6 +697,7 @@ free_strings: free(metric_expr); free(metric_name); free(metric_group); + free(metric_constraint); free(arch_std); if (err) diff --git a/tools/perf/pmu-events/jevents.h b/tools/perf/pmu-events/jevents.h index 5cda49a42143..2afc8304529e 100644 --- a/tools/perf/pmu-events/jevents.h +++ b/tools/perf/pmu-events/jevents.h @@ -8,7 +8,7 @@ int json_events(const char *fn, char *pmu, char *unit, char *perpkg, char *metric_expr, char *metric_name, char *metric_group, - char *deprecated), + char *deprecated, char *metric_constraint), void *data); char *get_cpu_str(void); diff --git a/tools/perf/pmu-events/pmu-events.h b/tools/perf/pmu-events/pmu-events.h index caeb577d36c9..53e76d5d5b37 100644 --- a/tools/perf/pmu-events/pmu-events.h +++ b/tools/perf/pmu-events/pmu-events.h @@ -18,6 +18,7 @@ struct pmu_event { const char *metric_name; const char *metric_group; const char *deprecated; + const char *metric_constraint; }; /* -- cgit v1.2.3 From f742634ab47f59160a85ddc502418556b21953c2 Mon Sep 17 00:00:00 2001 From: Kan Liang Date: Mon, 24 Feb 2020 13:59:21 -0800 Subject: perf metricgroup: Factor out metricgroup__add_metric_weak_group() Factor out metricgroup__add_metric_weak_group() which add metrics into a weak group. The change can improve code readability. Because following patch will introduce a function which add standalone metrics. Signed-off-by: Kan Liang Acked-by: Jiri Olsa Cc: Andi Kleen Cc: Jin Yao Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Ravi Bangoria Link: http://lore.kernel.org/lkml/1582581564-184429-3-git-send-email-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/metricgroup.c | 57 +++++++++++++++++++++++++------------------ 1 file changed, 33 insertions(+), 24 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/metricgroup.c b/tools/perf/util/metricgroup.c index 02aee946b6c1..1cd042cb262e 100644 --- a/tools/perf/util/metricgroup.c +++ b/tools/perf/util/metricgroup.c @@ -399,13 +399,42 @@ void metricgroup__print(bool metrics, bool metricgroups, char *filter, strlist__delete(metriclist); } +static void metricgroup__add_metric_weak_group(struct strbuf *events, + const char **ids, + int idnum) +{ + bool no_group = false; + int i; + + for (i = 0; i < idnum; i++) { + pr_debug("found event %s\n", ids[i]); + /* + * Duration time maps to a software event and can make + * groups not count. Always use it outside a + * group. + */ + if (!strcmp(ids[i], "duration_time")) { + if (i > 0) + strbuf_addf(events, "}:W,"); + strbuf_addf(events, "duration_time"); + no_group = true; + continue; + } + strbuf_addf(events, "%s%s", + i == 0 || no_group ? "{" : ",", + ids[i]); + no_group = false; + } + if (!no_group) + strbuf_addf(events, "}:W"); +} + static int metricgroup__add_metric(const char *metric, struct strbuf *events, struct list_head *group_list) { struct pmu_events_map *map = perf_pmu__find_map(NULL); struct pmu_event *pe; - int ret = -EINVAL; - int i, j; + int i, ret = -EINVAL; if (!map) return 0; @@ -422,7 +451,6 @@ static int metricgroup__add_metric(const char *metric, struct strbuf *events, const char **ids; int idnum; struct egroup *eg; - bool no_group = false; pr_debug("metric expr %s for %s\n", pe->metric_expr, pe->metric_name); @@ -431,27 +459,8 @@ static int metricgroup__add_metric(const char *metric, struct strbuf *events, continue; if (events->len > 0) strbuf_addf(events, ","); - for (j = 0; j < idnum; j++) { - pr_debug("found event %s\n", ids[j]); - /* - * Duration time maps to a software event and can make - * groups not count. Always use it outside a - * group. - */ - if (!strcmp(ids[j], "duration_time")) { - if (j > 0) - strbuf_addf(events, "}:W,"); - strbuf_addf(events, "duration_time"); - no_group = true; - continue; - } - strbuf_addf(events, "%s%s", - j == 0 || no_group ? "{" : ",", - ids[j]); - no_group = false; - } - if (!no_group) - strbuf_addf(events, "}:W"); + + metricgroup__add_metric_weak_group(events, ids, idnum); eg = malloc(sizeof(struct egroup)); if (!eg) { -- cgit v1.2.3 From 2a14c1bf017f48a17c8c0ba26a22625363e77cc7 Mon Sep 17 00:00:00 2001 From: Kan Liang Date: Mon, 24 Feb 2020 13:59:22 -0800 Subject: perf util: Factor out sysctl__nmi_watchdog_enabled() The NMI watchdog status is required for metric group constraint examination. Factor out sysctl__nmi_watchdog_enabled() to retrieve the NMI watchdog status. Users may count more than one metric group each time. If so, the NMI watchdog status may be retrieved several times. To reduce the overhead, cache the NMI watchdog status. Replace the NMI watchdog status checking in print_footer() by sysctl__nmi_watchdog_enabled(). Suggested-by: Andi Kleen Signed-off-by: Kan Liang Acked-by: Jiri Olsa Cc: Andi Kleen Cc: Jin Yao Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Ravi Bangoria Link: http://lore.kernel.org/lkml/1582581564-184429-4-git-send-email-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/stat-display.c | 6 ++---- tools/perf/util/util.c | 18 ++++++++++++++++++ tools/perf/util/util.h | 2 ++ 3 files changed, 22 insertions(+), 4 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/stat-display.c b/tools/perf/util/stat-display.c index d89cb0da90f8..76c6052b12e2 100644 --- a/tools/perf/util/stat-display.c +++ b/tools/perf/util/stat-display.c @@ -16,6 +16,7 @@ #include #include "cgroup.h" #include +#include "util.h" #define CNTR_NOT_SUPPORTED "" #define CNTR_NOT_COUNTED "" @@ -1097,7 +1098,6 @@ static void print_footer(struct perf_stat_config *config) { double avg = avg_stats(config->walltime_nsecs_stats) / NSEC_PER_SEC; FILE *output = config->output; - int n; if (!config->null_run) fprintf(output, "\n"); @@ -1131,9 +1131,7 @@ static void print_footer(struct perf_stat_config *config) } fprintf(output, "\n\n"); - if (config->print_free_counters_hint && - sysctl__read_int("kernel/nmi_watchdog", &n) >= 0 && - n > 0) + if (config->print_free_counters_hint && sysctl__nmi_watchdog_enabled()) fprintf(output, "Some events weren't counted. Try disabling the NMI watchdog:\n" " echo 0 > /proc/sys/kernel/nmi_watchdog\n" diff --git a/tools/perf/util/util.c b/tools/perf/util/util.c index 969ae560dad9..d707c9624dd9 100644 --- a/tools/perf/util/util.c +++ b/tools/perf/util/util.c @@ -55,6 +55,24 @@ int sysctl__max_stack(void) return sysctl_perf_event_max_stack; } +bool sysctl__nmi_watchdog_enabled(void) +{ + static bool cached; + static bool nmi_watchdog; + int value; + + if (cached) + return nmi_watchdog; + + if (sysctl__read_int("kernel/nmi_watchdog", &value) < 0) + return false; + + nmi_watchdog = (value > 0) ? true : false; + cached = true; + + return nmi_watchdog; +} + bool test_attr__enabled; bool perf_host = true; diff --git a/tools/perf/util/util.h b/tools/perf/util/util.h index 9969b8b46f7c..f486fdd3a538 100644 --- a/tools/perf/util/util.h +++ b/tools/perf/util/util.h @@ -29,6 +29,8 @@ size_t hex_width(u64 v); int sysctl__max_stack(void); +bool sysctl__nmi_watchdog_enabled(void); + int fetch_kernel_version(unsigned int *puint, char *str, size_t str_sz); #define KVER_VERSION(x) (((x) >> 16) & 0xff) -- cgit v1.2.3 From ab483d8bc8acb83f0103bc38ef8f2c27d98ffd1b Mon Sep 17 00:00:00 2001 From: Kan Liang Date: Mon, 24 Feb 2020 13:59:23 -0800 Subject: perf metricgroup: Support metric constraint Some metric groups have metric constraints. A metric group can be scheduled as a group only when some constraints are applied. For example, Page_Walks_Utilization has a metric constraint, "NO_NMI_WATCHDOG". When NMI watchdog is disabled, the metric group can be scheduled as a group. Otherwise, splitting the metric group into standalone metrics. Add a new function, metricgroup__has_constraint(), to check whether all constraints are applied. If not, splitting the metric group into standalone metrics. Currently, only one constraint, "NO_NMI_WATCHDOG", is checked. Print a warning for the metric group with the constraint, when NMI WATCHDOG is enabled. Signed-off-by: Kan Liang Acked-by: Jiri Olsa Cc: Andi Kleen Cc: Jin Yao Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Ravi Bangoria Link: http://lore.kernel.org/lkml/1582581564-184429-5-git-send-email-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/metricgroup.c | 54 ++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 53 insertions(+), 1 deletion(-) (limited to 'tools/perf') diff --git a/tools/perf/util/metricgroup.c b/tools/perf/util/metricgroup.c index 1cd042cb262e..c3a8c701609a 100644 --- a/tools/perf/util/metricgroup.c +++ b/tools/perf/util/metricgroup.c @@ -22,6 +22,8 @@ #include #include #include +#include +#include "util.h" struct metric_event *metricgroup__lookup(struct rblist *metric_events, struct evsel *evsel, @@ -429,6 +431,49 @@ static void metricgroup__add_metric_weak_group(struct strbuf *events, strbuf_addf(events, "}:W"); } +static void metricgroup__add_metric_non_group(struct strbuf *events, + const char **ids, + int idnum) +{ + int i; + + for (i = 0; i < idnum; i++) + strbuf_addf(events, ",%s", ids[i]); +} + +static void metricgroup___watchdog_constraint_hint(const char *name, bool foot) +{ + static bool violate_nmi_constraint; + + if (!foot) { + pr_warning("Splitting metric group %s into standalone metrics.\n", name); + violate_nmi_constraint = true; + return; + } + + if (!violate_nmi_constraint) + return; + + pr_warning("Try disabling the NMI watchdog to comply NO_NMI_WATCHDOG metric constraint:\n" + " echo 0 > /proc/sys/kernel/nmi_watchdog\n" + " perf stat ...\n" + " echo 1 > /proc/sys/kernel/nmi_watchdog\n"); +} + +static bool metricgroup__has_constraint(struct pmu_event *pe) +{ + if (!pe->metric_constraint) + return false; + + if (!strcmp(pe->metric_constraint, "NO_NMI_WATCHDOG") && + sysctl__nmi_watchdog_enabled()) { + metricgroup___watchdog_constraint_hint(pe->metric_name, false); + return true; + } + + return false; +} + static int metricgroup__add_metric(const char *metric, struct strbuf *events, struct list_head *group_list) { @@ -460,7 +505,10 @@ static int metricgroup__add_metric(const char *metric, struct strbuf *events, if (events->len > 0) strbuf_addf(events, ","); - metricgroup__add_metric_weak_group(events, ids, idnum); + if (metricgroup__has_constraint(pe)) + metricgroup__add_metric_non_group(events, ids, idnum); + else + metricgroup__add_metric_weak_group(events, ids, idnum); eg = malloc(sizeof(struct egroup)); if (!eg) { @@ -502,6 +550,10 @@ static int metricgroup__add_metric_list(const char *list, struct strbuf *events, } } free(nlist); + + if (!ret) + metricgroup___watchdog_constraint_hint(NULL, true); + return ret; } -- cgit v1.2.3 From b95fcd2c1c25bd14f55d5d6ab268b3ab00b8a774 Mon Sep 17 00:00:00 2001 From: Kan Liang Date: Mon, 24 Feb 2020 13:59:24 -0800 Subject: perf vendor events intel: Add NO_NMI_WATCHDOG metric constraint Add NO_NMI_WATCHDOG metric constraint to Page_Walks_Utilization for Sky Lake and Cascade Lake. Committer testing: On a Lenovo T480S, Intel(R) Core(TM) i7-8650U Kaby Lake, that looking at x86's mapfile.csv file is a: $ grep -w skylake tools/perf/pmu-events/arch/x86/mapfile.csv GenuineIntel-6-[4589]E,v24,skylake,core $ So uses the constraint added in this patch in this file: tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json Before: # perf stat -a -M Page_Walks_Utilization sleep 2 Performance counter stats for 'system wide': itlb_misses.walk_pending (0.00%) dtlb_load_misses.walk_pending (0.00%) dtlb_store_misses.walk_pending (0.00%) ept.walk_pending (0.00%) cycles (0.00%) 2.001750514 seconds time elapsed Some events weren't counted. Try disabling the NMI watchdog: echo 0 > /proc/sys/kernel/nmi_watchdog perf stat ... echo 1 > /proc/sys/kernel/nmi_watchdog The events in group usually have to be from the same PMU. Try reorganizing the group. # After: # perf stat -a -M Page_Walks_Utilization sleep 2 Splitting metric group Page_Walks_Utilization into standalone metrics. Try disabling the NMI watchdog to comply NO_NMI_WATCHDOG metric constraint: echo 0 > /proc/sys/kernel/nmi_watchdog perf stat ... echo 1 > /proc/sys/kernel/nmi_watchdog , Performance counter stats for 'system wide': 36,883,102 itlb_misses.walk_pending # 0.1 Page_Walks_Utilization (79.99%) 123,104,146 dtlb_load_misses.walk_pending (80.02%) 13,720,795 dtlb_store_misses.walk_pending (79.99%) 0 ept.walk_pending (79.99%) 1,519,948,400 cycles (80.01%) 2.002170780 seconds time elapsed # Before and after, if we disable the nmi_watchdog we get: # echo 0 > /proc/sys/kernel/nmi_watchdog # perf stat -a -M Page_Walks_Utilization sleep 2 Performance counter stats for 'system wide': 33,721,658 itlb_misses.walk_pending # 0.1 Page_Walks_Utilization 84,070,996 dtlb_load_misses.walk_pending 9,816,071 dtlb_store_misses.walk_pending 0 ept.walk_pending 704,920,899 cycles 2.002331670 seconds time elapsed # More information about the metric expressions: # perf stat -v -a -M Page_Walks_Utilization sleep 2 Using CPUID GenuineIntel-6-8E-A metric expr ( itlb_misses.walk_pending + dtlb_load_misses.walk_pending + dtlb_store_misses.walk_pending + ept.walk_pending ) / ( 2 * cycles ) for Page_Walks_Utilization found event itlb_misses.walk_pending found event dtlb_load_misses.walk_pending found event dtlb_store_misses.walk_pending found event ept.walk_pending found event cycles adding {itlb_misses.walk_pending,dtlb_load_misses.walk_pending,dtlb_store_misses.walk_pending,ept.walk_pending,cycles}:W -> cpu/umask=0x10,(null)=0x186a3,event=0x85/ -> cpu/umask=0x10,(null)=0x1e8483,event=0x8/ -> cpu/umask=0x10,(null)=0x1e8483,event=0x49/ -> cpu/umask=0x10,(null)=0x1e8483,event=0x4f/ itlb_misses.walk_pending: 8085772 16010162799 16010162799 dtlb_load_misses.walk_pending: 28134579 16010162799 16010162799 dtlb_store_misses.walk_pending: 7276535 16010162799 16010162799 ept.walk_pending: 2 16010162799 16010162799 cycles: 315140605 16010162799 16010162799 Performance counter stats for 'system wide': 8,085,772 itlb_misses.walk_pending # 0.1 Page_Walks_Utilization 28,134,579 dtlb_load_misses.walk_pending 7,276,535 dtlb_store_misses.walk_pending 2 ept.walk_pending 315,140,605 cycles 2.002333181 seconds time elapsed # Signed-off-by: Kan Liang Acked-by: Jiri Olsa Tested-by: Arnaldo Carvalho de Melo Cc: Andi Kleen Cc: Jin Yao Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Ravi Bangoria Link: http://lore.kernel.org/lkml/1582581564-184429-6-git-send-email-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json | 3 ++- tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json | 3 ++- tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json | 3 ++- 3 files changed, 6 insertions(+), 3 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json b/tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json index f94653229dd4..a728c6e5119b 100644 --- a/tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json +++ b/tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json @@ -215,7 +215,8 @@ "BriefDescription": "Utilization of the core's Page Walker(s) serving STLB misses triggered by instruction/Load/Store accesses", "MetricExpr": "( ITLB_MISSES.WALK_PENDING + DTLB_LOAD_MISSES.WALK_PENDING + DTLB_STORE_MISSES.WALK_PENDING + EPT.WALK_PENDING ) / ( 2 * cycles )", "MetricGroup": "TLB", - "MetricName": "Page_Walks_Utilization" + "MetricName": "Page_Walks_Utilization", + "MetricConstraint": "NO_NMI_WATCHDOG" }, { "BriefDescription": "Utilization of the core's Page Walker(s) serving STLB misses triggered by instruction/Load/Store accesses", diff --git a/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json b/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json index e7feb60f9fa9..f97e8316ad2f 100644 --- a/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json +++ b/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json @@ -215,7 +215,8 @@ "BriefDescription": "Utilization of the core's Page Walker(s) serving STLB misses triggered by instruction/Load/Store accesses", "MetricExpr": "( ITLB_MISSES.WALK_PENDING + DTLB_LOAD_MISSES.WALK_PENDING + DTLB_STORE_MISSES.WALK_PENDING + EPT.WALK_PENDING ) / ( 2 * cycles )", "MetricGroup": "TLB", - "MetricName": "Page_Walks_Utilization" + "MetricName": "Page_Walks_Utilization", + "MetricConstraint": "NO_NMI_WATCHDOG" }, { "BriefDescription": "Utilization of the core's Page Walker(s) serving STLB misses triggered by instruction/Load/Store accesses", diff --git a/tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json b/tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json index 21d7a0c2c2e8..35f5db1786f7 100644 --- a/tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json +++ b/tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json @@ -215,7 +215,8 @@ "BriefDescription": "Utilization of the core's Page Walker(s) serving STLB misses triggered by instruction/Load/Store accesses", "MetricExpr": "( ITLB_MISSES.WALK_PENDING + DTLB_LOAD_MISSES.WALK_PENDING + DTLB_STORE_MISSES.WALK_PENDING + EPT.WALK_PENDING ) / ( 2 * cycles )", "MetricGroup": "TLB", - "MetricName": "Page_Walks_Utilization" + "MetricName": "Page_Walks_Utilization", + "MetricConstraint": "NO_NMI_WATCHDOG" }, { "BriefDescription": "Utilization of the core's Page Walker(s) serving STLB misses triggered by instruction/Load/Store accesses", -- cgit v1.2.3 From b8fdcfb5a17f1d4fd503caef5c457005a765ecd7 Mon Sep 17 00:00:00 2001 From: disconnect3d Date: Mon, 9 Mar 2020 11:48:53 +0100 Subject: perf map: Fix off by one in strncpy() size argument This patch fixes an off-by-one error in strncpy size argument in tools/perf/util/map.c. The issue is that in: strncmp(filename, "/system/lib/", 11) the passed string literal: "/system/lib/" has 12 bytes (without the NULL byte) and the passed size argument is 11. As a result, the logic won't match the ending "/" byte and will pass filepaths that are stored in other directories e.g. "/system/libmalicious/bin" or just "/system/libmalicious". This functionality seems to be present only on Android. I assume the /system/ directory is only writable by the root user, so I don't think this bug has much (or any) security impact. Fixes: eca818369996 ("perf tools: Add automatic remapping of Android libraries") Signed-off-by: disconnect3d Cc: Alexander Shishkin Cc: Changbin Du Cc: Jiri Olsa Cc: John Keeping Cc: Mark Rutland Cc: Michael Lentine Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Song Liu Cc: Stephane Eranian Link: http://lore.kernel.org/lkml/20200309104855.3775-1-dominik.b.czarnota@gmail.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/map.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'tools/perf') diff --git a/tools/perf/util/map.c b/tools/perf/util/map.c index 95428511300d..b342f744b1fc 100644 --- a/tools/perf/util/map.c +++ b/tools/perf/util/map.c @@ -89,7 +89,7 @@ static inline bool replace_android_lib(const char *filename, char *newfilename) return true; } - if (!strncmp(filename, "/system/lib/", 11)) { + if (!strncmp(filename, "/system/lib/", 12)) { char *ndk, *app; const char *arch; size_t ndk_length; -- cgit v1.2.3 From bdadd647cbf7b6e7f5d5891bd4e711292793cf23 Mon Sep 17 00:00:00 2001 From: Arnaldo Carvalho de Melo Date: Mon, 9 Mar 2020 16:53:41 -0300 Subject: perf map: Use strstarts() to look for Android libraries And add the '/' to avoid looking at things like "/system/libsomething", when all we want to know if it is like "/system/lib/something", i.e. if it is in that system library dir. Using strstarts() avoids off-by-one errors like recently fixed in this file. Since this adds the '/' I separated this patch, another patch will make this consistent by removing other strncmp(str, prefix, manually calculated prefix length) usage. Reported-by: Dominik Czarnota Acked-by: Dominik Czarnota Cc: Adrian Hunter Cc: Jiri Olsa Cc: Namhyung Kim Link: Link: http://lore.kernel.org/lkml/CABEVAa0_q-uC0vrrqpkqRHy_9RLOSXOJxizMLm1n5faHRy2AeA@mail.gmail.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/map.c | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/map.c b/tools/perf/util/map.c index b342f744b1fc..53d96611e6a6 100644 --- a/tools/perf/util/map.c +++ b/tools/perf/util/map.c @@ -44,8 +44,8 @@ static inline int is_no_dso_memory(const char *filename) static inline int is_android_lib(const char *filename) { - return !strncmp(filename, "/data/app-lib", 13) || - !strncmp(filename, "/system/lib", 11); + return strstarts(filename, "/data/app-lib/") || + strstarts(filename, "/system/lib/"); } static inline bool replace_android_lib(const char *filename, char *newfilename) @@ -65,7 +65,7 @@ static inline bool replace_android_lib(const char *filename, char *newfilename) app_abi_length = strlen(app_abi); - if (!strncmp(filename, "/data/app-lib", 13)) { + if (strstarts(filename, "/data/app-lib/")) { char *apk_path; if (!app_abi_length) @@ -89,7 +89,7 @@ static inline bool replace_android_lib(const char *filename, char *newfilename) return true; } - if (!strncmp(filename, "/system/lib/", 12)) { + if (strstarts(filename, "/system/lib/")) { char *ndk, *app; const char *arch; size_t ndk_length; -- cgit v1.2.3 From d01751563caf0dec7be36f81de77cc0197b77e59 Mon Sep 17 00:00:00 2001 From: Leo Yan Date: Wed, 19 Feb 2020 10:18:07 +0800 Subject: perf cs-etm: Swap packets for instruction samples If use option '--itrace=iNNN' with Arm CoreSight trace data, perf tool fails inject instruction samples; the root cause is the packets are only swapped for branch samples and last branches but not for instruction samples, so the new coming packets cannot be properly handled for only synthesizing instruction samples. To fix this issue, this patch refactors the code with a new function cs_etm__packet_swap() which is used to swap packets and adds the condition for instruction samples. Signed-off-by: Leo Yan Reviewed-by: Mathieu Poirier Reviewed-by: Mike Leach Cc: Alexander Shishkin Cc: Jiri Olsa Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Robert Walker Cc: Suzuki Poulouse Cc: coresight ml Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20200219021811.20067-2-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/cs-etm.c | 39 +++++++++++++++++++-------------------- 1 file changed, 19 insertions(+), 20 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/cs-etm.c b/tools/perf/util/cs-etm.c index b3b3fe3ea345..294b09cfb034 100644 --- a/tools/perf/util/cs-etm.c +++ b/tools/perf/util/cs-etm.c @@ -363,6 +363,23 @@ struct cs_etm_packet_queue return NULL; } +static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm, + struct cs_etm_traceid_queue *tidq) +{ + struct cs_etm_packet *tmp; + + if (etm->sample_branches || etm->synth_opts.last_branch || + etm->sample_instructions) { + /* + * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for + * the next incoming packet. + */ + tmp = tidq->packet; + tidq->packet = tidq->prev_packet; + tidq->prev_packet = tmp; + } +} + static void cs_etm__packet_dump(const char *pkt_string) { const char *color = PERF_COLOR_BLUE; @@ -1342,7 +1359,6 @@ static int cs_etm__sample(struct cs_etm_queue *etmq, struct cs_etm_traceid_queue *tidq) { struct cs_etm_auxtrace *etm = etmq->etm; - struct cs_etm_packet *tmp; int ret; u8 trace_chan_id = tidq->trace_chan_id; u64 instrs_executed = tidq->packet->instr_count; @@ -1406,15 +1422,7 @@ static int cs_etm__sample(struct cs_etm_queue *etmq, } } - if (etm->sample_branches || etm->synth_opts.last_branch) { - /* - * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for - * the next incoming packet. - */ - tmp = tidq->packet; - tidq->packet = tidq->prev_packet; - tidq->prev_packet = tmp; - } + cs_etm__packet_swap(etm, tidq); return 0; } @@ -1443,7 +1451,6 @@ static int cs_etm__flush(struct cs_etm_queue *etmq, { int err = 0; struct cs_etm_auxtrace *etm = etmq->etm; - struct cs_etm_packet *tmp; /* Handle start tracing packet */ if (tidq->prev_packet->sample_type == CS_ETM_EMPTY) @@ -1478,15 +1485,7 @@ static int cs_etm__flush(struct cs_etm_queue *etmq, } swap_packet: - if (etm->sample_branches || etm->synth_opts.last_branch) { - /* - * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for - * the next incoming packet. - */ - tmp = tidq->packet; - tidq->packet = tidq->prev_packet; - tidq->prev_packet = tmp; - } + cs_etm__packet_swap(etm, tidq); return err; } -- cgit v1.2.3 From f1410028c762893daf353765112cf6797e4442fa Mon Sep 17 00:00:00 2001 From: Leo Yan Date: Wed, 19 Feb 2020 10:18:08 +0800 Subject: perf cs-etm: Continuously record last branch Every time synthesize instruction sample, the last branch recording will be reset. This is fine if the instruction period is big enough, for example if use the option '--itrace=i100000', the last branch array is reset for every sample with 100000 instructions per period; before generate the next instruction sample, there has the sufficient packets coming to fill the last branch array. On the other hand, if set a very small period, the packets will be significantly reduced between two continuous instruction samples, thus the last branch array is almost empty for new instruction sample by frequently resetting. To allow the last branches to work properly for any instruction periods, this patch avoids to reset the last branch for every instruction sample and only reset it when flush the trace data. The last branches will be reset only for two cases, one is for trace starting, another case is for discontinuous trace; other cases can keep recording last branches for continuous instruction samples. Signed-off-by: Leo Yan Reviewed-by: Mathieu Poirier Reviewed-by: Mike Leach Cc: Alexander Shishkin Cc: Jiri Olsa Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Robert Walker Cc: Suzuki Poulouse Cc: coresight ml Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20200219021811.20067-3-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/cs-etm.c | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/cs-etm.c b/tools/perf/util/cs-etm.c index 294b09cfb034..2c4156c5ed09 100644 --- a/tools/perf/util/cs-etm.c +++ b/tools/perf/util/cs-etm.c @@ -1170,9 +1170,6 @@ static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, "CS ETM Trace: failed to deliver instruction event, error %d\n", ret); - if (etm->synth_opts.last_branch) - cs_etm__reset_last_branch_rb(tidq); - return ret; } @@ -1487,6 +1484,10 @@ static int cs_etm__flush(struct cs_etm_queue *etmq, swap_packet: cs_etm__packet_swap(etm, tidq); + /* Reset last branches after flush the trace */ + if (etm->synth_opts.last_branch) + cs_etm__reset_last_branch_rb(tidq); + return err; } -- cgit v1.2.3 From c9f5baa136777b2c982f6f7a90c9da69a88be148 Mon Sep 17 00:00:00 2001 From: Leo Yan Date: Wed, 19 Feb 2020 10:18:09 +0800 Subject: perf cs-etm: Correct synthesizing instruction samples When 'etm->instructions_sample_period' is less than 'tidq->period_instructions', the function cs_etm__sample() cannot handle this case properly with its logic. Let's see below flow as an example: - If we set itrace option '--itrace=i4', then function cs_etm__sample() has variables with initialized values: tidq->period_instructions = 0 etm->instructions_sample_period = 4 - When the first packet is coming: packet->instr_count = 10; the number of instructions executed in this packet is 10, thus update period_instructions as below: tidq->period_instructions = 0 + 10 = 10 instrs_over = 10 - 4 = 6 offset = 10 - 6 - 1 = 3 tidq->period_instructions = instrs_over = 6 - When the second packet is coming: packet->instr_count = 10; in the second pass, assume 10 instructions in the trace sample again: tidq->period_instructions = 6 + 10 = 16 instrs_over = 16 - 4 = 12 offset = 10 - 12 - 1 = -3 -> the negative value tidq->period_instructions = instrs_over = 12 So after handle these two packets, there have below issues: The first issue is that cs_etm__instr_addr() returns the address within the current trace sample of the instruction related to offset, so the offset is supposed to be always unsigned value. But in fact, function cs_etm__sample() might calculate a negative offset value (in handling the second packet, the offset is -3) and pass to cs_etm__instr_addr() with u64 type with a big positive integer. The second issue is it only synthesizes 2 samples for sample period = 4. In theory, every packet has 10 instructions so the two packets have total 20 instructions, 20 instructions should generate 5 samples (4 x 5 = 20). This is because cs_etm__sample() only calls once cs_etm__synth_instruction_sample() to generate instruction sample per range packet. This patch fixes the logic in function cs_etm__sample(); the basic idea for handling coming packet is: - To synthesize the first instruction sample, it combines the left instructions from the previous packet and the head of the new packet; then generate continuous samples with sample period; - At the tail of the new packet, if it has the rest instructions, these instructions will be left for the sequential sample. Suggested-by: Mike Leach Signed-off-by: Leo Yan Reviewed-by: Mathieu Poirier Reviewed-by: Mike Leach Cc: Alexander Shishkin Cc: Jiri Olsa Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Robert Walker Cc: Suzuki Poulouse Cc: coresight ml Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20200219021811.20067-4-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/cs-etm.c | 87 ++++++++++++++++++++++++++++++++++++++---------- 1 file changed, 70 insertions(+), 17 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/cs-etm.c b/tools/perf/util/cs-etm.c index 2c4156c5ed09..1ddcc67e13dd 100644 --- a/tools/perf/util/cs-etm.c +++ b/tools/perf/util/cs-etm.c @@ -1358,9 +1358,12 @@ static int cs_etm__sample(struct cs_etm_queue *etmq, struct cs_etm_auxtrace *etm = etmq->etm; int ret; u8 trace_chan_id = tidq->trace_chan_id; - u64 instrs_executed = tidq->packet->instr_count; + u64 instrs_prev; - tidq->period_instructions += instrs_executed; + /* Get instructions remainder from previous packet */ + instrs_prev = tidq->period_instructions; + + tidq->period_instructions += tidq->packet->instr_count; /* * Record a branch when the last instruction in @@ -1378,26 +1381,76 @@ static int cs_etm__sample(struct cs_etm_queue *etmq, * TODO: allow period to be defined in cycles and clock time */ - /* Get number of instructions executed after the sample point */ - u64 instrs_over = tidq->period_instructions - - etm->instructions_sample_period; + /* + * Below diagram demonstrates the instruction samples + * generation flows: + * + * Instrs Instrs Instrs Instrs + * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3) + * | | | | + * V V V V + * -------------------------------------------------- + * ^ ^ + * | | + * Period Period + * instructions(Pi) instructions(Pi') + * + * | | + * \---------------- -----------------/ + * V + * tidq->packet->instr_count + * + * Instrs Sample(n...) are the synthesised samples occurring + * every etm->instructions_sample_period instructions - as + * defined on the perf command line. Sample(n) is being the + * last sample before the current etm packet, n+1 to n+3 + * samples are generated from the current etm packet. + * + * tidq->packet->instr_count represents the number of + * instructions in the current etm packet. + * + * Period instructions (Pi) contains the the number of + * instructions executed after the sample point(n) from the + * previous etm packet. This will always be less than + * etm->instructions_sample_period. + * + * When generate new samples, it combines with two parts + * instructions, one is the tail of the old packet and another + * is the head of the new coming packet, to generate + * sample(n+1); sample(n+2) and sample(n+3) consume the + * instructions with sample period. After sample(n+3), the rest + * instructions will be used by later packet and it is assigned + * to tidq->period_instructions for next round calculation. + */ /* - * Calculate the address of the sampled instruction (-1 as - * sample is reported as though instruction has just been - * executed, but PC has not advanced to next instruction) + * Get the initial offset into the current packet instructions; + * entry conditions ensure that instrs_prev is less than + * etm->instructions_sample_period. */ - u64 offset = (instrs_executed - instrs_over - 1); - u64 addr = cs_etm__instr_addr(etmq, trace_chan_id, - tidq->packet, offset); + u64 offset = etm->instructions_sample_period - instrs_prev; + u64 addr; - ret = cs_etm__synth_instruction_sample( - etmq, tidq, addr, etm->instructions_sample_period); - if (ret) - return ret; + while (tidq->period_instructions >= + etm->instructions_sample_period) { + /* + * Calculate the address of the sampled instruction (-1 + * as sample is reported as though instruction has just + * been executed, but PC has not advanced to next + * instruction) + */ + addr = cs_etm__instr_addr(etmq, trace_chan_id, + tidq->packet, offset - 1); + ret = cs_etm__synth_instruction_sample( + etmq, tidq, addr, + etm->instructions_sample_period); + if (ret) + return ret; - /* Carry remaining instructions into next sample period */ - tidq->period_instructions = instrs_over; + offset += etm->instructions_sample_period; + tidq->period_instructions -= + etm->instructions_sample_period; + } } if (etm->sample_branches) { -- cgit v1.2.3 From 695378b567df1fe6631c6684fcc9eeb4257df70f Mon Sep 17 00:00:00 2001 From: Leo Yan Date: Wed, 19 Feb 2020 10:18:10 +0800 Subject: perf cs-etm: Optimize copying last branches If an instruction range packet can generate multiple instruction samples, these samples share the same last branches; it's not necessary to copy the same last branches repeatedly for these samples within the same packet. This patch moves out the last branches copying from function cs_etm__synth_instruction_sample(), and execute it prior to generating instruction samples. Signed-off-by: Leo Yan Reviewed-by: Mathieu Poirier Reviewed-by: Mike Leach Cc: Alexander Shishkin Cc: Jiri Olsa Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Robert Walker Cc: Suzuki Poulouse Cc: coresight ml Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20200219021811.20067-5-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/cs-etm.c | 22 +++++++++++++++++----- 1 file changed, 17 insertions(+), 5 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/cs-etm.c b/tools/perf/util/cs-etm.c index 1ddcc67e13dd..87d9943177bc 100644 --- a/tools/perf/util/cs-etm.c +++ b/tools/perf/util/cs-etm.c @@ -1151,10 +1151,8 @@ static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq, cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample); - if (etm->synth_opts.last_branch) { - cs_etm__copy_last_branch_rb(etmq, tidq); + if (etm->synth_opts.last_branch) sample.branch_stack = tidq->last_branch; - } if (etm->synth_opts.inject) { ret = cs_etm__inject_event(event, &sample, @@ -1431,6 +1429,10 @@ static int cs_etm__sample(struct cs_etm_queue *etmq, u64 offset = etm->instructions_sample_period - instrs_prev; u64 addr; + /* Prepare last branches for instruction sample */ + if (etm->synth_opts.last_branch) + cs_etm__copy_last_branch_rb(etmq, tidq); + while (tidq->period_instructions >= etm->instructions_sample_period) { /* @@ -1508,6 +1510,11 @@ static int cs_etm__flush(struct cs_etm_queue *etmq, if (etmq->etm->synth_opts.last_branch && tidq->prev_packet->sample_type == CS_ETM_RANGE) { + u64 addr; + + /* Prepare last branches for instruction sample */ + cs_etm__copy_last_branch_rb(etmq, tidq); + /* * Generate a last branch event for the branches left in the * circular buffer at the end of the trace. @@ -1515,7 +1522,7 @@ static int cs_etm__flush(struct cs_etm_queue *etmq, * Use the address of the end of the last reported execution * range */ - u64 addr = cs_etm__last_executed_instr(tidq->prev_packet); + addr = cs_etm__last_executed_instr(tidq->prev_packet); err = cs_etm__synth_instruction_sample( etmq, tidq, addr, @@ -1560,11 +1567,16 @@ static int cs_etm__end_block(struct cs_etm_queue *etmq, */ if (etmq->etm->synth_opts.last_branch && tidq->prev_packet->sample_type == CS_ETM_RANGE) { + u64 addr; + + /* Prepare last branches for instruction sample */ + cs_etm__copy_last_branch_rb(etmq, tidq); + /* * Use the address of the end of the last reported execution * range. */ - u64 addr = cs_etm__last_executed_instr(tidq->prev_packet); + addr = cs_etm__last_executed_instr(tidq->prev_packet); err = cs_etm__synth_instruction_sample( etmq, tidq, addr, -- cgit v1.2.3 From bc010dd657ee0309276c88ab828b9ad156f75b31 Mon Sep 17 00:00:00 2001 From: Leo Yan Date: Wed, 19 Feb 2020 10:18:11 +0800 Subject: perf cs-etm: Fix unsigned variable comparison to zero The variable 'offset' in function cs_etm__sample() is u64 type, it's not appropriate to check it with 'while (offset > 0)'; this patch changes to 'while (offset)'. Signed-off-by: Leo Yan Reviewed-by: Mathieu Poirier Reviewed-by: Mike Leach Cc: Alexander Shishkin Cc: Jiri Olsa Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Robert Walker Cc: Suzuki Poulouse Cc: coresight ml Cc: linux-arm-kernel@lists.infradead.org Link: http://lore.kernel.org/lkml/20200219021811.20067-6-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/cs-etm.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'tools/perf') diff --git a/tools/perf/util/cs-etm.c b/tools/perf/util/cs-etm.c index 87d9943177bc..62d2f9b9ce1b 100644 --- a/tools/perf/util/cs-etm.c +++ b/tools/perf/util/cs-etm.c @@ -962,7 +962,7 @@ static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq, if (packet->isa == CS_ETM_ISA_T32) { u64 addr = packet->start_addr; - while (offset > 0) { + while (offset) { addr += cs_etm__t32_instr_size(etmq, trace_chan_id, addr); offset--; -- cgit v1.2.3 From 0c2d041232411c8124136c9497c0e352dcf18baa Mon Sep 17 00:00:00 2001 From: Ian Rogers Date: Tue, 10 Mar 2020 22:21:10 -0700 Subject: perf doc: Set man page date to last git commit Currently the man page dates reflect the date the man pages were built. This patch adjusts the date so that the date is when then man page last had a commit against it. The date is generated using 'git log'. Committer testing: $ git log -1 --pretty="format:%cd" --date=short tools/perf/Documentation/perf-top.txt 2020-01-14 Before: rm -rf /tmp/build/perf mkdir -p /tmp/build/perf make -C tools/perf O=/tmp/build/perf/ install $ date Wed 11 Mar 2020 10:21:19 AM -03 $ man perf-top | tail -1 perf 03/11/2020 PERF-TOP(1) $ After: rm -rf /tmp/build/perf mkdir -p /tmp/build/perf make -C tools/perf O=/tmp/build/perf/ install $ date $ date Wed 11 Mar 2020 10:24:06 AM -03 $ man perf-top | tail -1 perf 2020-01-14 PERF-TOP(1) $ Signed-off-by: Ian Rogers Tested-by: Arnaldo Carvalho de Melo Cc: Alexander Shishkin Cc: Greg Kroah-Hartman Cc: Jiri Olsa Cc: Mark Rutland Cc: Masanari Iida Cc: Mukesh Ojha Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Stephane Eranian Cc: Thomas Gleixner Link: http://lore.kernel.org/lkml/20200311052110.23132-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/Documentation/Makefile | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'tools/perf') diff --git a/tools/perf/Documentation/Makefile b/tools/perf/Documentation/Makefile index adc5a7e44b98..31824d5269cc 100644 --- a/tools/perf/Documentation/Makefile +++ b/tools/perf/Documentation/Makefile @@ -295,7 +295,10 @@ $(OUTPUT)%.1 $(OUTPUT)%.5 $(OUTPUT)%.7 : $(OUTPUT)%.xml $(OUTPUT)%.xml : %.txt $(QUIET_ASCIIDOC)$(RM) $@+ $@ && \ $(ASCIIDOC) -b docbook -d manpage \ - $(ASCIIDOC_EXTRA) -aperf_version=$(PERF_VERSION) -o $@+ $< && \ + $(ASCIIDOC_EXTRA) -aperf_version=$(PERF_VERSION) \ + -aperf_date=$(shell git log -1 --pretty="format:%cd" \ + --date=short $<) \ + -o $@+ $< && \ mv $@+ $@ XSLT = docbook.xsl -- cgit v1.2.3 From 97256d1a2a62390077bc72009628af5be44fd8a9 Mon Sep 17 00:00:00 2001 From: Adrian Hunter Date: Wed, 11 Mar 2020 14:20:32 +0200 Subject: perf intel-pt: Rename intel-pt.txt and put it in man page format Make the Intel PT documentation into a man page. Signed-off-by: Adrian Hunter Tested-by: Arnaldo Carvalho de Melo Cc: Andi Kleen Cc: Jiri Olsa Link: http://lore.kernel.org/lkml/20200311122034.3697-2-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/Documentation/intel-pt.txt | 991 --------------------------- tools/perf/Documentation/perf-intel-pt.txt | 1000 ++++++++++++++++++++++++++++ 2 files changed, 1000 insertions(+), 991 deletions(-) delete mode 100644 tools/perf/Documentation/intel-pt.txt create mode 100644 tools/perf/Documentation/perf-intel-pt.txt (limited to 'tools/perf') diff --git a/tools/perf/Documentation/intel-pt.txt b/tools/perf/Documentation/intel-pt.txt deleted file mode 100644 index 2cf2d9e9d0da..000000000000 --- a/tools/perf/Documentation/intel-pt.txt +++ /dev/null @@ -1,991 +0,0 @@ -Intel Processor Trace -===================== - -Overview -======== - -Intel Processor Trace (Intel PT) is an extension of Intel Architecture that -collects information about software execution such as control flow, execution -modes and timings and formats it into highly compressed binary packets. -Technical details are documented in the Intel 64 and IA-32 Architectures -Software Developer Manuals, Chapter 36 Intel Processor Trace. - -Intel PT is first supported in Intel Core M and 5th generation Intel Core -processors that are based on the Intel micro-architecture code name Broadwell. - -Trace data is collected by 'perf record' and stored within the perf.data file. -See below for options to 'perf record'. - -Trace data must be 'decoded' which involves walking the object code and matching -the trace data packets. For example a TNT packet only tells whether a -conditional branch was taken or not taken, so to make use of that packet the -decoder must know precisely which instruction was being executed. - -Decoding is done on-the-fly. The decoder outputs samples in the same format as -samples output by perf hardware events, for example as though the "instructions" -or "branches" events had been recorded. Presently 3 tools support this: -'perf script', 'perf report' and 'perf inject'. See below for more information -on using those tools. - -The main distinguishing feature of Intel PT is that the decoder can determine -the exact flow of software execution. Intel PT can be used to understand why -and how did software get to a certain point, or behave a certain way. The -software does not have to be recompiled, so Intel PT works with debug or release -builds, however the executed images are needed - which makes use in JIT-compiled -environments, or with self-modified code, a challenge. Also symbols need to be -provided to make sense of addresses. - -A limitation of Intel PT is that it produces huge amounts of trace data -(hundreds of megabytes per second per core) which takes a long time to decode, -for example two or three orders of magnitude longer than it took to collect. -Another limitation is the performance impact of tracing, something that will -vary depending on the use-case and architecture. - - -Quickstart -========== - -It is important to start small. That is because it is easy to capture vastly -more data than can possibly be processed. - -The simplest thing to do with Intel PT is userspace profiling of small programs. -Data is captured with 'perf record' e.g. to trace 'ls' userspace-only: - - perf record -e intel_pt//u ls - -And profiled with 'perf report' e.g. - - perf report - -To also trace kernel space presents a problem, namely kernel self-modifying -code. A fairly good kernel image is available in /proc/kcore but to get an -accurate image a copy of /proc/kcore needs to be made under the same conditions -as the data capture. A script perf-with-kcore can do that, but beware that the -script makes use of 'sudo' to copy /proc/kcore. If you have perf installed -locally from the source tree you can do: - - ~/libexec/perf-core/perf-with-kcore record pt_ls -e intel_pt// -- ls - -which will create a directory named 'pt_ls' and put the perf.data file and -copies of /proc/kcore, /proc/kallsyms and /proc/modules into it. Then to use -'perf report' becomes: - - ~/libexec/perf-core/perf-with-kcore report pt_ls - -Because samples are synthesized after-the-fact, the sampling period can be -selected for reporting. e.g. sample every microsecond - - ~/libexec/perf-core/perf-with-kcore report pt_ls --itrace=i1usge - -See the sections below for more information about the --itrace option. - -Beware the smaller the period, the more samples that are produced, and the -longer it takes to process them. - -Also note that the coarseness of Intel PT timing information will start to -distort the statistical value of the sampling as the sampling period becomes -smaller. - -To represent software control flow, "branches" samples are produced. By default -a branch sample is synthesized for every single branch. To get an idea what -data is available you can use the 'perf script' tool with all itrace sampling -options, which will list all the samples. - - perf record -e intel_pt//u ls - perf script --itrace=ibxwpe - -An interesting field that is not printed by default is 'flags' which can be -displayed as follows: - - perf script --itrace=ibxwpe -F+flags - -The flags are "bcrosyiABEx" which stand for branch, call, return, conditional, -system, asynchronous, interrupt, transaction abort, trace begin, trace end, and -in transaction, respectively. - -Another interesting field that is not printed by default is 'ipc' which can be -displayed as follows: - - perf script --itrace=be -F+ipc - -There are two ways that instructions-per-cycle (IPC) can be calculated depending -on the recording. - -If the 'cyc' config term (see config terms section below) was used, then IPC is -calculated using the cycle count from CYC packets, otherwise MTC packets are -used - refer to the 'mtc' config term. When MTC is used, however, the values -are less accurate because the timing is less accurate. - -Because Intel PT does not update the cycle count on every branch or instruction, -the values will often be zero. When there are values, they will be the number -of instructions and number of cycles since the last update, and thus represent -the average IPC since the last IPC for that event type. Note IPC for "branches" -events is calculated separately from IPC for "instructions" events. - -Also note that the IPC instruction count may or may not include the current -instruction. If the cycle count is associated with an asynchronous branch -(e.g. page fault or interrupt), then the instruction count does not include the -current instruction, otherwise it does. That is consistent with whether or not -that instruction has retired when the cycle count is updated. - -Another note, in the case of "branches" events, non-taken branches are not -presently sampled, so IPC values for them do not appear e.g. a CYC packet with a -TNT packet that starts with a non-taken branch. To see every possible IPC -value, "instructions" events can be used e.g. --itrace=i0ns - -While it is possible to create scripts to analyze the data, an alternative -approach is available to export the data to a sqlite or postgresql database. -Refer to script export-to-sqlite.py or export-to-postgresql.py for more details, -and to script exported-sql-viewer.py for an example of using the database. - -There is also script intel-pt-events.py which provides an example of how to -unpack the raw data for power events and PTWRITE. - -As mentioned above, it is easy to capture too much data. One way to limit the -data captured is to use 'snapshot' mode which is explained further below. -Refer to 'new snapshot option' and 'Intel PT modes of operation' further below. - -Another problem that will be experienced is decoder errors. They can be caused -by inability to access the executed image, self-modified or JIT-ed code, or the -inability to match side-band information (such as context switches and mmaps) -which results in the decoder not knowing what code was executed. - -There is also the problem of perf not being able to copy the data fast enough, -resulting in data lost because the buffer was full. See 'Buffer handling' below -for more details. - - -perf record -=========== - -new event ---------- - -The Intel PT kernel driver creates a new PMU for Intel PT. PMU events are -selected by providing the PMU name followed by the "config" separated by slashes. -An enhancement has been made to allow default "config" e.g. the option - - -e intel_pt// - -will use a default config value. Currently that is the same as - - -e intel_pt/tsc,noretcomp=0/ - -which is the same as - - -e intel_pt/tsc=1,noretcomp=0/ - -Note there are now new config terms - see section 'config terms' further below. - -The config terms are listed in /sys/devices/intel_pt/format. They are bit -fields within the config member of the struct perf_event_attr which is -passed to the kernel by the perf_event_open system call. They correspond to bit -fields in the IA32_RTIT_CTL MSR. Here is a list of them and their definitions: - - $ grep -H . /sys/bus/event_source/devices/intel_pt/format/* - /sys/bus/event_source/devices/intel_pt/format/cyc:config:1 - /sys/bus/event_source/devices/intel_pt/format/cyc_thresh:config:19-22 - /sys/bus/event_source/devices/intel_pt/format/mtc:config:9 - /sys/bus/event_source/devices/intel_pt/format/mtc_period:config:14-17 - /sys/bus/event_source/devices/intel_pt/format/noretcomp:config:11 - /sys/bus/event_source/devices/intel_pt/format/psb_period:config:24-27 - /sys/bus/event_source/devices/intel_pt/format/tsc:config:10 - -Note that the default config must be overridden for each term i.e. - - -e intel_pt/noretcomp=0/ - -is the same as: - - -e intel_pt/tsc=1,noretcomp=0/ - -So, to disable TSC packets use: - - -e intel_pt/tsc=0/ - -It is also possible to specify the config value explicitly: - - -e intel_pt/config=0x400/ - -Note that, as with all events, the event is suffixed with event modifiers: - - u userspace - k kernel - h hypervisor - G guest - H host - p precise ip - -'h', 'G' and 'H' are for virtualization which is not supported by Intel PT. -'p' is also not relevant to Intel PT. So only options 'u' and 'k' are -meaningful for Intel PT. - -perf_event_attr is displayed if the -vv option is used e.g. - - ------------------------------------------------------------ - perf_event_attr: - type 6 - size 112 - config 0x400 - { sample_period, sample_freq } 1 - sample_type IP|TID|TIME|CPU|IDENTIFIER - read_format ID - disabled 1 - inherit 1 - exclude_kernel 1 - exclude_hv 1 - enable_on_exec 1 - sample_id_all 1 - ------------------------------------------------------------ - sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 - ------------------------------------------------------------ - - -config terms ------------- - -The June 2015 version of Intel 64 and IA-32 Architectures Software Developer -Manuals, Chapter 36 Intel Processor Trace, defined new Intel PT features. -Some of the features are reflect in new config terms. All the config terms are -described below. - -tsc Always supported. Produces TSC timestamp packets to provide - timing information. In some cases it is possible to decode - without timing information, for example a per-thread context - that does not overlap executable memory maps. - - The default config selects tsc (i.e. tsc=1). - -noretcomp Always supported. Disables "return compression" so a TIP packet - is produced when a function returns. Causes more packets to be - produced but might make decoding more reliable. - - The default config does not select noretcomp (i.e. noretcomp=0). - -psb_period Allows the frequency of PSB packets to be specified. - - The PSB packet is a synchronization packet that provides a - starting point for decoding or recovery from errors. - - Support for psb_period is indicated by: - - /sys/bus/event_source/devices/intel_pt/caps/psb_cyc - - which contains "1" if the feature is supported and "0" - otherwise. - - Valid values are given by: - - /sys/bus/event_source/devices/intel_pt/caps/psb_periods - - which contains a hexadecimal value, the bits of which represent - valid values e.g. bit 2 set means value 2 is valid. - - The psb_period value is converted to the approximate number of - trace bytes between PSB packets as: - - 2 ^ (value + 11) - - e.g. value 3 means 16KiB bytes between PSBs - - If an invalid value is entered, the error message - will give a list of valid values e.g. - - $ perf record -e intel_pt/psb_period=15/u uname - Invalid psb_period for intel_pt. Valid values are: 0-5 - - If MTC packets are selected, the default config selects a value - of 3 (i.e. psb_period=3) or the nearest lower value that is - supported (0 is always supported). Otherwise the default is 0. - - If decoding is expected to be reliable and the buffer is large - then a large PSB period can be used. - - Because a TSC packet is produced with PSB, the PSB period can - also affect the granularity to timing information in the absence - of MTC or CYC. - -mtc Produces MTC timing packets. - - MTC packets provide finer grain timestamp information than TSC - packets. MTC packets record time using the hardware crystal - clock (CTC) which is related to TSC packets using a TMA packet. - - Support for this feature is indicated by: - - /sys/bus/event_source/devices/intel_pt/caps/mtc - - which contains "1" if the feature is supported and - "0" otherwise. - - The frequency of MTC packets can also be specified - see - mtc_period below. - -mtc_period Specifies how frequently MTC packets are produced - see mtc - above for how to determine if MTC packets are supported. - - Valid values are given by: - - /sys/bus/event_source/devices/intel_pt/caps/mtc_periods - - which contains a hexadecimal value, the bits of which represent - valid values e.g. bit 2 set means value 2 is valid. - - The mtc_period value is converted to the MTC frequency as: - - CTC-frequency / (2 ^ value) - - e.g. value 3 means one eighth of CTC-frequency - - Where CTC is the hardware crystal clock, the frequency of which - can be related to TSC via values provided in cpuid leaf 0x15. - - If an invalid value is entered, the error message - will give a list of valid values e.g. - - $ perf record -e intel_pt/mtc_period=15/u uname - Invalid mtc_period for intel_pt. Valid values are: 0,3,6,9 - - The default value is 3 or the nearest lower value - that is supported (0 is always supported). - -cyc Produces CYC timing packets. - - CYC packets provide even finer grain timestamp information than - MTC and TSC packets. A CYC packet contains the number of CPU - cycles since the last CYC packet. Unlike MTC and TSC packets, - CYC packets are only sent when another packet is also sent. - - Support for this feature is indicated by: - - /sys/bus/event_source/devices/intel_pt/caps/psb_cyc - - which contains "1" if the feature is supported and - "0" otherwise. - - The number of CYC packets produced can be reduced by specifying - a threshold - see cyc_thresh below. - -cyc_thresh Specifies how frequently CYC packets are produced - see cyc - above for how to determine if CYC packets are supported. - - Valid cyc_thresh values are given by: - - /sys/bus/event_source/devices/intel_pt/caps/cycle_thresholds - - which contains a hexadecimal value, the bits of which represent - valid values e.g. bit 2 set means value 2 is valid. - - The cyc_thresh value represents the minimum number of CPU cycles - that must have passed before a CYC packet can be sent. The - number of CPU cycles is: - - 2 ^ (value - 1) - - e.g. value 4 means 8 CPU cycles must pass before a CYC packet - can be sent. Note a CYC packet is still only sent when another - packet is sent, not at, e.g. every 8 CPU cycles. - - If an invalid value is entered, the error message - will give a list of valid values e.g. - - $ perf record -e intel_pt/cyc,cyc_thresh=15/u uname - Invalid cyc_thresh for intel_pt. Valid values are: 0-12 - - CYC packets are not requested by default. - -pt Specifies pass-through which enables the 'branch' config term. - - The default config selects 'pt' if it is available, so a user will - never need to specify this term. - -branch Enable branch tracing. Branch tracing is enabled by default so to - disable branch tracing use 'branch=0'. - - The default config selects 'branch' if it is available. - -ptw Enable PTWRITE packets which are produced when a ptwrite instruction - is executed. - - Support for this feature is indicated by: - - /sys/bus/event_source/devices/intel_pt/caps/ptwrite - - which contains "1" if the feature is supported and - "0" otherwise. - -fup_on_ptw Enable a FUP packet to follow the PTWRITE packet. The FUP packet - provides the address of the ptwrite instruction. In the absence of - fup_on_ptw, the decoder will use the address of the previous branch - if branch tracing is enabled, otherwise the address will be zero. - Note that fup_on_ptw will work even when branch tracing is disabled. - -pwr_evt Enable power events. The power events provide information about - changes to the CPU C-state. - - Support for this feature is indicated by: - - /sys/bus/event_source/devices/intel_pt/caps/power_event_trace - - which contains "1" if the feature is supported and - "0" otherwise. - - -AUX area sampling option ------------------------- - -To select Intel PT "sampling" the AUX area sampling option can be used: - - --aux-sample - -Optionally it can be followed by the sample size in bytes e.g. - - --aux-sample=8192 - -In addition, the Intel PT event to sample must be defined e.g. - - -e intel_pt//u - -Samples on other events will be created containing Intel PT data e.g. the -following will create Intel PT samples on the branch-misses event, note the -events must be grouped using {}: - - perf record --aux-sample -e '{intel_pt//u,branch-misses:u}' - -An alternative to '--aux-sample' is to add the config term 'aux-sample-size' to -events. In this case, the grouping is implied e.g. - - perf record -e intel_pt//u -e branch-misses/aux-sample-size=8192/u - -is the same as: - - perf record -e '{intel_pt//u,branch-misses/aux-sample-size=8192/u}' - -but allows for also using an address filter e.g.: - - perf record -e intel_pt//u --filter 'filter * @/bin/ls' -e branch-misses/aux-sample-size=8192/u -- ls - -It is important to select a sample size that is big enough to contain at least -one PSB packet. If not a warning will be displayed: - - Intel PT sample size (%zu) may be too small for PSB period (%zu) - -The calculation used for that is: if sample_size <= psb_period + 256 display the -warning. When sampling is used, psb_period defaults to 0 (2KiB). - -The default sample size is 4KiB. - -The sample size is passed in aux_sample_size in struct perf_event_attr. The -sample size is limited by the maximum event size which is 64KiB. It is -difficult to know how big the event might be without the trace sample attached, -but the tool validates that the sample size is not greater than 60KiB. - - -new snapshot option -------------------- - -The difference between full trace and snapshot from the kernel's perspective is -that in full trace we don't overwrite trace data that the user hasn't collected -yet (and indicated that by advancing aux_tail), whereas in snapshot mode we let -the trace run and overwrite older data in the buffer so that whenever something -interesting happens, we can stop it and grab a snapshot of what was going on -around that interesting moment. - -To select snapshot mode a new option has been added: - - -S - -Optionally it can be followed by the snapshot size e.g. - - -S0x100000 - -The default snapshot size is the auxtrace mmap size. If neither auxtrace mmap size -nor snapshot size is specified, then the default is 4MiB for privileged users -(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users. -If an unprivileged user does not specify mmap pages, the mmap pages will be -reduced as described in the 'new auxtrace mmap size option' section below. - -The snapshot size is displayed if the option -vv is used e.g. - - Intel PT snapshot size: %zu - - -new auxtrace mmap size option ---------------------------- - -Intel PT buffer size is specified by an addition to the -m option e.g. - - -m,16 - -selects a buffer size of 16 pages i.e. 64KiB. - -Note that the existing functionality of -m is unchanged. The auxtrace mmap size -is specified by the optional addition of a comma and the value. - -The default auxtrace mmap size for Intel PT is 4MiB/page_size for privileged users -(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users. -If an unprivileged user does not specify mmap pages, the mmap pages will be -reduced from the default 512KiB/page_size to 256KiB/page_size, otherwise the -user is likely to get an error as they exceed their mlock limit (Max locked -memory as shown in /proc/self/limits). Note that perf does not count the first -512KiB (actually /proc/sys/kernel/perf_event_mlock_kb minus 1 page) per cpu -against the mlock limit so an unprivileged user is allowed 512KiB per cpu plus -their mlock limit (which defaults to 64KiB but is not multiplied by the number -of cpus). - -In full-trace mode, powers of two are allowed for buffer size, with a minimum -size of 2 pages. In snapshot mode or sampling mode, it is the same but the -minimum size is 1 page. - -The mmap size and auxtrace mmap size are displayed if the -vv option is used e.g. - - mmap length 528384 - auxtrace mmap length 4198400 - - -Intel PT modes of operation ---------------------------- - -Intel PT can be used in 2 modes: - full-trace mode - sample mode - snapshot mode - -Full-trace mode traces continuously e.g. - - perf record -e intel_pt//u uname - -Sample mode attaches a Intel PT sample to other events e.g. - - perf record --aux-sample -e intel_pt//u -e branch-misses:u - -Snapshot mode captures the available data when a signal is sent e.g. - - perf record -v -e intel_pt//u -S ./loopy 1000000000 & - [1] 11435 - kill -USR2 11435 - Recording AUX area tracing snapshot - -Note that the signal sent is SIGUSR2. -Note that "Recording AUX area tracing snapshot" is displayed because the -v -option is used. - -The 2 modes cannot be used together. - - -Buffer handling ---------------- - -There may be buffer limitations (i.e. single ToPa entry) which means that actual -buffer sizes are limited to powers of 2 up to 4MiB (MAX_ORDER). In order to -provide other sizes, and in particular an arbitrarily large size, multiple -buffers are logically concatenated. However an interrupt must be used to switch -between buffers. That has two potential problems: - a) the interrupt may not be handled in time so that the current buffer - becomes full and some trace data is lost. - b) the interrupts may slow the system and affect the performance - results. - -If trace data is lost, the driver sets 'truncated' in the PERF_RECORD_AUX event -which the tools report as an error. - -In full-trace mode, the driver waits for data to be copied out before allowing -the (logical) buffer to wrap-around. If data is not copied out quickly enough, -again 'truncated' is set in the PERF_RECORD_AUX event. If the driver has to -wait, the intel_pt event gets disabled. Because it is difficult to know when -that happens, perf tools always re-enable the intel_pt event after copying out -data. - - -Intel PT and build ids ----------------------- - -By default "perf record" post-processes the event stream to find all build ids -for executables for all addresses sampled. Deliberately, Intel PT is not -decoded for that purpose (it would take too long). Instead the build ids for -all executables encountered (due to mmap, comm or task events) are included -in the perf.data file. - -To see buildids included in the perf.data file use the command: - - perf buildid-list - -If the perf.data file contains Intel PT data, that is the same as: - - perf buildid-list --with-hits - - -Snapshot mode and event disabling ---------------------------------- - -In order to make a snapshot, the intel_pt event is disabled using an IOCTL, -namely PERF_EVENT_IOC_DISABLE. However doing that can also disable the -collection of side-band information. In order to prevent that, a dummy -software event has been introduced that permits tracking events (like mmaps) to -continue to be recorded while intel_pt is disabled. That is important to ensure -there is complete side-band information to allow the decoding of subsequent -snapshots. - -A test has been created for that. To find the test: - - perf test list - ... - 23: Test using a dummy software event to keep tracking - -To run the test: - - perf test 23 - 23: Test using a dummy software event to keep tracking : Ok - - -perf record modes (nothing new here) ------------------------------------- - -perf record essentially operates in one of three modes: - per thread - per cpu - workload only - -"per thread" mode is selected by -t or by --per-thread (with -p or -u or just a -workload). -"per cpu" is selected by -C or -a. -"workload only" mode is selected by not using the other options but providing a -command to run (i.e. the workload). - -In per-thread mode an exact list of threads is traced. There is no inheritance. -Each thread has its own event buffer. - -In per-cpu mode all processes (or processes from the selected cgroup i.e. -G -option, or processes selected with -p or -u) are traced. Each cpu has its own -buffer. Inheritance is allowed. - -In workload-only mode, the workload is traced but with per-cpu buffers. -Inheritance is allowed. Note that you can now trace a workload in per-thread -mode by using the --per-thread option. - - -Privileged vs non-privileged users ----------------------------------- - -Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users -have memory limits imposed upon them. That affects what buffer sizes they can -have as outlined above. - -The v4.2 kernel introduced support for a context switch metadata event, -PERF_RECORD_SWITCH, which allows unprivileged users to see when their processes -are scheduled out and in, just not by whom, which is left for the -PERF_RECORD_SWITCH_CPU_WIDE, that is only accessible in system wide context, -which in turn requires CAP_SYS_ADMIN. - -Please see the 45ac1403f564 ("perf: Add PERF_RECORD_SWITCH to indicate context -switches") commit, that introduces these metadata events for further info. - -When working with kernels < v4.2, the following considerations must be taken, -as the sched:sched_switch tracepoints will be used to receive such information: - -Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users are -not permitted to use tracepoints which means there is insufficient side-band -information to decode Intel PT in per-cpu mode, and potentially workload-only -mode too if the workload creates new processes. - -Note also, that to use tracepoints, read-access to debugfs is required. So if -debugfs is not mounted or the user does not have read-access, it will again not -be possible to decode Intel PT in per-cpu mode. - - -sched_switch tracepoint ------------------------ - -The sched_switch tracepoint is used to provide side-band data for Intel PT -decoding in kernels where the PERF_RECORD_SWITCH metadata event isn't -available. - -The sched_switch events are automatically added. e.g. the second event shown -below: - - $ perf record -vv -e intel_pt//u uname - ------------------------------------------------------------ - perf_event_attr: - type 6 - size 112 - config 0x400 - { sample_period, sample_freq } 1 - sample_type IP|TID|TIME|CPU|IDENTIFIER - read_format ID - disabled 1 - inherit 1 - exclude_kernel 1 - exclude_hv 1 - enable_on_exec 1 - sample_id_all 1 - ------------------------------------------------------------ - sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 - ------------------------------------------------------------ - perf_event_attr: - type 2 - size 112 - config 0x108 - { sample_period, sample_freq } 1 - sample_type IP|TID|TIME|CPU|PERIOD|RAW|IDENTIFIER - read_format ID - inherit 1 - sample_id_all 1 - exclude_guest 1 - ------------------------------------------------------------ - sys_perf_event_open: pid -1 cpu 0 group_fd -1 flags 0x8 - sys_perf_event_open: pid -1 cpu 1 group_fd -1 flags 0x8 - sys_perf_event_open: pid -1 cpu 2 group_fd -1 flags 0x8 - sys_perf_event_open: pid -1 cpu 3 group_fd -1 flags 0x8 - ------------------------------------------------------------ - perf_event_attr: - type 1 - size 112 - config 0x9 - { sample_period, sample_freq } 1 - sample_type IP|TID|TIME|IDENTIFIER - read_format ID - disabled 1 - inherit 1 - exclude_kernel 1 - exclude_hv 1 - mmap 1 - comm 1 - enable_on_exec 1 - task 1 - sample_id_all 1 - mmap2 1 - comm_exec 1 - ------------------------------------------------------------ - sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 - sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 - mmap size 528384B - AUX area mmap length 4194304 - perf event ring buffer mmapped per cpu - Synthesizing auxtrace information - Linux - [ perf record: Woken up 1 times to write data ] - [ perf record: Captured and wrote 0.042 MB perf.data ] - -Note, the sched_switch event is only added if the user is permitted to use it -and only in per-cpu mode. - -Note also, the sched_switch event is only added if TSC packets are requested. -That is because, in the absence of timing information, the sched_switch events -cannot be matched against the Intel PT trace. - - -perf script -=========== - -By default, perf script will decode trace data found in the perf.data file. -This can be further controlled by new option --itrace. - - -New --itrace option -------------------- - -Having no option is the same as - - --itrace - -which, in turn, is the same as - - --itrace=cepwx - -The letters are: - - i synthesize "instructions" events - b synthesize "branches" events - x synthesize "transactions" events - w synthesize "ptwrite" events - p synthesize "power" events - c synthesize branches events (calls only) - r synthesize branches events (returns only) - e synthesize tracing error events - d create a debug log - g synthesize a call chain (use with i or x) - l synthesize last branch entries (use with i or x) - s skip initial number of events - -"Instructions" events look like they were recorded by "perf record -e -instructions". - -"Branches" events look like they were recorded by "perf record -e branches". "c" -and "r" can be combined to get calls and returns. - -"Transactions" events correspond to the start or end of transactions. The -'flags' field can be used in perf script to determine whether the event is a -tranasaction start, commit or abort. - -Note that "instructions", "branches" and "transactions" events depend on code -flow packets which can be disabled by using the config term "branch=0". Refer -to the config terms section above. - -"ptwrite" events record the payload of the ptwrite instruction and whether -"fup_on_ptw" was used. "ptwrite" events depend on PTWRITE packets which are -recorded only if the "ptw" config term was used. Refer to the config terms -section above. perf script "synth" field displays "ptwrite" information like -this: "ip: 0 payload: 0x123456789abcdef0" where "ip" is 1 if "fup_on_ptw" was -used. - -"Power" events correspond to power event packets and CBR (core-to-bus ratio) -packets. While CBR packets are always recorded when tracing is enabled, power -event packets are recorded only if the "pwr_evt" config term was used. Refer to -the config terms section above. The power events record information about -C-state changes, whereas CBR is indicative of CPU frequency. perf script -"event,synth" fields display information like this: - cbr: cbr: 22 freq: 2189 MHz (200%) - mwait: hints: 0x60 extensions: 0x1 - pwre: hw: 0 cstate: 2 sub-cstate: 0 - exstop: ip: 1 - pwrx: deepest cstate: 2 last cstate: 2 wake reason: 0x4 -Where: - "cbr" includes the frequency and the percentage of maximum non-turbo - "mwait" shows mwait hints and extensions - "pwre" shows C-state transitions (to a C-state deeper than C0) and - whether initiated by hardware - "exstop" indicates execution stopped and whether the IP was recorded - exactly, - "pwrx" indicates return to C0 -For more details refer to the Intel 64 and IA-32 Architectures Software -Developer Manuals. - -Error events show where the decoder lost the trace. Error events -are quite important. Users must know if what they are seeing is a complete -picture or not. - -The "d" option will cause the creation of a file "intel_pt.log" containing all -decoded packets and instructions. Note that this option slows down the decoder -and that the resulting file may be very large. - -In addition, the period of the "instructions" event can be specified. e.g. - - --itrace=i10us - -sets the period to 10us i.e. one instruction sample is synthesized for each 10 -microseconds of trace. Alternatives to "us" are "ms" (milliseconds), -"ns" (nanoseconds), "t" (TSC ticks) or "i" (instructions). - -"ms", "us" and "ns" are converted to TSC ticks. - -The timing information included with Intel PT does not give the time of every -instruction. Consequently, for the purpose of sampling, the decoder estimates -the time since the last timing packet based on 1 tick per instruction. The time -on the sample is *not* adjusted and reflects the last known value of TSC. - -For Intel PT, the default period is 100us. - -Setting it to a zero period means "as often as possible". - -In the case of Intel PT that is the same as a period of 1 and a unit of -'instructions' (i.e. --itrace=i1i). - -Also the call chain size (default 16, max. 1024) for instructions or -transactions events can be specified. e.g. - - --itrace=ig32 - --itrace=xg32 - -Also the number of last branch entries (default 64, max. 1024) for instructions or -transactions events can be specified. e.g. - - --itrace=il10 - --itrace=xl10 - -Note that last branch entries are cleared for each sample, so there is no overlap -from one sample to the next. - -To disable trace decoding entirely, use the option --no-itrace. - -It is also possible to skip events generated (instructions, branches, transactions) -at the beginning. This is useful to ignore initialization code. - - --itrace=i0nss1000000 - -skips the first million instructions. - -dump option ------------ - -perf script has an option (-D) to "dump" the events i.e. display the binary -data. - -When -D is used, Intel PT packets are displayed. The packet decoder does not -pay attention to PSB packets, but just decodes the bytes - so the packets seen -by the actual decoder may not be identical in places where the data is corrupt. -One example of that would be when the buffer-switching interrupt has been too -slow, and the buffer has been filled completely. In that case, the last packet -in the buffer might be truncated and immediately followed by a PSB as the trace -continues in the next buffer. - -To disable the display of Intel PT packets, combine the -D option with ---no-itrace. - - -perf report -=========== - -By default, perf report will decode trace data found in the perf.data file. -This can be further controlled by new option --itrace exactly the same as -perf script, with the exception that the default is --itrace=igxe. - - -perf inject -=========== - -perf inject also accepts the --itrace option in which case tracing data is -removed and replaced with the synthesized events. e.g. - - perf inject --itrace -i perf.data -o perf.data.new - -Below is an example of using Intel PT with autofdo. It requires autofdo -(https://github.com/google/autofdo) and gcc version 5. The bubble -sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial) -amended to take the number of elements as a parameter. - - $ gcc-5 -O3 sort.c -o sort_optimized - $ ./sort_optimized 30000 - Bubble sorting array of 30000 elements - 2254 ms - - $ cat ~/.perfconfig - [intel-pt] - mispred-all = on - - $ perf record -e intel_pt//u ./sort 3000 - Bubble sorting array of 3000 elements - 58 ms - [ perf record: Woken up 2 times to write data ] - [ perf record: Captured and wrote 3.939 MB perf.data ] - $ perf inject -i perf.data -o inj --itrace=i100usle --strip - $ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1 - $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo - $ ./sort_autofdo 30000 - Bubble sorting array of 30000 elements - 2155 ms - -Note there is currently no advantage to using Intel PT instead of LBR, but -that may change in the future if greater use is made of the data. - - -PEBS via Intel PT -================= - -Some hardware has the feature to redirect PEBS records to the Intel PT trace. -Recording is selected by using the aux-output config term e.g. - - perf record -c 10000 -e '{intel_pt/branch=0/,cycles/aux-output/ppp}' uname - -Note that currently, software only supports redirecting at most one PEBS event. - -To display PEBS events from the Intel PT trace, use the itrace 'o' option e.g. - - perf script --itrace=oe diff --git a/tools/perf/Documentation/perf-intel-pt.txt b/tools/perf/Documentation/perf-intel-pt.txt new file mode 100644 index 000000000000..7d743a98a9c1 --- /dev/null +++ b/tools/perf/Documentation/perf-intel-pt.txt @@ -0,0 +1,1000 @@ +perf-intel-pt(1) +================ + +NAME +---- +perf-intel-pt - Support for Intel Processor Trace within perf tools + +SYNOPSIS +-------- +[verse] +'perf record' -e intel_pt// + +DESCRIPTION +----------- + +Intel Processor Trace (Intel PT) is an extension of Intel Architecture that +collects information about software execution such as control flow, execution +modes and timings and formats it into highly compressed binary packets. +Technical details are documented in the Intel 64 and IA-32 Architectures +Software Developer Manuals, Chapter 36 Intel Processor Trace. + +Intel PT is first supported in Intel Core M and 5th generation Intel Core +processors that are based on the Intel micro-architecture code name Broadwell. + +Trace data is collected by 'perf record' and stored within the perf.data file. +See below for options to 'perf record'. + +Trace data must be 'decoded' which involves walking the object code and matching +the trace data packets. For example a TNT packet only tells whether a +conditional branch was taken or not taken, so to make use of that packet the +decoder must know precisely which instruction was being executed. + +Decoding is done on-the-fly. The decoder outputs samples in the same format as +samples output by perf hardware events, for example as though the "instructions" +or "branches" events had been recorded. Presently 3 tools support this: +'perf script', 'perf report' and 'perf inject'. See below for more information +on using those tools. + +The main distinguishing feature of Intel PT is that the decoder can determine +the exact flow of software execution. Intel PT can be used to understand why +and how did software get to a certain point, or behave a certain way. The +software does not have to be recompiled, so Intel PT works with debug or release +builds, however the executed images are needed - which makes use in JIT-compiled +environments, or with self-modified code, a challenge. Also symbols need to be +provided to make sense of addresses. + +A limitation of Intel PT is that it produces huge amounts of trace data +(hundreds of megabytes per second per core) which takes a long time to decode, +for example two or three orders of magnitude longer than it took to collect. +Another limitation is the performance impact of tracing, something that will +vary depending on the use-case and architecture. + + +Quickstart +---------- + +It is important to start small. That is because it is easy to capture vastly +more data than can possibly be processed. + +The simplest thing to do with Intel PT is userspace profiling of small programs. +Data is captured with 'perf record' e.g. to trace 'ls' userspace-only: + + perf record -e intel_pt//u ls + +And profiled with 'perf report' e.g. + + perf report + +To also trace kernel space presents a problem, namely kernel self-modifying +code. A fairly good kernel image is available in /proc/kcore but to get an +accurate image a copy of /proc/kcore needs to be made under the same conditions +as the data capture. A script perf-with-kcore can do that, but beware that the +script makes use of 'sudo' to copy /proc/kcore. If you have perf installed +locally from the source tree you can do: + + ~/libexec/perf-core/perf-with-kcore record pt_ls -e intel_pt// -- ls + +which will create a directory named 'pt_ls' and put the perf.data file and +copies of /proc/kcore, /proc/kallsyms and /proc/modules into it. Then to use +'perf report' becomes: + + ~/libexec/perf-core/perf-with-kcore report pt_ls + +Because samples are synthesized after-the-fact, the sampling period can be +selected for reporting. e.g. sample every microsecond + + ~/libexec/perf-core/perf-with-kcore report pt_ls --itrace=i1usge + +See the sections below for more information about the --itrace option. + +Beware the smaller the period, the more samples that are produced, and the +longer it takes to process them. + +Also note that the coarseness of Intel PT timing information will start to +distort the statistical value of the sampling as the sampling period becomes +smaller. + +To represent software control flow, "branches" samples are produced. By default +a branch sample is synthesized for every single branch. To get an idea what +data is available you can use the 'perf script' tool with all itrace sampling +options, which will list all the samples. + + perf record -e intel_pt//u ls + perf script --itrace=ibxwpe + +An interesting field that is not printed by default is 'flags' which can be +displayed as follows: + + perf script --itrace=ibxwpe -F+flags + +The flags are "bcrosyiABEx" which stand for branch, call, return, conditional, +system, asynchronous, interrupt, transaction abort, trace begin, trace end, and +in transaction, respectively. + +Another interesting field that is not printed by default is 'ipc' which can be +displayed as follows: + + perf script --itrace=be -F+ipc + +There are two ways that instructions-per-cycle (IPC) can be calculated depending +on the recording. + +If the 'cyc' config term (see config terms section below) was used, then IPC is +calculated using the cycle count from CYC packets, otherwise MTC packets are +used - refer to the 'mtc' config term. When MTC is used, however, the values +are less accurate because the timing is less accurate. + +Because Intel PT does not update the cycle count on every branch or instruction, +the values will often be zero. When there are values, they will be the number +of instructions and number of cycles since the last update, and thus represent +the average IPC since the last IPC for that event type. Note IPC for "branches" +events is calculated separately from IPC for "instructions" events. + +Also note that the IPC instruction count may or may not include the current +instruction. If the cycle count is associated with an asynchronous branch +(e.g. page fault or interrupt), then the instruction count does not include the +current instruction, otherwise it does. That is consistent with whether or not +that instruction has retired when the cycle count is updated. + +Another note, in the case of "branches" events, non-taken branches are not +presently sampled, so IPC values for them do not appear e.g. a CYC packet with a +TNT packet that starts with a non-taken branch. To see every possible IPC +value, "instructions" events can be used e.g. --itrace=i0ns + +While it is possible to create scripts to analyze the data, an alternative +approach is available to export the data to a sqlite or postgresql database. +Refer to script export-to-sqlite.py or export-to-postgresql.py for more details, +and to script exported-sql-viewer.py for an example of using the database. + +There is also script intel-pt-events.py which provides an example of how to +unpack the raw data for power events and PTWRITE. + +As mentioned above, it is easy to capture too much data. One way to limit the +data captured is to use 'snapshot' mode which is explained further below. +Refer to 'new snapshot option' and 'Intel PT modes of operation' further below. + +Another problem that will be experienced is decoder errors. They can be caused +by inability to access the executed image, self-modified or JIT-ed code, or the +inability to match side-band information (such as context switches and mmaps) +which results in the decoder not knowing what code was executed. + +There is also the problem of perf not being able to copy the data fast enough, +resulting in data lost because the buffer was full. See 'Buffer handling' below +for more details. + + +perf record +----------- + +new event +~~~~~~~~~ + +The Intel PT kernel driver creates a new PMU for Intel PT. PMU events are +selected by providing the PMU name followed by the "config" separated by slashes. +An enhancement has been made to allow default "config" e.g. the option + + -e intel_pt// + +will use a default config value. Currently that is the same as + + -e intel_pt/tsc,noretcomp=0/ + +which is the same as + + -e intel_pt/tsc=1,noretcomp=0/ + +Note there are now new config terms - see section 'config terms' further below. + +The config terms are listed in /sys/devices/intel_pt/format. They are bit +fields within the config member of the struct perf_event_attr which is +passed to the kernel by the perf_event_open system call. They correspond to bit +fields in the IA32_RTIT_CTL MSR. Here is a list of them and their definitions: + + $ grep -H . /sys/bus/event_source/devices/intel_pt/format/* + /sys/bus/event_source/devices/intel_pt/format/cyc:config:1 + /sys/bus/event_source/devices/intel_pt/format/cyc_thresh:config:19-22 + /sys/bus/event_source/devices/intel_pt/format/mtc:config:9 + /sys/bus/event_source/devices/intel_pt/format/mtc_period:config:14-17 + /sys/bus/event_source/devices/intel_pt/format/noretcomp:config:11 + /sys/bus/event_source/devices/intel_pt/format/psb_period:config:24-27 + /sys/bus/event_source/devices/intel_pt/format/tsc:config:10 + +Note that the default config must be overridden for each term i.e. + + -e intel_pt/noretcomp=0/ + +is the same as: + + -e intel_pt/tsc=1,noretcomp=0/ + +So, to disable TSC packets use: + + -e intel_pt/tsc=0/ + +It is also possible to specify the config value explicitly: + + -e intel_pt/config=0x400/ + +Note that, as with all events, the event is suffixed with event modifiers: + + u userspace + k kernel + h hypervisor + G guest + H host + p precise ip + +'h', 'G' and 'H' are for virtualization which is not supported by Intel PT. +'p' is also not relevant to Intel PT. So only options 'u' and 'k' are +meaningful for Intel PT. + +perf_event_attr is displayed if the -vv option is used e.g. + + ------------------------------------------------------------ + perf_event_attr: + type 6 + size 112 + config 0x400 + { sample_period, sample_freq } 1 + sample_type IP|TID|TIME|CPU|IDENTIFIER + read_format ID + disabled 1 + inherit 1 + exclude_kernel 1 + exclude_hv 1 + enable_on_exec 1 + sample_id_all 1 + ------------------------------------------------------------ + sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 + ------------------------------------------------------------ + + +config terms +~~~~~~~~~~~~ + +The June 2015 version of Intel 64 and IA-32 Architectures Software Developer +Manuals, Chapter 36 Intel Processor Trace, defined new Intel PT features. +Some of the features are reflect in new config terms. All the config terms are +described below. + +tsc Always supported. Produces TSC timestamp packets to provide + timing information. In some cases it is possible to decode + without timing information, for example a per-thread context + that does not overlap executable memory maps. + + The default config selects tsc (i.e. tsc=1). + +noretcomp Always supported. Disables "return compression" so a TIP packet + is produced when a function returns. Causes more packets to be + produced but might make decoding more reliable. + + The default config does not select noretcomp (i.e. noretcomp=0). + +psb_period Allows the frequency of PSB packets to be specified. + + The PSB packet is a synchronization packet that provides a + starting point for decoding or recovery from errors. + + Support for psb_period is indicated by: + + /sys/bus/event_source/devices/intel_pt/caps/psb_cyc + + which contains "1" if the feature is supported and "0" + otherwise. + + Valid values are given by: + + /sys/bus/event_source/devices/intel_pt/caps/psb_periods + + which contains a hexadecimal value, the bits of which represent + valid values e.g. bit 2 set means value 2 is valid. + + The psb_period value is converted to the approximate number of + trace bytes between PSB packets as: + + 2 ^ (value + 11) + + e.g. value 3 means 16KiB bytes between PSBs + + If an invalid value is entered, the error message + will give a list of valid values e.g. + + $ perf record -e intel_pt/psb_period=15/u uname + Invalid psb_period for intel_pt. Valid values are: 0-5 + + If MTC packets are selected, the default config selects a value + of 3 (i.e. psb_period=3) or the nearest lower value that is + supported (0 is always supported). Otherwise the default is 0. + + If decoding is expected to be reliable and the buffer is large + then a large PSB period can be used. + + Because a TSC packet is produced with PSB, the PSB period can + also affect the granularity to timing information in the absence + of MTC or CYC. + +mtc Produces MTC timing packets. + + MTC packets provide finer grain timestamp information than TSC + packets. MTC packets record time using the hardware crystal + clock (CTC) which is related to TSC packets using a TMA packet. + + Support for this feature is indicated by: + + /sys/bus/event_source/devices/intel_pt/caps/mtc + + which contains "1" if the feature is supported and + "0" otherwise. + + The frequency of MTC packets can also be specified - see + mtc_period below. + +mtc_period Specifies how frequently MTC packets are produced - see mtc + above for how to determine if MTC packets are supported. + + Valid values are given by: + + /sys/bus/event_source/devices/intel_pt/caps/mtc_periods + + which contains a hexadecimal value, the bits of which represent + valid values e.g. bit 2 set means value 2 is valid. + + The mtc_period value is converted to the MTC frequency as: + + CTC-frequency / (2 ^ value) + + e.g. value 3 means one eighth of CTC-frequency + + Where CTC is the hardware crystal clock, the frequency of which + can be related to TSC via values provided in cpuid leaf 0x15. + + If an invalid value is entered, the error message + will give a list of valid values e.g. + + $ perf record -e intel_pt/mtc_period=15/u uname + Invalid mtc_period for intel_pt. Valid values are: 0,3,6,9 + + The default value is 3 or the nearest lower value + that is supported (0 is always supported). + +cyc Produces CYC timing packets. + + CYC packets provide even finer grain timestamp information than + MTC and TSC packets. A CYC packet contains the number of CPU + cycles since the last CYC packet. Unlike MTC and TSC packets, + CYC packets are only sent when another packet is also sent. + + Support for this feature is indicated by: + + /sys/bus/event_source/devices/intel_pt/caps/psb_cyc + + which contains "1" if the feature is supported and + "0" otherwise. + + The number of CYC packets produced can be reduced by specifying + a threshold - see cyc_thresh below. + +cyc_thresh Specifies how frequently CYC packets are produced - see cyc + above for how to determine if CYC packets are supported. + + Valid cyc_thresh values are given by: + + /sys/bus/event_source/devices/intel_pt/caps/cycle_thresholds + + which contains a hexadecimal value, the bits of which represent + valid values e.g. bit 2 set means value 2 is valid. + + The cyc_thresh value represents the minimum number of CPU cycles + that must have passed before a CYC packet can be sent. The + number of CPU cycles is: + + 2 ^ (value - 1) + + e.g. value 4 means 8 CPU cycles must pass before a CYC packet + can be sent. Note a CYC packet is still only sent when another + packet is sent, not at, e.g. every 8 CPU cycles. + + If an invalid value is entered, the error message + will give a list of valid values e.g. + + $ perf record -e intel_pt/cyc,cyc_thresh=15/u uname + Invalid cyc_thresh for intel_pt. Valid values are: 0-12 + + CYC packets are not requested by default. + +pt Specifies pass-through which enables the 'branch' config term. + + The default config selects 'pt' if it is available, so a user will + never need to specify this term. + +branch Enable branch tracing. Branch tracing is enabled by default so to + disable branch tracing use 'branch=0'. + + The default config selects 'branch' if it is available. + +ptw Enable PTWRITE packets which are produced when a ptwrite instruction + is executed. + + Support for this feature is indicated by: + + /sys/bus/event_source/devices/intel_pt/caps/ptwrite + + which contains "1" if the feature is supported and + "0" otherwise. + +fup_on_ptw Enable a FUP packet to follow the PTWRITE packet. The FUP packet + provides the address of the ptwrite instruction. In the absence of + fup_on_ptw, the decoder will use the address of the previous branch + if branch tracing is enabled, otherwise the address will be zero. + Note that fup_on_ptw will work even when branch tracing is disabled. + +pwr_evt Enable power events. The power events provide information about + changes to the CPU C-state. + + Support for this feature is indicated by: + + /sys/bus/event_source/devices/intel_pt/caps/power_event_trace + + which contains "1" if the feature is supported and + "0" otherwise. + + +AUX area sampling option +~~~~~~~~~~~~~~~~~~~~~~~~ + +To select Intel PT "sampling" the AUX area sampling option can be used: + + --aux-sample + +Optionally it can be followed by the sample size in bytes e.g. + + --aux-sample=8192 + +In addition, the Intel PT event to sample must be defined e.g. + + -e intel_pt//u + +Samples on other events will be created containing Intel PT data e.g. the +following will create Intel PT samples on the branch-misses event, note the +events must be grouped using {}: + + perf record --aux-sample -e '{intel_pt//u,branch-misses:u}' + +An alternative to '--aux-sample' is to add the config term 'aux-sample-size' to +events. In this case, the grouping is implied e.g. + + perf record -e intel_pt//u -e branch-misses/aux-sample-size=8192/u + +is the same as: + + perf record -e '{intel_pt//u,branch-misses/aux-sample-size=8192/u}' + +but allows for also using an address filter e.g.: + + perf record -e intel_pt//u --filter 'filter * @/bin/ls' -e branch-misses/aux-sample-size=8192/u -- ls + +It is important to select a sample size that is big enough to contain at least +one PSB packet. If not a warning will be displayed: + + Intel PT sample size (%zu) may be too small for PSB period (%zu) + +The calculation used for that is: if sample_size <= psb_period + 256 display the +warning. When sampling is used, psb_period defaults to 0 (2KiB). + +The default sample size is 4KiB. + +The sample size is passed in aux_sample_size in struct perf_event_attr. The +sample size is limited by the maximum event size which is 64KiB. It is +difficult to know how big the event might be without the trace sample attached, +but the tool validates that the sample size is not greater than 60KiB. + + +new snapshot option +~~~~~~~~~~~~~~~~~~~ + +The difference between full trace and snapshot from the kernel's perspective is +that in full trace we don't overwrite trace data that the user hasn't collected +yet (and indicated that by advancing aux_tail), whereas in snapshot mode we let +the trace run and overwrite older data in the buffer so that whenever something +interesting happens, we can stop it and grab a snapshot of what was going on +around that interesting moment. + +To select snapshot mode a new option has been added: + + -S + +Optionally it can be followed by the snapshot size e.g. + + -S0x100000 + +The default snapshot size is the auxtrace mmap size. If neither auxtrace mmap size +nor snapshot size is specified, then the default is 4MiB for privileged users +(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users. +If an unprivileged user does not specify mmap pages, the mmap pages will be +reduced as described in the 'new auxtrace mmap size option' section below. + +The snapshot size is displayed if the option -vv is used e.g. + + Intel PT snapshot size: %zu + + +new auxtrace mmap size option +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Intel PT buffer size is specified by an addition to the -m option e.g. + + -m,16 + +selects a buffer size of 16 pages i.e. 64KiB. + +Note that the existing functionality of -m is unchanged. The auxtrace mmap size +is specified by the optional addition of a comma and the value. + +The default auxtrace mmap size for Intel PT is 4MiB/page_size for privileged users +(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users. +If an unprivileged user does not specify mmap pages, the mmap pages will be +reduced from the default 512KiB/page_size to 256KiB/page_size, otherwise the +user is likely to get an error as they exceed their mlock limit (Max locked +memory as shown in /proc/self/limits). Note that perf does not count the first +512KiB (actually /proc/sys/kernel/perf_event_mlock_kb minus 1 page) per cpu +against the mlock limit so an unprivileged user is allowed 512KiB per cpu plus +their mlock limit (which defaults to 64KiB but is not multiplied by the number +of cpus). + +In full-trace mode, powers of two are allowed for buffer size, with a minimum +size of 2 pages. In snapshot mode or sampling mode, it is the same but the +minimum size is 1 page. + +The mmap size and auxtrace mmap size are displayed if the -vv option is used e.g. + + mmap length 528384 + auxtrace mmap length 4198400 + + +Intel PT modes of operation +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Intel PT can be used in 2 modes: + full-trace mode + sample mode + snapshot mode + +Full-trace mode traces continuously e.g. + + perf record -e intel_pt//u uname + +Sample mode attaches a Intel PT sample to other events e.g. + + perf record --aux-sample -e intel_pt//u -e branch-misses:u + +Snapshot mode captures the available data when a signal is sent e.g. + + perf record -v -e intel_pt//u -S ./loopy 1000000000 & + [1] 11435 + kill -USR2 11435 + Recording AUX area tracing snapshot + +Note that the signal sent is SIGUSR2. +Note that "Recording AUX area tracing snapshot" is displayed because the -v +option is used. + +The 2 modes cannot be used together. + + +Buffer handling +~~~~~~~~~~~~~~~ + +There may be buffer limitations (i.e. single ToPa entry) which means that actual +buffer sizes are limited to powers of 2 up to 4MiB (MAX_ORDER). In order to +provide other sizes, and in particular an arbitrarily large size, multiple +buffers are logically concatenated. However an interrupt must be used to switch +between buffers. That has two potential problems: + a) the interrupt may not be handled in time so that the current buffer + becomes full and some trace data is lost. + b) the interrupts may slow the system and affect the performance + results. + +If trace data is lost, the driver sets 'truncated' in the PERF_RECORD_AUX event +which the tools report as an error. + +In full-trace mode, the driver waits for data to be copied out before allowing +the (logical) buffer to wrap-around. If data is not copied out quickly enough, +again 'truncated' is set in the PERF_RECORD_AUX event. If the driver has to +wait, the intel_pt event gets disabled. Because it is difficult to know when +that happens, perf tools always re-enable the intel_pt event after copying out +data. + + +Intel PT and build ids +~~~~~~~~~~~~~~~~~~~~~~ + +By default "perf record" post-processes the event stream to find all build ids +for executables for all addresses sampled. Deliberately, Intel PT is not +decoded for that purpose (it would take too long). Instead the build ids for +all executables encountered (due to mmap, comm or task events) are included +in the perf.data file. + +To see buildids included in the perf.data file use the command: + + perf buildid-list + +If the perf.data file contains Intel PT data, that is the same as: + + perf buildid-list --with-hits + + +Snapshot mode and event disabling +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In order to make a snapshot, the intel_pt event is disabled using an IOCTL, +namely PERF_EVENT_IOC_DISABLE. However doing that can also disable the +collection of side-band information. In order to prevent that, a dummy +software event has been introduced that permits tracking events (like mmaps) to +continue to be recorded while intel_pt is disabled. That is important to ensure +there is complete side-band information to allow the decoding of subsequent +snapshots. + +A test has been created for that. To find the test: + + perf test list + ... + 23: Test using a dummy software event to keep tracking + +To run the test: + + perf test 23 + 23: Test using a dummy software event to keep tracking : Ok + + +perf record modes (nothing new here) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +perf record essentially operates in one of three modes: + per thread + per cpu + workload only + +"per thread" mode is selected by -t or by --per-thread (with -p or -u or just a +workload). +"per cpu" is selected by -C or -a. +"workload only" mode is selected by not using the other options but providing a +command to run (i.e. the workload). + +In per-thread mode an exact list of threads is traced. There is no inheritance. +Each thread has its own event buffer. + +In per-cpu mode all processes (or processes from the selected cgroup i.e. -G +option, or processes selected with -p or -u) are traced. Each cpu has its own +buffer. Inheritance is allowed. + +In workload-only mode, the workload is traced but with per-cpu buffers. +Inheritance is allowed. Note that you can now trace a workload in per-thread +mode by using the --per-thread option. + + +Privileged vs non-privileged users +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users +have memory limits imposed upon them. That affects what buffer sizes they can +have as outlined above. + +The v4.2 kernel introduced support for a context switch metadata event, +PERF_RECORD_SWITCH, which allows unprivileged users to see when their processes +are scheduled out and in, just not by whom, which is left for the +PERF_RECORD_SWITCH_CPU_WIDE, that is only accessible in system wide context, +which in turn requires CAP_SYS_ADMIN. + +Please see the 45ac1403f564 ("perf: Add PERF_RECORD_SWITCH to indicate context +switches") commit, that introduces these metadata events for further info. + +When working with kernels < v4.2, the following considerations must be taken, +as the sched:sched_switch tracepoints will be used to receive such information: + +Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users are +not permitted to use tracepoints which means there is insufficient side-band +information to decode Intel PT in per-cpu mode, and potentially workload-only +mode too if the workload creates new processes. + +Note also, that to use tracepoints, read-access to debugfs is required. So if +debugfs is not mounted or the user does not have read-access, it will again not +be possible to decode Intel PT in per-cpu mode. + + +sched_switch tracepoint +~~~~~~~~~~~~~~~~~~~~~~~ + +The sched_switch tracepoint is used to provide side-band data for Intel PT +decoding in kernels where the PERF_RECORD_SWITCH metadata event isn't +available. + +The sched_switch events are automatically added. e.g. the second event shown +below: + + $ perf record -vv -e intel_pt//u uname + ------------------------------------------------------------ + perf_event_attr: + type 6 + size 112 + config 0x400 + { sample_period, sample_freq } 1 + sample_type IP|TID|TIME|CPU|IDENTIFIER + read_format ID + disabled 1 + inherit 1 + exclude_kernel 1 + exclude_hv 1 + enable_on_exec 1 + sample_id_all 1 + ------------------------------------------------------------ + sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 + ------------------------------------------------------------ + perf_event_attr: + type 2 + size 112 + config 0x108 + { sample_period, sample_freq } 1 + sample_type IP|TID|TIME|CPU|PERIOD|RAW|IDENTIFIER + read_format ID + inherit 1 + sample_id_all 1 + exclude_guest 1 + ------------------------------------------------------------ + sys_perf_event_open: pid -1 cpu 0 group_fd -1 flags 0x8 + sys_perf_event_open: pid -1 cpu 1 group_fd -1 flags 0x8 + sys_perf_event_open: pid -1 cpu 2 group_fd -1 flags 0x8 + sys_perf_event_open: pid -1 cpu 3 group_fd -1 flags 0x8 + ------------------------------------------------------------ + perf_event_attr: + type 1 + size 112 + config 0x9 + { sample_period, sample_freq } 1 + sample_type IP|TID|TIME|IDENTIFIER + read_format ID + disabled 1 + inherit 1 + exclude_kernel 1 + exclude_hv 1 + mmap 1 + comm 1 + enable_on_exec 1 + task 1 + sample_id_all 1 + mmap2 1 + comm_exec 1 + ------------------------------------------------------------ + sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 + sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 + mmap size 528384B + AUX area mmap length 4194304 + perf event ring buffer mmapped per cpu + Synthesizing auxtrace information + Linux + [ perf record: Woken up 1 times to write data ] + [ perf record: Captured and wrote 0.042 MB perf.data ] + +Note, the sched_switch event is only added if the user is permitted to use it +and only in per-cpu mode. + +Note also, the sched_switch event is only added if TSC packets are requested. +That is because, in the absence of timing information, the sched_switch events +cannot be matched against the Intel PT trace. + + +perf script +----------- + +By default, perf script will decode trace data found in the perf.data file. +This can be further controlled by new option --itrace. + + +New --itrace option +~~~~~~~~~~~~~~~~~~~ + +Having no option is the same as + + --itrace + +which, in turn, is the same as + + --itrace=cepwx + +The letters are: + + i synthesize "instructions" events + b synthesize "branches" events + x synthesize "transactions" events + w synthesize "ptwrite" events + p synthesize "power" events + c synthesize branches events (calls only) + r synthesize branches events (returns only) + e synthesize tracing error events + d create a debug log + g synthesize a call chain (use with i or x) + l synthesize last branch entries (use with i or x) + s skip initial number of events + +"Instructions" events look like they were recorded by "perf record -e +instructions". + +"Branches" events look like they were recorded by "perf record -e branches". "c" +and "r" can be combined to get calls and returns. + +"Transactions" events correspond to the start or end of transactions. The +'flags' field can be used in perf script to determine whether the event is a +tranasaction start, commit or abort. + +Note that "instructions", "branches" and "transactions" events depend on code +flow packets which can be disabled by using the config term "branch=0". Refer +to the config terms section above. + +"ptwrite" events record the payload of the ptwrite instruction and whether +"fup_on_ptw" was used. "ptwrite" events depend on PTWRITE packets which are +recorded only if the "ptw" config term was used. Refer to the config terms +section above. perf script "synth" field displays "ptwrite" information like +this: "ip: 0 payload: 0x123456789abcdef0" where "ip" is 1 if "fup_on_ptw" was +used. + +"Power" events correspond to power event packets and CBR (core-to-bus ratio) +packets. While CBR packets are always recorded when tracing is enabled, power +event packets are recorded only if the "pwr_evt" config term was used. Refer to +the config terms section above. The power events record information about +C-state changes, whereas CBR is indicative of CPU frequency. perf script +"event,synth" fields display information like this: + cbr: cbr: 22 freq: 2189 MHz (200%) + mwait: hints: 0x60 extensions: 0x1 + pwre: hw: 0 cstate: 2 sub-cstate: 0 + exstop: ip: 1 + pwrx: deepest cstate: 2 last cstate: 2 wake reason: 0x4 +Where: + "cbr" includes the frequency and the percentage of maximum non-turbo + "mwait" shows mwait hints and extensions + "pwre" shows C-state transitions (to a C-state deeper than C0) and + whether initiated by hardware + "exstop" indicates execution stopped and whether the IP was recorded + exactly, + "pwrx" indicates return to C0 +For more details refer to the Intel 64 and IA-32 Architectures Software +Developer Manuals. + +Error events show where the decoder lost the trace. Error events +are quite important. Users must know if what they are seeing is a complete +picture or not. + +The "d" option will cause the creation of a file "intel_pt.log" containing all +decoded packets and instructions. Note that this option slows down the decoder +and that the resulting file may be very large. + +In addition, the period of the "instructions" event can be specified. e.g. + + --itrace=i10us + +sets the period to 10us i.e. one instruction sample is synthesized for each 10 +microseconds of trace. Alternatives to "us" are "ms" (milliseconds), +"ns" (nanoseconds), "t" (TSC ticks) or "i" (instructions). + +"ms", "us" and "ns" are converted to TSC ticks. + +The timing information included with Intel PT does not give the time of every +instruction. Consequently, for the purpose of sampling, the decoder estimates +the time since the last timing packet based on 1 tick per instruction. The time +on the sample is *not* adjusted and reflects the last known value of TSC. + +For Intel PT, the default period is 100us. + +Setting it to a zero period means "as often as possible". + +In the case of Intel PT that is the same as a period of 1 and a unit of +'instructions' (i.e. --itrace=i1i). + +Also the call chain size (default 16, max. 1024) for instructions or +transactions events can be specified. e.g. + + --itrace=ig32 + --itrace=xg32 + +Also the number of last branch entries (default 64, max. 1024) for instructions or +transactions events can be specified. e.g. + + --itrace=il10 + --itrace=xl10 + +Note that last branch entries are cleared for each sample, so there is no overlap +from one sample to the next. + +To disable trace decoding entirely, use the option --no-itrace. + +It is also possible to skip events generated (instructions, branches, transactions) +at the beginning. This is useful to ignore initialization code. + + --itrace=i0nss1000000 + +skips the first million instructions. + +dump option +~~~~~~~~~~~ + +perf script has an option (-D) to "dump" the events i.e. display the binary +data. + +When -D is used, Intel PT packets are displayed. The packet decoder does not +pay attention to PSB packets, but just decodes the bytes - so the packets seen +by the actual decoder may not be identical in places where the data is corrupt. +One example of that would be when the buffer-switching interrupt has been too +slow, and the buffer has been filled completely. In that case, the last packet +in the buffer might be truncated and immediately followed by a PSB as the trace +continues in the next buffer. + +To disable the display of Intel PT packets, combine the -D option with +--no-itrace. + + +perf report +----------- + +By default, perf report will decode trace data found in the perf.data file. +This can be further controlled by new option --itrace exactly the same as +perf script, with the exception that the default is --itrace=igxe. + + +perf inject +----------- + +perf inject also accepts the --itrace option in which case tracing data is +removed and replaced with the synthesized events. e.g. + + perf inject --itrace -i perf.data -o perf.data.new + +Below is an example of using Intel PT with autofdo. It requires autofdo +(https://github.com/google/autofdo) and gcc version 5. The bubble +sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial) +amended to take the number of elements as a parameter. + + $ gcc-5 -O3 sort.c -o sort_optimized + $ ./sort_optimized 30000 + Bubble sorting array of 30000 elements + 2254 ms + + $ cat ~/.perfconfig + [intel-pt] + mispred-all = on + + $ perf record -e intel_pt//u ./sort 3000 + Bubble sorting array of 3000 elements + 58 ms + [ perf record: Woken up 2 times to write data ] + [ perf record: Captured and wrote 3.939 MB perf.data ] + $ perf inject -i perf.data -o inj --itrace=i100usle --strip + $ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1 + $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo + $ ./sort_autofdo 30000 + Bubble sorting array of 30000 elements + 2155 ms + +Note there is currently no advantage to using Intel PT instead of LBR, but +that may change in the future if greater use is made of the data. + + +PEBS via Intel PT +----------------- + +Some hardware has the feature to redirect PEBS records to the Intel PT trace. +Recording is selected by using the aux-output config term e.g. + + perf record -c 10000 -e '{intel_pt/branch=0/,cycles/aux-output/ppp}' uname + +Note that currently, software only supports redirecting at most one PEBS event. + +To display PEBS events from the Intel PT trace, use the itrace 'o' option e.g. + + perf script --itrace=oe -- cgit v1.2.3 From 870d325b15fb31af031cec58b89c1fb099a94bc7 Mon Sep 17 00:00:00 2001 From: Adrian Hunter Date: Wed, 11 Mar 2020 14:20:33 +0200 Subject: perf intel-pt: Add Intel PT man page references Add references to Intel PT man page in man pages of associated tools. Signed-off-by: Adrian Hunter Tested-by: Arnaldo Carvalho de Melo Cc: Andi Kleen Cc: Jiri Olsa Link: http://lore.kernel.org/lkml/20200311122034.3697-3-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/Documentation/perf-inject.txt | 3 ++- tools/perf/Documentation/perf-intel-pt.txt | 7 +++++++ tools/perf/Documentation/perf-record.txt | 2 +- tools/perf/Documentation/perf-report.txt | 3 ++- tools/perf/Documentation/perf-script.txt | 2 +- 5 files changed, 13 insertions(+), 4 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/Documentation/perf-inject.txt b/tools/perf/Documentation/perf-inject.txt index a64d6588470e..70969ea73e01 100644 --- a/tools/perf/Documentation/perf-inject.txt +++ b/tools/perf/Documentation/perf-inject.txt @@ -66,4 +66,5 @@ include::itrace.txt[] SEE ALSO -------- -linkperf:perf-record[1], linkperf:perf-report[1], linkperf:perf-archive[1] +linkperf:perf-record[1], linkperf:perf-report[1], linkperf:perf-archive[1], +linkperf:perf-intel-pt[1] diff --git a/tools/perf/Documentation/perf-intel-pt.txt b/tools/perf/Documentation/perf-intel-pt.txt index 7d743a98a9c1..456fdcbf26ac 100644 --- a/tools/perf/Documentation/perf-intel-pt.txt +++ b/tools/perf/Documentation/perf-intel-pt.txt @@ -998,3 +998,10 @@ Note that currently, software only supports redirecting at most one PEBS event. To display PEBS events from the Intel PT trace, use the itrace 'o' option e.g. perf script --itrace=oe + + +SEE ALSO +-------- + +linkperf:perf-record[1], linkperf:perf-script[1], linkperf:perf-report[1], +linkperf:perf-inject[1] diff --git a/tools/perf/Documentation/perf-record.txt b/tools/perf/Documentation/perf-record.txt index b23a4012a606..7f4db7592467 100644 --- a/tools/perf/Documentation/perf-record.txt +++ b/tools/perf/Documentation/perf-record.txt @@ -589,4 +589,4 @@ appended unit character - B/K/M/G SEE ALSO -------- -linkperf:perf-stat[1], linkperf:perf-list[1] +linkperf:perf-stat[1], linkperf:perf-list[1], linkperf:perf-intel-pt[1] diff --git a/tools/perf/Documentation/perf-report.txt b/tools/perf/Documentation/perf-report.txt index db61f16ffa56..bd0a029d4c08 100644 --- a/tools/perf/Documentation/perf-report.txt +++ b/tools/perf/Documentation/perf-report.txt @@ -546,4 +546,5 @@ include::callchain-overhead-calculation.txt[] SEE ALSO -------- -linkperf:perf-stat[1], linkperf:perf-annotate[1], linkperf:perf-record[1] +linkperf:perf-stat[1], linkperf:perf-annotate[1], linkperf:perf-record[1], +linkperf:perf-intel-pt[1] diff --git a/tools/perf/Documentation/perf-script.txt b/tools/perf/Documentation/perf-script.txt index 2599b057e47b..db6a36aac47e 100644 --- a/tools/perf/Documentation/perf-script.txt +++ b/tools/perf/Documentation/perf-script.txt @@ -429,4 +429,4 @@ include::itrace.txt[] SEE ALSO -------- linkperf:perf-record[1], linkperf:perf-script-perl[1], -linkperf:perf-script-python[1] +linkperf:perf-script-python[1], linkperf:perf-intel-pt[1] -- cgit v1.2.3 From ec2eab9deb8009fd8c69d61d04c66b77d438f17d Mon Sep 17 00:00:00 2001 From: Adrian Hunter Date: Wed, 11 Mar 2020 14:20:34 +0200 Subject: perf intel-pt: Update intel-pt.txt file with new location of the documentation Make it easy for people looking in intel-pt.txt to find the new file. Signed-off-by: Adrian Hunter Tested-by: Arnaldo Carvalho de Melo Cc: Andi Kleen Cc: Jiri Olsa Link: http://lore.kernel.org/lkml/20200311122034.3697-4-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/Documentation/intel-pt.txt | 1 + 1 file changed, 1 insertion(+) create mode 100644 tools/perf/Documentation/intel-pt.txt (limited to 'tools/perf') diff --git a/tools/perf/Documentation/intel-pt.txt b/tools/perf/Documentation/intel-pt.txt new file mode 100644 index 000000000000..fd9241a1b987 --- /dev/null +++ b/tools/perf/Documentation/intel-pt.txt @@ -0,0 +1 @@ +Documentation for support for Intel Processor Trace within perf tools' has moved to file perf-intel-pt.txt -- cgit v1.2.3 From 67439d555f7d46349deef56886129da96bd15744 Mon Sep 17 00:00:00 2001 From: Michael Petlan Date: Wed, 11 Mar 2020 14:28:36 +0100 Subject: perf scripting perl: Add common_callchain to fix argument order Since common_callchain has been added to the argument array, we need to reflect it in perl-based scripts, because otherwise the following args would be shifted and thus incorrect. E.g. rw-by-pid and calculation of read and written bytes: Before: read counts by pid: pid comm # reads bytes_requested bytes_read ------ -------------------- ----------- ---------- ---------- 19301 dd 4 424510450039736 0 After: read counts by pid: pid comm # reads bytes_requested bytes_read ------ -------------------- ----------- ---------- ---------- 19301 dd 4 9536 4341 Committer testing: To see before after first do: # perf script record rw-by-pid ^C Now you'll have a perf.data file to report on, then do before and after using: # perf script report rw-by-pid Anbd notice the bytes_request/bytes_read, as above. Signed-off-by: Michael Petlan Tested-by: Arnaldo Carvalho de Melo Cc: Benjamin Salon Cc: Jiri Olsa LPU-Reference: 20200311132836.12693-1-mpetlan@redhat.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/scripts/perl/check-perf-trace.pl | 6 +++--- tools/perf/scripts/perl/failed-syscalls.pl | 2 +- tools/perf/scripts/perl/rw-by-file.pl | 6 +++--- tools/perf/scripts/perl/rw-by-pid.pl | 10 +++++----- tools/perf/scripts/perl/rwtop.pl | 10 +++++----- tools/perf/scripts/perl/wakeup-latency.pl | 6 +++--- 6 files changed, 20 insertions(+), 20 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/scripts/perl/check-perf-trace.pl b/tools/perf/scripts/perl/check-perf-trace.pl index 4e7076c20616..d307ce8fd6ed 100644 --- a/tools/perf/scripts/perl/check-perf-trace.pl +++ b/tools/perf/scripts/perl/check-perf-trace.pl @@ -28,7 +28,7 @@ sub trace_end sub irq::softirq_entry { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $vec) = @_; print_header($event_name, $common_cpu, $common_secs, $common_nsecs, @@ -43,7 +43,7 @@ sub irq::softirq_entry sub kmem::kmalloc { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $call_site, $ptr, $bytes_req, $bytes_alloc, $gfp_flags) = @_; @@ -92,7 +92,7 @@ sub print_unhandled sub trace_unhandled { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm) = @_; + $common_pid, $common_comm, $common_callchain) = @_; $unhandled{$event_name}++; } diff --git a/tools/perf/scripts/perl/failed-syscalls.pl b/tools/perf/scripts/perl/failed-syscalls.pl index 55e7ae4c5c88..05954a8f363a 100644 --- a/tools/perf/scripts/perl/failed-syscalls.pl +++ b/tools/perf/scripts/perl/failed-syscalls.pl @@ -18,7 +18,7 @@ my %failed_syscalls; sub raw_syscalls::sys_exit { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $id, $ret) = @_; if ($ret < 0) { diff --git a/tools/perf/scripts/perl/rw-by-file.pl b/tools/perf/scripts/perl/rw-by-file.pl index 168fa5e94b44..92a750b8552b 100644 --- a/tools/perf/scripts/perl/rw-by-file.pl +++ b/tools/perf/scripts/perl/rw-by-file.pl @@ -28,7 +28,7 @@ my %writes; sub syscalls::sys_enter_read { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, $nr, $fd, $buf, $count) = @_; + $common_pid, $common_comm, $common_callchain, $nr, $fd, $buf, $count) = @_; if ($common_comm eq $for_comm) { $reads{$fd}{bytes_requested} += $count; @@ -39,7 +39,7 @@ sub syscalls::sys_enter_read sub syscalls::sys_enter_write { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, $nr, $fd, $buf, $count) = @_; + $common_pid, $common_comm, $common_callchain, $nr, $fd, $buf, $count) = @_; if ($common_comm eq $for_comm) { $writes{$fd}{bytes_written} += $count; @@ -98,7 +98,7 @@ sub print_unhandled sub trace_unhandled { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm) = @_; + $common_pid, $common_comm, $common_callchain) = @_; $unhandled{$event_name}++; } diff --git a/tools/perf/scripts/perl/rw-by-pid.pl b/tools/perf/scripts/perl/rw-by-pid.pl index 495698250b2f..d789fe39caab 100644 --- a/tools/perf/scripts/perl/rw-by-pid.pl +++ b/tools/perf/scripts/perl/rw-by-pid.pl @@ -24,7 +24,7 @@ my %writes; sub syscalls::sys_exit_read { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $nr, $ret) = @_; if ($ret > 0) { @@ -40,7 +40,7 @@ sub syscalls::sys_exit_read sub syscalls::sys_enter_read { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $nr, $fd, $buf, $count) = @_; $reads{$common_pid}{bytes_requested} += $count; @@ -51,7 +51,7 @@ sub syscalls::sys_enter_read sub syscalls::sys_exit_write { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $nr, $ret) = @_; if ($ret <= 0) { @@ -62,7 +62,7 @@ sub syscalls::sys_exit_write sub syscalls::sys_enter_write { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $nr, $fd, $buf, $count) = @_; $writes{$common_pid}{bytes_written} += $count; @@ -178,7 +178,7 @@ sub print_unhandled sub trace_unhandled { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm) = @_; + $common_pid, $common_comm, $common_callchain) = @_; $unhandled{$event_name}++; } diff --git a/tools/perf/scripts/perl/rwtop.pl b/tools/perf/scripts/perl/rwtop.pl index 6473442568a2..eba4df67af6b 100644 --- a/tools/perf/scripts/perl/rwtop.pl +++ b/tools/perf/scripts/perl/rwtop.pl @@ -35,7 +35,7 @@ if (!$interval) { sub syscalls::sys_exit_read { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $nr, $ret) = @_; print_check(); @@ -53,7 +53,7 @@ sub syscalls::sys_exit_read sub syscalls::sys_enter_read { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $nr, $fd, $buf, $count) = @_; print_check(); @@ -66,7 +66,7 @@ sub syscalls::sys_enter_read sub syscalls::sys_exit_write { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $nr, $ret) = @_; print_check(); @@ -79,7 +79,7 @@ sub syscalls::sys_exit_write sub syscalls::sys_enter_write { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $nr, $fd, $buf, $count) = @_; print_check(); @@ -197,7 +197,7 @@ sub print_unhandled sub trace_unhandled { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm) = @_; + $common_pid, $common_comm, $common_callchain) = @_; $unhandled{$event_name}++; } diff --git a/tools/perf/scripts/perl/wakeup-latency.pl b/tools/perf/scripts/perl/wakeup-latency.pl index efcfec5e347a..53444ff4ec7f 100644 --- a/tools/perf/scripts/perl/wakeup-latency.pl +++ b/tools/perf/scripts/perl/wakeup-latency.pl @@ -28,7 +28,7 @@ my $total_wakeups = 0; sub sched::sched_switch { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $prev_comm, $prev_pid, $prev_prio, $prev_state, $next_comm, $next_pid, $next_prio) = @_; @@ -51,7 +51,7 @@ sub sched::sched_switch sub sched::sched_wakeup { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm, + $common_pid, $common_comm, $common_callchain, $comm, $pid, $prio, $success, $target_cpu) = @_; $last_wakeup{$target_cpu}{ts} = nsecs($common_secs, $common_nsecs); @@ -101,7 +101,7 @@ sub print_unhandled sub trace_unhandled { my ($event_name, $context, $common_cpu, $common_secs, $common_nsecs, - $common_pid, $common_comm) = @_; + $common_pid, $common_comm, $common_callchain) = @_; $unhandled{$event_name}++; } -- cgit v1.2.3 From 44d462acc0bf3eabe1522471fd1f683d8ce612cb Mon Sep 17 00:00:00 2001 From: Alexey Budankov Date: Thu, 12 Mar 2020 15:21:45 +0300 Subject: perf record: Fix binding of AIO user space buffers to nodes Correct maxnode parameter value passed to mbind() syscall to be the amount of node mask bits to analyze plus 1. Dynamically allocate node mask memory depending on the index of node of cpu being profiled. Fixes: c44a8b44ca9f ("perf record: Bind the AIO user space buffers to nodes") Signed-off-by: Alexey Budankov Cc: Alexander Shishkin Cc: Andi Kleen Cc: Jiri Olsa Cc: Namhyung Kim Cc: Peter Zijlstra Link: http://lore.kernel.org/lkml/c7ea8ffe-1357-bf9e-3a89-1da1d8e9b75b@linux.intel.com [ Remove leftover nr_bits + 1 comment in mbind() call ] Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/mmap.c | 21 +++++++++++++++------ 1 file changed, 15 insertions(+), 6 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/mmap.c b/tools/perf/util/mmap.c index 3b664fa673a6..ab7108d22428 100644 --- a/tools/perf/util/mmap.c +++ b/tools/perf/util/mmap.c @@ -98,20 +98,29 @@ static int perf_mmap__aio_bind(struct mmap *map, int idx, int cpu, int affinity) { void *data; size_t mmap_len; - unsigned long node_mask; + unsigned long *node_mask; + unsigned long node_index; + int err = 0; if (affinity != PERF_AFFINITY_SYS && cpu__max_node() > 1) { data = map->aio.data[idx]; mmap_len = mmap__mmap_len(map); - node_mask = 1UL << cpu__get_node(cpu); - if (mbind(data, mmap_len, MPOL_BIND, &node_mask, 1, 0)) { - pr_err("Failed to bind [%p-%p] AIO buffer to node %d: error %m\n", - data, data + mmap_len, cpu__get_node(cpu)); + node_index = cpu__get_node(cpu); + node_mask = bitmap_alloc(node_index + 1); + if (!node_mask) { + pr_err("Failed to allocate node mask for mbind: error %m\n"); return -1; } + set_bit(node_index, node_mask); + if (mbind(data, mmap_len, MPOL_BIND, node_mask, node_index + 1 + 1, 0)) { + pr_err("Failed to bind [%p-%p] AIO buffer to node %lu: error %m\n", + data, data + mmap_len, node_index); + err = -1; + } + bitmap_free(node_mask); } - return 0; + return err; } #else /* !HAVE_LIBNUMA_SUPPORT */ static int perf_mmap__aio_alloc(struct mmap *map, int idx) -- cgit v1.2.3 From b2bf6660709c3bdd92d7558f4aa3cf07c0b0dda8 Mon Sep 17 00:00:00 2001 From: Ian Rogers Date: Thu, 12 Mar 2020 17:56:02 -0700 Subject: perf test: Print if shell directory isn't present If the shell test directory isn't present the exit code will be 255 but with no error messages printed. Add an error message. Signed-off-by: Ian Rogers Acked-by: Jiri Olsa Cc: Adrian Hunter Cc: Alexander Shishkin Cc: Andi Kleen Cc: Leo Yan Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Stephane Eranian Link: http://lore.kernel.org/lkml/20200313005602.45236-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/tests/builtin-test.c | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'tools/perf') diff --git a/tools/perf/tests/builtin-test.c b/tools/perf/tests/builtin-test.c index 5f05db75cdd8..54d9516c9839 100644 --- a/tools/perf/tests/builtin-test.c +++ b/tools/perf/tests/builtin-test.c @@ -543,8 +543,11 @@ static int run_shell_tests(int argc, const char *argv[], int i, int width) return -1; dir = opendir(st.dir); - if (!dir) + if (!dir) { + pr_err("failed to open shell test directory: %s\n", + st.dir); return -1; + } for_each_shell_test(dir, st.dir, ent) { int curr = i++; -- cgit v1.2.3 From 3b7a15b0643d42e4dca78c5aed8f1ad209a3d1ab Mon Sep 17 00:00:00 2001 From: Ian Rogers Date: Thu, 12 Mar 2020 22:31:29 -0700 Subject: perf tools: Give synthetic mmap events an inode generation When mmap2 events are synthesized the ino_generation field isn't being set leading to uninitialized memory being compared. Caught with clang's -fsanitize=memory: ==124733==WARNING: MemorySanitizer: use-of-uninitialized-value #0 0x55a96a6a65cc in __dso_id__cmp tools/perf/util/dsos.c:23:6 #1 0x55a96a6a81d5 in dso_id__cmp tools/perf/util/dsos.c:38:9 #2 0x55a96a6a717f in __dso__cmp_long_name tools/perf/util/dsos.c:74:15 #3 0x55a96a6a6c4c in __dsos__findnew_link_by_longname_id tools/perf/util/dsos.c:106:12 #4 0x55a96a6a851e in __dsos__findnew_by_longname_id tools/perf/util/dsos.c:178:9 #5 0x55a96a6a7798 in __dsos__find_id tools/perf/util/dsos.c:191:9 #6 0x55a96a6a7b57 in __dsos__findnew_id tools/perf/util/dsos.c:251:20 #7 0x55a96a6a7a57 in dsos__findnew_id tools/perf/util/dsos.c:259:17 #8 0x55a96a7776ae in machine__findnew_dso_id tools/perf/util/machine.c:2709:9 #9 0x55a96a77dfcf in map__new tools/perf/util/map.c:193:10 #10 0x55a96a77240a in machine__process_mmap2_event tools/perf/util/machine.c:1670:8 #11 0x55a96a7741a3 in machine__process_event tools/perf/util/machine.c:1882:9 #12 0x55a96a6aee39 in perf_event__process tools/perf/util/event.c:454:9 #13 0x55a96a87d633 in perf_tool__process_synth_event tools/perf/util/synthetic-events.c:63:9 #14 0x55a96a87f131 in perf_event__synthesize_mmap_events tools/perf/util/synthetic-events.c:403:7 #15 0x55a96a8815d6 in __event__synthesize_thread tools/perf/util/synthetic-events.c:548:9 #16 0x55a96a882bff in __perf_event__synthesize_threads tools/perf/util/synthetic-events.c:681:3 #17 0x55a96a881ec2 in perf_event__synthesize_threads tools/perf/util/synthetic-events.c:750:9 #18 0x55a96a562b26 in synth_all tools/perf/tests/mmap-thread-lookup.c:136:9 #19 0x55a96a5623b1 in mmap_events tools/perf/tests/mmap-thread-lookup.c:174:8 #20 0x55a96a561fa0 in test__mmap_thread_lookup tools/perf/tests/mmap-thread-lookup.c:230:2 #21 0x55a96a52c182 in run_test tools/perf/tests/builtin-test.c:378:9 #22 0x55a96a52afc1 in test_and_print tools/perf/tests/builtin-test.c:408:9 #23 0x55a96a52966e in __cmd_test tools/perf/tests/builtin-test.c:603:4 #24 0x55a96a52855d in cmd_test tools/perf/tests/builtin-test.c:747:9 #25 0x55a96a2844d4 in run_builtin tools/perf/perf.c:312:11 #26 0x55a96a282bd0 in handle_internal_command tools/perf/perf.c:364:8 #27 0x55a96a284097 in run_argv tools/perf/perf.c:408:2 #28 0x55a96a282223 in main tools/perf/perf.c:538:3 Uninitialized value was stored to memory at #1 0x55a96a6a18f7 in dso__new_id tools/perf/util/dso.c:1230:14 #2 0x55a96a6a78ee in __dsos__addnew_id tools/perf/util/dsos.c:233:20 #3 0x55a96a6a7bcc in __dsos__findnew_id tools/perf/util/dsos.c:252:21 #4 0x55a96a6a7a57 in dsos__findnew_id tools/perf/util/dsos.c:259:17 #5 0x55a96a7776ae in machine__findnew_dso_id tools/perf/util/machine.c:2709:9 #6 0x55a96a77dfcf in map__new tools/perf/util/map.c:193:10 #7 0x55a96a77240a in machine__process_mmap2_event tools/perf/util/machine.c:1670:8 #8 0x55a96a7741a3 in machine__process_event tools/perf/util/machine.c:1882:9 #9 0x55a96a6aee39 in perf_event__process tools/perf/util/event.c:454:9 #10 0x55a96a87d633 in perf_tool__process_synth_event tools/perf/util/synthetic-events.c:63:9 #11 0x55a96a87f131 in perf_event__synthesize_mmap_events tools/perf/util/synthetic-events.c:403:7 #12 0x55a96a8815d6 in __event__synthesize_thread tools/perf/util/synthetic-events.c:548:9 #13 0x55a96a882bff in __perf_event__synthesize_threads tools/perf/util/synthetic-events.c:681:3 #14 0x55a96a881ec2 in perf_event__synthesize_threads tools/perf/util/synthetic-events.c:750:9 #15 0x55a96a562b26 in synth_all tools/perf/tests/mmap-thread-lookup.c:136:9 #16 0x55a96a5623b1 in mmap_events tools/perf/tests/mmap-thread-lookup.c:174:8 #17 0x55a96a561fa0 in test__mmap_thread_lookup tools/perf/tests/mmap-thread-lookup.c:230:2 #18 0x55a96a52c182 in run_test tools/perf/tests/builtin-test.c:378:9 #19 0x55a96a52afc1 in test_and_print tools/perf/tests/builtin-test.c:408:9 Uninitialized value was stored to memory at #0 0x55a96a7725af in machine__process_mmap2_event tools/perf/util/machine.c:1646:25 #1 0x55a96a7741a3 in machine__process_event tools/perf/util/machine.c:1882:9 #2 0x55a96a6aee39 in perf_event__process tools/perf/util/event.c:454:9 #3 0x55a96a87d633 in perf_tool__process_synth_event tools/perf/util/synthetic-events.c:63:9 #4 0x55a96a87f131 in perf_event__synthesize_mmap_events tools/perf/util/synthetic-events.c:403:7 #5 0x55a96a8815d6 in __event__synthesize_thread tools/perf/util/synthetic-events.c:548:9 #6 0x55a96a882bff in __perf_event__synthesize_threads tools/perf/util/synthetic-events.c:681:3 #7 0x55a96a881ec2 in perf_event__synthesize_threads tools/perf/util/synthetic-events.c:750:9 #8 0x55a96a562b26 in synth_all tools/perf/tests/mmap-thread-lookup.c:136:9 #9 0x55a96a5623b1 in mmap_events tools/perf/tests/mmap-thread-lookup.c:174:8 #10 0x55a96a561fa0 in test__mmap_thread_lookup tools/perf/tests/mmap-thread-lookup.c:230:2 #11 0x55a96a52c182 in run_test tools/perf/tests/builtin-test.c:378:9 #12 0x55a96a52afc1 in test_and_print tools/perf/tests/builtin-test.c:408:9 #13 0x55a96a52966e in __cmd_test tools/perf/tests/builtin-test.c:603:4 #14 0x55a96a52855d in cmd_test tools/perf/tests/builtin-test.c:747:9 #15 0x55a96a2844d4 in run_builtin tools/perf/perf.c:312:11 #16 0x55a96a282bd0 in handle_internal_command tools/perf/perf.c:364:8 #17 0x55a96a284097 in run_argv tools/perf/perf.c:408:2 #18 0x55a96a282223 in main tools/perf/perf.c:538:3 Uninitialized value was created by a heap allocation #0 0x55a96a22f60d in malloc llvm/llvm-project/compiler-rt/lib/msan/msan_interceptors.cpp:925:3 #1 0x55a96a882948 in __perf_event__synthesize_threads tools/perf/util/synthetic-events.c:655:15 #2 0x55a96a881ec2 in perf_event__synthesize_threads tools/perf/util/synthetic-events.c:750:9 #3 0x55a96a562b26 in synth_all tools/perf/tests/mmap-thread-lookup.c:136:9 #4 0x55a96a5623b1 in mmap_events tools/perf/tests/mmap-thread-lookup.c:174:8 #5 0x55a96a561fa0 in test__mmap_thread_lookup tools/perf/tests/mmap-thread-lookup.c:230:2 #6 0x55a96a52c182 in run_test tools/perf/tests/builtin-test.c:378:9 #7 0x55a96a52afc1 in test_and_print tools/perf/tests/builtin-test.c:408:9 #8 0x55a96a52966e in __cmd_test tools/perf/tests/builtin-test.c:603:4 #9 0x55a96a52855d in cmd_test tools/perf/tests/builtin-test.c:747:9 #10 0x55a96a2844d4 in run_builtin tools/perf/perf.c:312:11 #11 0x55a96a282bd0 in handle_internal_command tools/perf/perf.c:364:8 #12 0x55a96a284097 in run_argv tools/perf/perf.c:408:2 #13 0x55a96a282223 in main tools/perf/perf.c:538:3 SUMMARY: MemorySanitizer: use-of-uninitialized-value tools/perf/util/dsos.c:23:6 in __dso_id__cmp Signed-off-by: Ian Rogers Acked-by: Jiri Olsa Cc: Alexander Shishkin Cc: Mark Rutland Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Stephane Eranian Cc: clang-built-linux@googlegroups.com Link: http://lore.kernel.org/lkml/20200313053129.131264-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/synthetic-events.c | 1 + 1 file changed, 1 insertion(+) (limited to 'tools/perf') diff --git a/tools/perf/util/synthetic-events.c b/tools/perf/util/synthetic-events.c index dd3e6f43fb86..3f28af39f9c6 100644 --- a/tools/perf/util/synthetic-events.c +++ b/tools/perf/util/synthetic-events.c @@ -345,6 +345,7 @@ int perf_event__synthesize_mmap_events(struct perf_tool *tool, continue; event->mmap2.ino = (u64)ino; + event->mmap2.ino_generation = 0; /* * Just like the kernel, see __perf_event_mmap in kernel/perf_event.c -- cgit v1.2.3 From c3b10649a80e9da2892c1fd3038c53abd57588f6 Mon Sep 17 00:00:00 2001 From: Jin Yao Date: Fri, 13 Mar 2020 21:46:07 +0800 Subject: perf report: Fix no branch type statistics report issue Previously we could get the report of branch type statistics. For example: # perf record -j any,save_type ... # t perf report --stdio # # Branch Statistics: # COND_FWD: 40.6% COND_BWD: 4.1% CROSS_4K: 24.7% CROSS_2M: 12.3% COND: 44.7% UNCOND: 0.0% IND: 6.1% CALL: 24.5% RET: 24.7% But now for the recent perf, it can't report the branch type statistics. It's a regression issue caused by commit 40c39e304641 ("perf report: Fix a no annotate browser displayed issue"), which only counts the branch type statistics for browser mode. This patch moves the branch_type_count() outside of ui__has_annotation() checking, then branch type statistics can work for stdio mode. Fixes: 40c39e304641 ("perf report: Fix a no annotate browser displayed issue") Signed-off-by: Jin Yao Cc: Alexander Shishkin Cc: Andi Kleen Cc: Jiri Olsa Cc: Kan Liang Cc: Peter Zijlstra Link: http://lore.kernel.org/lkml/20200313134607.12873-1-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/builtin-report.c | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/builtin-report.c b/tools/perf/builtin-report.c index d7c905f7520f..5f4045df76f4 100644 --- a/tools/perf/builtin-report.c +++ b/tools/perf/builtin-report.c @@ -186,24 +186,23 @@ static int hist_iter__branch_callback(struct hist_entry_iter *iter, { struct hist_entry *he = iter->he; struct report *rep = arg; - struct branch_info *bi; + struct branch_info *bi = he->branch_info; struct perf_sample *sample = iter->sample; struct evsel *evsel = iter->evsel; int err; + branch_type_count(&rep->brtype_stat, &bi->flags, + bi->from.addr, bi->to.addr); + if (!ui__has_annotation() && !rep->symbol_ipc) return 0; - bi = he->branch_info; err = addr_map_symbol__inc_samples(&bi->from, sample, evsel); if (err) goto out; err = addr_map_symbol__inc_samples(&bi->to, sample, evsel); - branch_type_count(&rep->brtype_stat, &bi->flags, - bi->from.addr, bi->to.addr); - out: return err; } -- cgit v1.2.3 From 59a08b4b3b1a9374adacd13cd7544c03e5582e0e Mon Sep 17 00:00:00 2001 From: Jiri Olsa Date: Sun, 15 Mar 2020 16:56:09 +0100 Subject: perf expr: Fix copy/paste mistake Copy/paste leftover from recent refactor. Fixes: 26226a97724d ("perf expr: Move expr lexer to flex") Signed-off-by: Jiri Olsa Cc: Alexander Shishkin Cc: Andi Kleen Cc: Kajol Jain Cc: Michael Petlan Cc: Namhyung Kim Cc: Peter Zijlstra Link: http://lore.kernel.org/lkml/20200315155609.603948-1-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/util/expr.l | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'tools/perf') diff --git a/tools/perf/util/expr.l b/tools/perf/util/expr.l index 1928f2a3dddc..eaad29243c23 100644 --- a/tools/perf/util/expr.l +++ b/tools/perf/util/expr.l @@ -79,10 +79,10 @@ symbol {spec}*{sym}*{spec}*{sym}* { int start_token; - start_token = parse_events_get_extra(yyscanner); + start_token = expr_get_extra(yyscanner); if (start_token) { - parse_events_set_extra(NULL, yyscanner); + expr_set_extra(NULL, yyscanner); return start_token; } } -- cgit v1.2.3