# SPDX-License-Identifier: GPL-2.0
#
# General architecture dependent options
#

#
# Note: arch/$(SRCARCH)/Kconfig needs to be included first so that it can
# override the default values in this file.
#
source "arch/$(SRCARCH)/Kconfig"

menu "General architecture-dependent options"

config ARCH_HAS_SUBPAGE_FAULTS
	bool
	help
	  Select if the architecture can check permissions at sub-page
	  granularity (e.g. arm64 MTE). The probe_user_*() functions
	  must be implemented.

config HOTPLUG_SMT
	bool

config SMT_NUM_THREADS_DYNAMIC
	bool

# Selected by HOTPLUG_CORE_SYNC_DEAD or HOTPLUG_CORE_SYNC_FULL
config HOTPLUG_CORE_SYNC
	bool

# Basic CPU dead synchronization selected by architecture
config HOTPLUG_CORE_SYNC_DEAD
	bool
	select HOTPLUG_CORE_SYNC

# Full CPU synchronization with alive state selected by architecture
config HOTPLUG_CORE_SYNC_FULL
	bool
	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
	select HOTPLUG_CORE_SYNC

config HOTPLUG_SPLIT_STARTUP
	bool
	select HOTPLUG_CORE_SYNC_FULL

config HOTPLUG_PARALLEL
	bool
	select HOTPLUG_SPLIT_STARTUP

config GENERIC_ENTRY
	bool

config KPROBES
	bool "Kprobes"
	depends on MODULES
	depends on HAVE_KPROBES
	select KALLSYMS
	select TASKS_RCU if PREEMPTION
	help
	  Kprobes allows you to trap at almost any kernel address and
	  execute a callback function.  register_kprobe() establishes
	  a probepoint and specifies the callback.  Kprobes is useful
	  for kernel debugging, non-intrusive instrumentation and testing.
	  If in doubt, say "N".

config JUMP_LABEL
	bool "Optimize very unlikely/likely branches"
	depends on HAVE_ARCH_JUMP_LABEL
	select OBJTOOL if HAVE_JUMP_LABEL_HACK
	help
	  This option enables a transparent branch optimization that
	  makes certain almost-always-true or almost-always-false branch
	  conditions even cheaper to execute within the kernel.

	  Certain performance-sensitive kernel code, such as trace points,
	  scheduler functionality, networking code and KVM have such
	  branches and include support for this optimization technique.

	  If it is detected that the compiler has support for "asm goto",
	  the kernel will compile such branches with just a nop
	  instruction. When the condition flag is toggled to true, the
	  nop will be converted to a jump instruction to execute the
	  conditional block of instructions.

	  This technique lowers overhead and stress on the branch prediction
	  of the processor and generally makes the kernel faster. The update
	  of the condition is slower, but those are always very rare.

	  ( On 32-bit x86, the necessary options added to the compiler
	    flags may increase the size of the kernel slightly. )

config STATIC_KEYS_SELFTEST
	bool "Static key selftest"
	depends on JUMP_LABEL
	help
	  Boot time self-test of the branch patching code.

config STATIC_CALL_SELFTEST
	bool "Static call selftest"
	depends on HAVE_STATIC_CALL
	help
	  Boot time self-test of the call patching code.

config OPTPROBES
	def_bool y
	depends on KPROBES && HAVE_OPTPROBES
	select TASKS_RCU if PREEMPTION

config KPROBES_ON_FTRACE
	def_bool y
	depends on KPROBES && HAVE_KPROBES_ON_FTRACE
	depends on DYNAMIC_FTRACE_WITH_REGS
	help
	  If function tracer is enabled and the arch supports full
	  passing of pt_regs to function tracing, then kprobes can
	  optimize on top of function tracing.

config UPROBES
	def_bool n
	depends on ARCH_SUPPORTS_UPROBES
	help
	  Uprobes is the user-space counterpart to kprobes: they
	  enable instrumentation applications (such as 'perf probe')
	  to establish unintrusive probes in user-space binaries and
	  libraries, by executing handler functions when the probes
	  are hit by user-space applications.

	  ( These probes come in the form of single-byte breakpoints,
	    managed by the kernel and kept transparent to the probed
	    application. )

config HAVE_64BIT_ALIGNED_ACCESS
	def_bool 64BIT && !HAVE_EFFICIENT_UNALIGNED_ACCESS
	help
	  Some architectures require 64 bit accesses to be 64 bit
	  aligned, which also requires structs containing 64 bit values
	  to be 64 bit aligned too. This includes some 32 bit
	  architectures which can do 64 bit accesses, as well as 64 bit
	  architectures without unaligned access.

	  This symbol should be selected by an architecture if 64 bit
	  accesses are required to be 64 bit aligned in this way even
	  though it is not a 64 bit architecture.

	  See Documentation/core-api/unaligned-memory-access.rst for
	  more information on the topic of unaligned memory accesses.

config HAVE_EFFICIENT_UNALIGNED_ACCESS
	bool
	help
	  Some architectures are unable to perform unaligned accesses
	  without the use of get_unaligned/put_unaligned. Others are
	  unable to perform such accesses efficiently (e.g. trap on
	  unaligned access and require fixing it up in the exception
	  handler.)

	  This symbol should be selected by an architecture if it can
	  perform unaligned accesses efficiently to allow different
	  code paths to be selected for these cases. Some network
	  drivers, for example, could opt to not fix up alignment
	  problems with received packets if doing so would not help
	  much.

	  See Documentation/core-api/unaligned-memory-access.rst for more
	  information on the topic of unaligned memory accesses.

config ARCH_USE_BUILTIN_BSWAP
	bool
	help
	  Modern versions of GCC (since 4.4) have builtin functions
	  for handling byte-swapping. Using these, instead of the old
	  inline assembler that the architecture code provides in the
	  __arch_bswapXX() macros, allows the compiler to see what's
	  happening and offers more opportunity for optimisation. In
	  particular, the compiler will be able to combine the byteswap
	  with a nearby load or store and use load-and-swap or
	  store-and-swap instructions if the architecture has them. It
	  should almost *never* result in code which is worse than the
	  hand-coded assembler in <asm/swab.h>.  But just in case it
	  does, the use of the builtins is optional.

	  Any architecture with load-and-swap or store-and-swap
	  instructions should set this. And it shouldn't hurt to set it
	  on architectures that don't have such instructions.

config KRETPROBES
	def_bool y
	depends on KPROBES && (HAVE_KRETPROBES || HAVE_RETHOOK)

config KRETPROBE_ON_RETHOOK
	def_bool y
	depends on HAVE_RETHOOK
	depends on KRETPROBES
	select RETHOOK

config USER_RETURN_NOTIFIER
	bool
	depends on HAVE_USER_RETURN_NOTIFIER
	help
	  Provide a kernel-internal notification when a cpu is about to
	  switch to user mode.

config HAVE_IOREMAP_PROT
	bool

config HAVE_KPROBES
	bool

config HAVE_KRETPROBES
	bool

config HAVE_OPTPROBES
	bool

config HAVE_KPROBES_ON_FTRACE
	bool

config ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
	bool
	help
	  Since kretprobes modifies return address on the stack, the
	  stacktrace may see the kretprobe trampoline address instead
	  of correct one. If the architecture stacktrace code and
	  unwinder can adjust such entries, select this configuration.

config HAVE_FUNCTION_ERROR_INJECTION
	bool

config HAVE_NMI
	bool

config HAVE_FUNCTION_DESCRIPTORS
	bool

config TRACE_IRQFLAGS_SUPPORT
	bool

config TRACE_IRQFLAGS_NMI_SUPPORT
	bool

#
# An arch should select this if it provides all these things:
#
#	task_pt_regs()		in asm/processor.h or asm/ptrace.h
#	arch_has_single_step()	if there is hardware single-step support
#	arch_has_block_step()	if there is hardware block-step support
#	asm/syscall.h		supplying asm-generic/syscall.h interface
#	linux/regset.h		user_regset interfaces
#	CORE_DUMP_USE_REGSET	#define'd in linux/elf.h
#	TIF_SYSCALL_TRACE	calls ptrace_report_syscall_{entry,exit}
#	TIF_NOTIFY_RESUME	calls resume_user_mode_work()
#
config HAVE_ARCH_TRACEHOOK
	bool

config HAVE_DMA_CONTIGUOUS
	bool

config GENERIC_SMP_IDLE_THREAD
	bool

config GENERIC_IDLE_POLL_SETUP
	bool

config ARCH_HAS_FORTIFY_SOURCE
	bool
	help
	  An architecture should select this when it can successfully
	  build and run with CONFIG_FORTIFY_SOURCE.

#
# Select if the arch provides a historic keepinit alias for the retain_initrd
# command line option
#
config ARCH_HAS_KEEPINITRD
	bool

# Select if arch has all set_memory_ro/rw/x/nx() functions in asm/cacheflush.h
config ARCH_HAS_SET_MEMORY
	bool

# Select if arch has all set_direct_map_invalid/default() functions
config ARCH_HAS_SET_DIRECT_MAP
	bool

#
# Select if the architecture provides the arch_dma_set_uncached symbol to
# either provide an uncached segment alias for a DMA allocation, or
# to remap the page tables in place.
#
config ARCH_HAS_DMA_SET_UNCACHED
	bool

#
# Select if the architectures provides the arch_dma_clear_uncached symbol
# to undo an in-place page table remap for uncached access.
#
config ARCH_HAS_DMA_CLEAR_UNCACHED
	bool

config ARCH_HAS_CPU_FINALIZE_INIT
	bool

# The architecture has a per-task state that includes the mm's PASID
config ARCH_HAS_CPU_PASID
	bool
	select IOMMU_MM_DATA

config HAVE_ARCH_THREAD_STRUCT_WHITELIST
	bool
	help
	  An architecture should select this to provide hardened usercopy
	  knowledge about what region of the thread_struct should be
	  whitelisted for copying to userspace. Normally this is only the
	  FPU registers. Specifically, arch_thread_struct_whitelist()
	  should be implemented. Without this, the entire thread_struct
	  field in task_struct will be left whitelisted.

# Select if arch wants to size task_struct dynamically via arch_task_struct_size:
config ARCH_WANTS_DYNAMIC_TASK_STRUCT
	bool

config ARCH_WANTS_NO_INSTR
	bool
	help
	  An architecture should select this if the noinstr macro is being used on
	  functions to denote that the toolchain should avoid instrumenting such
	  functions and is required for correctness.

config ARCH_32BIT_OFF_T
	bool
	depends on !64BIT
	help
	  All new 32-bit architectures should have 64-bit off_t type on
	  userspace side which corresponds to the loff_t kernel type. This
	  is the requirement for modern ABIs. Some existing architectures
	  still support 32-bit off_t. This option is enabled for all such
	  architectures explicitly.

# Selected by 64 bit architectures which have a 32 bit f_tinode in struct ustat
config ARCH_32BIT_USTAT_F_TINODE
	bool

config HAVE_ASM_MODVERSIONS
	bool
	help
	  This symbol should be selected by an architecture if it provides
	  <asm/asm-prototypes.h> to support the module versioning for symbols
	  exported from assembly code.

config HAVE_REGS_AND_STACK_ACCESS_API
	bool
	help
	  This symbol should be selected by an architecture if it supports
	  the API needed to access registers and stack entries from pt_regs,
	  declared in asm/ptrace.h
	  For example the kprobes-based event tracer needs this API.

config HAVE_RSEQ
	bool
	depends on HAVE_REGS_AND_STACK_ACCESS_API
	help
	  This symbol should be selected by an architecture if it
	  supports an implementation of restartable sequences.

config HAVE_RUST
	bool
	help
	  This symbol should be selected by an architecture if it
	  supports Rust.

config HAVE_FUNCTION_ARG_ACCESS_API
	bool
	help
	  This symbol should be selected by an architecture if it supports
	  the API needed to access function arguments from pt_regs,
	  declared in asm/ptrace.h

config HAVE_HW_BREAKPOINT
	bool
	depends on PERF_EVENTS

config HAVE_MIXED_BREAKPOINTS_REGS
	bool
	depends on HAVE_HW_BREAKPOINT
	help
	  Depending on the arch implementation of hardware breakpoints,
	  some of them have separate registers for data and instruction
	  breakpoints addresses, others have mixed registers to store
	  them but define the access type in a control register.
	  Select this option if your arch implements breakpoints under the
	  latter fashion.

config HAVE_USER_RETURN_NOTIFIER
	bool

config HAVE_PERF_EVENTS_NMI
	bool
	help
	  System hardware can generate an NMI using the perf event
	  subsystem.  Also has support for calculating CPU cycle events
	  to determine how many clock cycles in a given period.

config HAVE_HARDLOCKUP_DETECTOR_PERF
	bool
	depends on HAVE_PERF_EVENTS_NMI
	help
	  The arch chooses to use the generic perf-NMI-based hardlockup
	  detector. Must define HAVE_PERF_EVENTS_NMI.

config HAVE_HARDLOCKUP_DETECTOR_ARCH
	bool
	help
	  The arch provides its own hardlockup detector implementation instead
	  of the generic ones.

	  It uses the same command line parameters, and sysctl interface,
	  as the generic hardlockup detectors.

config HAVE_PERF_REGS
	bool
	help
	  Support selective register dumps for perf events. This includes
	  bit-mapping of each registers and a unique architecture id.

config HAVE_PERF_USER_STACK_DUMP
	bool
	help
	  Support user stack dumps for perf event samples. This needs
	  access to the user stack pointer which is not unified across
	  architectures.

config HAVE_ARCH_JUMP_LABEL
	bool

config HAVE_ARCH_JUMP_LABEL_RELATIVE
	bool

config MMU_GATHER_TABLE_FREE
	bool

config MMU_GATHER_RCU_TABLE_FREE
	bool
	select MMU_GATHER_TABLE_FREE

config MMU_GATHER_PAGE_SIZE
	bool

config MMU_GATHER_NO_RANGE
	bool
	select MMU_GATHER_MERGE_VMAS

config MMU_GATHER_NO_FLUSH_CACHE
	bool

config MMU_GATHER_MERGE_VMAS
	bool

config MMU_GATHER_NO_GATHER
	bool
	depends on MMU_GATHER_TABLE_FREE

config ARCH_WANT_IRQS_OFF_ACTIVATE_MM
	bool
	help
	  Temporary select until all architectures can be converted to have
	  irqs disabled over activate_mm. Architectures that do IPI based TLB
	  shootdowns should enable this.

# Use normal mm refcounting for MMU_LAZY_TLB kernel thread references.
# MMU_LAZY_TLB_REFCOUNT=n can improve the scalability of context switching
# to/from kernel threads when the same mm is running on a lot of CPUs (a large
# multi-threaded application), by reducing contention on the mm refcount.
#
# This can be disabled if the architecture ensures no CPUs are using an mm as a
# "lazy tlb" beyond its final refcount (i.e., by the time __mmdrop frees the mm
# or its kernel page tables). This could be arranged by arch_exit_mmap(), or
# final exit(2) TLB flush, for example.
#
# To implement this, an arch *must*:
# Ensure the _lazy_tlb variants of mmgrab/mmdrop are used when manipulating
# the lazy tlb reference of a kthread's ->active_mm (non-arch code has been
# converted already).
config MMU_LAZY_TLB_REFCOUNT
	def_bool y
	depends on !MMU_LAZY_TLB_SHOOTDOWN

# This option allows MMU_LAZY_TLB_REFCOUNT=n. It ensures no CPUs are using an
# mm as a lazy tlb beyond its last reference count, by shooting down these
# users before the mm is deallocated. __mmdrop() first IPIs all CPUs that may
# be using the mm as a lazy tlb, so that they may switch themselves to using
# init_mm for their active mm. mm_cpumask(mm) is used to determine which CPUs
# may be using mm as a lazy tlb mm.
#
# To implement this, an arch *must*:
# - At the time of the final mmdrop of the mm, ensure mm_cpumask(mm) contains
#   at least all possible CPUs in which the mm is lazy.
# - It must meet the requirements for MMU_LAZY_TLB_REFCOUNT=n (see above).
config MMU_LAZY_TLB_SHOOTDOWN
	bool

config ARCH_HAVE_NMI_SAFE_CMPXCHG
	bool

config ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
	bool

config HAVE_ALIGNED_STRUCT_PAGE
	bool
	help
	  This makes sure that struct pages are double word aligned and that
	  e.g. the SLUB allocator can perform double word atomic operations
	  on a struct page for better performance. However selecting this
	  might increase the size of a struct page by a word.

config HAVE_CMPXCHG_LOCAL
	bool

config HAVE_CMPXCHG_DOUBLE
	bool

config ARCH_WEAK_RELEASE_ACQUIRE
	bool

config ARCH_WANT_IPC_PARSE_VERSION
	bool

config ARCH_WANT_COMPAT_IPC_PARSE_VERSION
	bool

config ARCH_WANT_OLD_COMPAT_IPC
	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION
	bool

config HAVE_ARCH_SECCOMP
	bool
	help
	  An arch should select this symbol to support seccomp mode 1 (the fixed
	  syscall policy), and must provide an overrides for __NR_seccomp_sigreturn,
	  and compat syscalls if the asm-generic/seccomp.h defaults need adjustment:
	  - __NR_seccomp_read_32
	  - __NR_seccomp_write_32
	  - __NR_seccomp_exit_32
	  - __NR_seccomp_sigreturn_32

config HAVE_ARCH_SECCOMP_FILTER
	bool
	select HAVE_ARCH_SECCOMP
	help
	  An arch should select this symbol if it provides all of these things:
	  - all the requirements for HAVE_ARCH_SECCOMP
	  - syscall_get_arch()
	  - syscall_get_arguments()
	  - syscall_rollback()
	  - syscall_set_return_value()
	  - SIGSYS siginfo_t support
	  - secure_computing is called from a ptrace_event()-safe context
	  - secure_computing return value is checked and a return value of -1
	    results in the system call being skipped immediately.
	  - seccomp syscall wired up
	  - if !HAVE_SPARSE_SYSCALL_NR, have SECCOMP_ARCH_NATIVE,
	    SECCOMP_ARCH_NATIVE_NR, SECCOMP_ARCH_NATIVE_NAME defined. If
	    COMPAT is supported, have the SECCOMP_ARCH_COMPAT* defines too.

config SECCOMP
	prompt "Enable seccomp to safely execute untrusted bytecode"
	def_bool y
	depends on HAVE_ARCH_SECCOMP
	help
	  This kernel feature is useful for number crunching applications
	  that may need to handle untrusted bytecode during their
	  execution. By using pipes or other transports made available
	  to the process as file descriptors supporting the read/write
	  syscalls, it's possible to isolate those applications in their
	  own address space using seccomp. Once seccomp is enabled via
	  prctl(PR_SET_SECCOMP) or the seccomp() syscall, it cannot be
	  disabled and the task is only allowed to execute a few safe
	  syscalls defined by each seccomp mode.

	  If unsure, say Y.

config SECCOMP_FILTER
	def_bool y
	depends on HAVE_ARCH_SECCOMP_FILTER && SECCOMP && NET
	help
	  Enable tasks to build secure computing environments defined
	  in terms of Berkeley Packet Filter programs which implement
	  task-defined system call filtering polices.

	  See Documentation/userspace-api/seccomp_filter.rst for details.

config SECCOMP_CACHE_DEBUG
	bool "Show seccomp filter cache status in /proc/pid/seccomp_cache"
	depends on SECCOMP_FILTER && !HAVE_SPARSE_SYSCALL_NR
	depends on PROC_FS
	help
	  This enables the /proc/pid/seccomp_cache interface to monitor
	  seccomp cache data. The file format is subject to change. Reading
	  the file requires CAP_SYS_ADMIN.

	  This option is for debugging only. Enabling presents the risk that
	  an adversary may be able to infer the seccomp filter logic.

	  If unsure, say N.

config HAVE_ARCH_STACKLEAK
	bool
	help
	  An architecture should select this if it has the code which
	  fills the used part of the kernel stack with the STACKLEAK_POISON
	  value before returning from system calls.

config HAVE_STACKPROTECTOR
	bool
	help
	  An arch should select this symbol if:
	  - it has implemented a stack canary (e.g. __stack_chk_guard)

config STACKPROTECTOR
	bool "Stack Protector buffer overflow detection"
	depends on HAVE_STACKPROTECTOR
	depends on $(cc-option,-fstack-protector)
	default y
	help
	  This option turns on the "stack-protector" GCC feature. This
	  feature puts, at the beginning of functions, a canary value on
	  the stack just before the return address, and validates
	  the value just before actually returning.  Stack based buffer
	  overflows (that need to overwrite this return address) now also
	  overwrite the canary, which gets detected and the attack is then
	  neutralized via a kernel panic.

	  Functions will have the stack-protector canary logic added if they
	  have an 8-byte or larger character array on the stack.

	  This feature requires gcc version 4.2 or above, or a distribution
	  gcc with the feature backported ("-fstack-protector").

	  On an x86 "defconfig" build, this feature adds canary checks to
	  about 3% of all kernel functions, which increases kernel code size
	  by about 0.3%.

config STACKPROTECTOR_STRONG
	bool "Strong Stack Protector"
	depends on STACKPROTECTOR
	depends on $(cc-option,-fstack-protector-strong)
	default y
	help
	  Functions will have the stack-protector canary logic added in any
	  of the following conditions:

	  - local variable's address used as part of the right hand side of an
	    assignment or function argument
	  - local variable is an array (or union containing an array),
	    regardless of array type or length
	  - uses register local variables

	  This feature requires gcc version 4.9 or above, or a distribution
	  gcc with the feature backported ("-fstack-protector-strong").

	  On an x86 "defconfig" build, this feature adds canary checks to
	  about 20% of all kernel functions, which increases the kernel code
	  size by about 2%.

config ARCH_SUPPORTS_SHADOW_CALL_STACK
	bool
	help
	  An architecture should select this if it supports the compiler's
	  Shadow Call Stack and implements runtime support for shadow stack
	  switching.

config SHADOW_CALL_STACK
	bool "Shadow Call Stack"
	depends on ARCH_SUPPORTS_SHADOW_CALL_STACK
	depends on DYNAMIC_FTRACE_WITH_ARGS || DYNAMIC_FTRACE_WITH_REGS || !FUNCTION_GRAPH_TRACER
	depends on MMU
	help
	  This option enables the compiler's Shadow Call Stack, which
	  uses a shadow stack to protect function return addresses from
	  being overwritten by an attacker. More information can be found
	  in the compiler's documentation:

	  - Clang: https://clang.llvm.org/docs/ShadowCallStack.html
	  - GCC: https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#Instrumentation-Options

	  Note that security guarantees in the kernel differ from the
	  ones documented for user space. The kernel must store addresses
	  of shadow stacks in memory, which means an attacker capable of
	  reading and writing arbitrary memory may be able to locate them
	  and hijack control flow by modifying the stacks.

config DYNAMIC_SCS
	bool
	help
	  Set by the arch code if it relies on code patching to insert the
	  shadow call stack push and pop instructions rather than on the
	  compiler.

config LTO
	bool
	help
	  Selected if the kernel will be built using the compiler's LTO feature.

config LTO_CLANG
	bool
	select LTO
	help
	  Selected if the kernel will be built using Clang's LTO feature.

config ARCH_SUPPORTS_LTO_CLANG
	bool
	help
	  An architecture should select this option if it supports:
	  - compiling with Clang,
	  - compiling inline assembly with Clang's integrated assembler,
	  - and linking with LLD.

config ARCH_SUPPORTS_LTO_CLANG_THIN
	bool
	help
	  An architecture should select this option if it can support Clang's
	  ThinLTO mode.

config HAS_LTO_CLANG
	def_bool y
	depends on CC_IS_CLANG && LD_IS_LLD && AS_IS_LLVM
	depends on $(success,$(NM) --help | head -n 1 | grep -qi llvm)
	depends on $(success,$(AR) --help | head -n 1 | grep -qi llvm)
	depends on ARCH_SUPPORTS_LTO_CLANG
	depends on !FTRACE_MCOUNT_USE_RECORDMCOUNT
	# https://github.com/ClangBuiltLinux/linux/issues/1721
	depends on (!KASAN || KASAN_HW_TAGS || CLANG_VERSION >= 170000) || !DEBUG_INFO
	depends on (!KCOV || CLANG_VERSION >= 170000) || !DEBUG_INFO
	depends on !GCOV_KERNEL
	help
	  The compiler and Kconfig options support building with Clang's
	  LTO.

choice
	prompt "Link Time Optimization (LTO)"
	default LTO_NONE
	help
	  This option enables Link Time Optimization (LTO), which allows the
	  compiler to optimize binaries globally.

	  If unsure, select LTO_NONE. Note that LTO is very resource-intensive
	  so it's disabled by default.

config LTO_NONE
	bool "None"
	help
	  Build the kernel normally, without Link Time Optimization (LTO).

config LTO_CLANG_FULL
	bool "Clang Full LTO (EXPERIMENTAL)"
	depends on HAS_LTO_CLANG
	depends on !COMPILE_TEST
	select LTO_CLANG
	help
	  This option enables Clang's full Link Time Optimization (LTO), which
	  allows the compiler to optimize the kernel globally. If you enable
	  this option, the compiler generates LLVM bitcode instead of ELF
	  object files, and the actual compilation from bitcode happens at
	  the LTO link step, which may take several minutes depending on the
	  kernel configuration. More information can be found from LLVM's
	  documentation:

	    https://llvm.org/docs/LinkTimeOptimization.html

	  During link time, this option can use a large amount of RAM, and
	  may take much longer than the ThinLTO option.

config LTO_CLANG_THIN
	bool "Clang ThinLTO (EXPERIMENTAL)"
	depends on HAS_LTO_CLANG && ARCH_SUPPORTS_LTO_CLANG_THIN
	select LTO_CLANG
	help
	  This option enables Clang's ThinLTO, which allows for parallel
	  optimization and faster incremental compiles compared to the
	  CONFIG_LTO_CLANG_FULL option. More information can be found
	  from Clang's documentation:

	    https://clang.llvm.org/docs/ThinLTO.html

	  If unsure, say Y.
endchoice

config ARCH_SUPPORTS_CFI_CLANG
	bool
	help
	  An architecture should select this option if it can support Clang's
	  Control-Flow Integrity (CFI) checking.

config ARCH_USES_CFI_TRAPS
	bool

config CFI_CLANG
	bool "Use Clang's Control Flow Integrity (CFI)"
	depends on ARCH_SUPPORTS_CFI_CLANG
	depends on $(cc-option,-fsanitize=kcfi)
	help
	  This option enables Clang's forward-edge Control Flow Integrity
	  (CFI) checking, where the compiler injects a runtime check to each
	  indirect function call to ensure the target is a valid function with
	  the correct static type. This restricts possible call targets and
	  makes it more difficult for an attacker to exploit bugs that allow
	  the modification of stored function pointers. More information can be
	  found from Clang's documentation:

	    https://clang.llvm.org/docs/ControlFlowIntegrity.html

config CFI_PERMISSIVE
	bool "Use CFI in permissive mode"
	depends on CFI_CLANG
	help
	  When selected, Control Flow Integrity (CFI) violations result in a
	  warning instead of a kernel panic. This option should only be used
	  for finding indirect call type mismatches during development.

	  If unsure, say N.

config HAVE_ARCH_WITHIN_STACK_FRAMES
	bool
	help
	  An architecture should select this if it can walk the kernel stack
	  frames to determine if an object is part of either the arguments
	  or local variables (i.e. that it excludes saved return addresses,
	  and similar) by implementing an inline arch_within_stack_frames(),
	  which is used by CONFIG_HARDENED_USERCOPY.

config HAVE_CONTEXT_TRACKING_USER
	bool
	help
	  Provide kernel/user boundaries probes necessary for subsystems
	  that need it, such as userspace RCU extended quiescent state.
	  Syscalls need to be wrapped inside user_exit()-user_enter(), either
	  optimized behind static key or through the slow path using TIF_NOHZ
	  flag. Exceptions handlers must be wrapped as well. Irqs are already
	  protected inside ct_irq_enter/ct_irq_exit() but preemption or signal
	  handling on irq exit still need to be protected.

config HAVE_CONTEXT_TRACKING_USER_OFFSTACK
	bool
	help
	  Architecture neither relies on exception_enter()/exception_exit()
	  nor on schedule_user(). Also preempt_schedule_notrace() and
	  preempt_schedule_irq() can't be called in a preemptible section
	  while context tracking is CONTEXT_USER. This feature reflects a sane
	  entry implementation where the following requirements are met on
	  critical entry code, ie: before user_exit() or after user_enter():

	  - Critical entry code isn't preemptible (or better yet:
	    not interruptible).
	  - No use of RCU read side critical sections, unless ct_nmi_enter()
	    got called.
	  - No use of instrumentation, unless instrumentation_begin() got
	    called.

config HAVE_TIF_NOHZ
	bool
	help
	  Arch relies on TIF_NOHZ and syscall slow path to implement context
	  tracking calls to user_enter()/user_exit().

config HAVE_VIRT_CPU_ACCOUNTING
	bool

config HAVE_VIRT_CPU_ACCOUNTING_IDLE
	bool
	help
	  Architecture has its own way to account idle CPU time and therefore
	  doesn't implement vtime_account_idle().

config ARCH_HAS_SCALED_CPUTIME
	bool

config HAVE_VIRT_CPU_ACCOUNTING_GEN
	bool
	default y if 64BIT
	help
	  With VIRT_CPU_ACCOUNTING_GEN, cputime_t becomes 64-bit.
	  Before enabling this option, arch code must be audited
	  to ensure there are no races in concurrent read/write of
	  cputime_t. For example, reading/writing 64-bit cputime_t on
	  some 32-bit arches may require multiple accesses, so proper
	  locking is needed to protect against concurrent accesses.

config HAVE_IRQ_TIME_ACCOUNTING
	bool
	help
	  Archs need to ensure they use a high enough resolution clock to
	  support irq time accounting and then call enable_sched_clock_irqtime().

config HAVE_MOVE_PUD
	bool
	help
	  Architectures that select this are able to move page tables at the
	  PUD level. If there are only 3 page table levels, the move effectively
	  happens at the PGD level.

config HAVE_MOVE_PMD
	bool
	help
	  Archs that select this are able to move page tables at the PMD level.

config HAVE_ARCH_TRANSPARENT_HUGEPAGE
	bool

config HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
	bool

config HAVE_ARCH_HUGE_VMAP
	bool

#
#  Archs that select this would be capable of PMD-sized vmaps (i.e.,
#  arch_vmap_pmd_supported() returns true). The VM_ALLOW_HUGE_VMAP flag
#  must be used to enable allocations to use hugepages.
#
config HAVE_ARCH_HUGE_VMALLOC
	depends on HAVE_ARCH_HUGE_VMAP
	bool

config ARCH_WANT_HUGE_PMD_SHARE
	bool

# Archs that want to use pmd_mkwrite on kernel memory need it defined even
# if there are no userspace memory management features that use it
config ARCH_WANT_KERNEL_PMD_MKWRITE
	bool

config ARCH_WANT_PMD_MKWRITE
	def_bool TRANSPARENT_HUGEPAGE || ARCH_WANT_KERNEL_PMD_MKWRITE

config HAVE_ARCH_SOFT_DIRTY
	bool

config HAVE_MOD_ARCH_SPECIFIC
	bool
	help
	  The arch uses struct mod_arch_specific to store data.  Many arches
	  just need a simple module loader without arch specific data - those
	  should not enable this.

config MODULES_USE_ELF_RELA
	bool
	help
	  Modules only use ELF RELA relocations.  Modules with ELF REL
	  relocations will give an error.

config MODULES_USE_ELF_REL
	bool
	help
	  Modules only use ELF REL relocations.  Modules with ELF RELA
	  relocations will give an error.

config ARCH_WANTS_MODULES_DATA_IN_VMALLOC
	bool
	help
	  For architectures like powerpc/32 which have constraints on module
	  allocation and need to allocate module data outside of module area.

config HAVE_IRQ_EXIT_ON_IRQ_STACK
	bool
	help
	  Architecture doesn't only execute the irq handler on the irq stack
	  but also irq_exit(). This way we can process softirqs on this irq
	  stack instead of switching to a new one when we call __do_softirq()
	  in the end of an hardirq.
	  This spares a stack switch and improves cache usage on softirq
	  processing.

config HAVE_SOFTIRQ_ON_OWN_STACK
	bool
	help
	  Architecture provides a function to run __do_softirq() on a
	  separate stack.

config SOFTIRQ_ON_OWN_STACK
	def_bool HAVE_SOFTIRQ_ON_OWN_STACK && !PREEMPT_RT

config ALTERNATE_USER_ADDRESS_SPACE
	bool
	help
	  Architectures set this when the CPU uses separate address
	  spaces for kernel and user space pointers. In this case, the
	  access_ok() check on a __user pointer is skipped.

config PGTABLE_LEVELS
	int
	default 2

config ARCH_HAS_ELF_RANDOMIZE
	bool
	help
	  An architecture supports choosing randomized locations for
	  stack, mmap, brk, and ET_DYN. Defined functions:
	  - arch_mmap_rnd()
	  - arch_randomize_brk()

config HAVE_ARCH_MMAP_RND_BITS
	bool
	help
	  An arch should select this symbol if it supports setting a variable
	  number of bits for use in establishing the base address for mmap
	  allocations, has MMU enabled and provides values for both:
	  - ARCH_MMAP_RND_BITS_MIN
	  - ARCH_MMAP_RND_BITS_MAX

config HAVE_EXIT_THREAD
	bool
	help
	  An architecture implements exit_thread.

config ARCH_MMAP_RND_BITS_MIN
	int

config ARCH_MMAP_RND_BITS_MAX
	int

config ARCH_MMAP_RND_BITS_DEFAULT
	int

config ARCH_MMAP_RND_BITS
	int "Number of bits to use for ASLR of mmap base address" if EXPERT
	range ARCH_MMAP_RND_BITS_MIN ARCH_MMAP_RND_BITS_MAX
	default ARCH_MMAP_RND_BITS_DEFAULT if ARCH_MMAP_RND_BITS_DEFAULT
	default ARCH_MMAP_RND_BITS_MIN
	depends on HAVE_ARCH_MMAP_RND_BITS
	help
	  This value can be used to select the number of bits to use to
	  determine the random offset to the base address of vma regions
	  resulting from mmap allocations. This value will be bounded
	  by the architecture's minimum and maximum supported values.

	  This value can be changed after boot using the
	  /proc/sys/vm/mmap_rnd_bits tunable

config HAVE_ARCH_MMAP_RND_COMPAT_BITS
	bool
	help
	  An arch should select this symbol if it supports running applications
	  in compatibility mode, supports setting a variable number of bits for
	  use in establishing the base address for mmap allocations, has MMU
	  enabled and provides values for both:
	  - ARCH_MMAP_RND_COMPAT_BITS_MIN
	  - ARCH_MMAP_RND_COMPAT_BITS_MAX

config ARCH_MMAP_RND_COMPAT_BITS_MIN
	int

config ARCH_MMAP_RND_COMPAT_BITS_MAX
	int

config ARCH_MMAP_RND_COMPAT_BITS_DEFAULT
	int

config ARCH_MMAP_RND_COMPAT_BITS
	int "Number of bits to use for ASLR of mmap base address for compatible applications" if EXPERT
	range ARCH_MMAP_RND_COMPAT_BITS_MIN ARCH_MMAP_RND_COMPAT_BITS_MAX
	default ARCH_MMAP_RND_COMPAT_BITS_DEFAULT if ARCH_MMAP_RND_COMPAT_BITS_DEFAULT
	default ARCH_MMAP_RND_COMPAT_BITS_MIN
	depends on HAVE_ARCH_MMAP_RND_COMPAT_BITS
	help
	  This value can be used to select the number of bits to use to
	  determine the random offset to the base address of vma regions
	  resulting from mmap allocations for compatible applications This
	  value will be bounded by the architecture's minimum and maximum
	  supported values.

	  This value can be changed after boot using the
	  /proc/sys/vm/mmap_rnd_compat_bits tunable

config HAVE_ARCH_COMPAT_MMAP_BASES
	bool
	help
	  This allows 64bit applications to invoke 32-bit mmap() syscall
	  and vice-versa 32-bit applications to call 64-bit mmap().
	  Required for applications doing different bitness syscalls.

config HAVE_PAGE_SIZE_4KB
	bool

config HAVE_PAGE_SIZE_8KB
	bool

config HAVE_PAGE_SIZE_16KB
	bool

config HAVE_PAGE_SIZE_32KB
	bool

config HAVE_PAGE_SIZE_64KB
	bool

config HAVE_PAGE_SIZE_256KB
	bool

choice
	prompt "MMU page size"

config PAGE_SIZE_4KB
	bool "4KiB pages"
	depends on HAVE_PAGE_SIZE_4KB
	help
	  This option select the standard 4KiB Linux page size and the only
	  available option on many architectures. Using 4KiB page size will
	  minimize memory consumption and is therefore recommended for low
	  memory systems.
	  Some software that is written for x86 systems makes incorrect
	  assumptions about the page size and only runs on 4KiB pages.

config PAGE_SIZE_8KB
	bool "8KiB pages"
	depends on HAVE_PAGE_SIZE_8KB
	help
	  This option is the only supported page size on a few older
	  processors, and can be slightly faster than 4KiB pages.

config PAGE_SIZE_16KB
	bool "16KiB pages"
	depends on HAVE_PAGE_SIZE_16KB
	help
	  This option is usually a good compromise between memory
	  consumption and performance for typical desktop and server
	  workloads, often saving a level of page table lookups compared
	  to 4KB pages as well as reducing TLB pressure and overhead of
	  per-page operations in the kernel at the expense of a larger
	  page cache.

config PAGE_SIZE_32KB
	bool "32KiB pages"
	depends on HAVE_PAGE_SIZE_32KB
	help
	  Using 32KiB page size will result in slightly higher performance
	  kernel at the price of higher memory consumption compared to
	  16KiB pages.	This option is available only on cnMIPS cores.
	  Note that you will need a suitable Linux distribution to
	  support this.

config PAGE_SIZE_64KB
	bool "64KiB pages"
	depends on HAVE_PAGE_SIZE_64KB
	help
	  Using 64KiB page size will result in slightly higher performance
	  kernel at the price of much higher memory consumption compared to
	  4KiB or 16KiB pages.
	  This is not suitable for general-purpose workloads but the
	  better performance may be worth the cost for certain types of
	  supercomputing or database applications that work mostly with
	  large in-memory data rather than small files.

config PAGE_SIZE_256KB
	bool "256KiB pages"
	depends on HAVE_PAGE_SIZE_256KB
	help
	  256KiB pages have little practical value due to their extreme
	  memory usage.  The kernel will only be able to run applications
	  that have been compiled with '-zmax-page-size' set to 256KiB
	  (the default is 64KiB or 4KiB on most architectures).

endchoice

config PAGE_SIZE_LESS_THAN_64KB
	def_bool y
	depends on !PAGE_SIZE_64KB
	depends on PAGE_SIZE_LESS_THAN_256KB

config PAGE_SIZE_LESS_THAN_256KB
	def_bool y
	depends on !PAGE_SIZE_256KB

config PAGE_SHIFT
	int
	default 12 if PAGE_SIZE_4KB
	default 13 if PAGE_SIZE_8KB
	default 14 if PAGE_SIZE_16KB
	default 15 if PAGE_SIZE_32KB
	default 16 if PAGE_SIZE_64KB
	default 18 if PAGE_SIZE_256KB

# This allows to use a set of generic functions to determine mmap base
# address by giving priority to top-down scheme only if the process
# is not in legacy mode (compat task, unlimited stack size or
# sysctl_legacy_va_layout).
# Architecture that selects this option can provide its own version of:
# - STACK_RND_MASK
config ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
	bool
	depends on MMU
	select ARCH_HAS_ELF_RANDOMIZE

config HAVE_OBJTOOL
	bool

config HAVE_JUMP_LABEL_HACK
	bool

config HAVE_NOINSTR_HACK
	bool

config HAVE_NOINSTR_VALIDATION
	bool

config HAVE_UACCESS_VALIDATION
	bool
	select OBJTOOL

config HAVE_STACK_VALIDATION
	bool
	help
	  Architecture supports objtool compile-time frame pointer rule
	  validation.

config HAVE_RELIABLE_STACKTRACE
	bool
	help
	  Architecture has either save_stack_trace_tsk_reliable() or
	  arch_stack_walk_reliable() function which only returns a stack trace
	  if it can guarantee the trace is reliable.

config HAVE_ARCH_HASH
	bool
	default n
	help
	  If this is set, the architecture provides an <asm/hash.h>
	  file which provides platform-specific implementations of some
	  functions in <linux/hash.h> or fs/namei.c.

config HAVE_ARCH_NVRAM_OPS
	bool

config ISA_BUS_API
	def_bool ISA

#
# ABI hall of shame
#
config CLONE_BACKWARDS
	bool
	help
	  Architecture has tls passed as the 4th argument of clone(2),
	  not the 5th one.

config CLONE_BACKWARDS2
	bool
	help
	  Architecture has the first two arguments of clone(2) swapped.

config CLONE_BACKWARDS3
	bool
	help
	  Architecture has tls passed as the 3rd argument of clone(2),
	  not the 5th one.

config ODD_RT_SIGACTION
	bool
	help
	  Architecture has unusual rt_sigaction(2) arguments

config OLD_SIGSUSPEND
	bool
	help
	  Architecture has old sigsuspend(2) syscall, of one-argument variety

config OLD_SIGSUSPEND3
	bool
	help
	  Even weirder antique ABI - three-argument sigsuspend(2)

config OLD_SIGACTION
	bool
	help
	  Architecture has old sigaction(2) syscall.  Nope, not the same
	  as OLD_SIGSUSPEND | OLD_SIGSUSPEND3 - alpha has sigsuspend(2),
	  but fairly different variant of sigaction(2), thanks to OSF/1
	  compatibility...

config COMPAT_OLD_SIGACTION
	bool

config COMPAT_32BIT_TIME
	bool "Provide system calls for 32-bit time_t"
	default !64BIT || COMPAT
	help
	  This enables 32 bit time_t support in addition to 64 bit time_t support.
	  This is relevant on all 32-bit architectures, and 64-bit architectures
	  as part of compat syscall handling.

config ARCH_NO_PREEMPT
	bool

config ARCH_SUPPORTS_RT
	bool

config CPU_NO_EFFICIENT_FFS
	def_bool n

config HAVE_ARCH_VMAP_STACK
	def_bool n
	help
	  An arch should select this symbol if it can support kernel stacks
	  in vmalloc space.  This means:

	  - vmalloc space must be large enough to hold many kernel stacks.
	    This may rule out many 32-bit architectures.

	  - Stacks in vmalloc space need to work reliably.  For example, if
	    vmap page tables are created on demand, either this mechanism
	    needs to work while the stack points to a virtual address with
	    unpopulated page tables or arch code (switch_to() and switch_mm(),
	    most likely) needs to ensure that the stack's page table entries
	    are populated before running on a possibly unpopulated stack.

	  - If the stack overflows into a guard page, something reasonable
	    should happen.  The definition of "reasonable" is flexible, but
	    instantly rebooting without logging anything would be unfriendly.

config VMAP_STACK
	default y
	bool "Use a virtually-mapped stack"
	depends on HAVE_ARCH_VMAP_STACK
	depends on !KASAN || KASAN_HW_TAGS || KASAN_VMALLOC
	help
	  Enable this if you want the use virtually-mapped kernel stacks
	  with guard pages.  This causes kernel stack overflows to be
	  caught immediately rather than causing difficult-to-diagnose
	  corruption.

	  To use this with software KASAN modes, the architecture must support
	  backing virtual mappings with real shadow memory, and KASAN_VMALLOC
	  must be enabled.

config HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
	def_bool n
	help
	  An arch should select this symbol if it can support kernel stack
	  offset randomization with calls to add_random_kstack_offset()
	  during syscall entry and choose_random_kstack_offset() during
	  syscall exit. Careful removal of -fstack-protector-strong and
	  -fstack-protector should also be applied to the entry code and
	  closely examined, as the artificial stack bump looks like an array
	  to the compiler, so it will attempt to add canary checks regardless
	  of the static branch state.

config RANDOMIZE_KSTACK_OFFSET
	bool "Support for randomizing kernel stack offset on syscall entry" if EXPERT
	default y
	depends on HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
	depends on INIT_STACK_NONE || !CC_IS_CLANG || CLANG_VERSION >= 140000
	help
	  The kernel stack offset can be randomized (after pt_regs) by
	  roughly 5 bits of entropy, frustrating memory corruption
	  attacks that depend on stack address determinism or
	  cross-syscall address exposures.

	  The feature is controlled via the "randomize_kstack_offset=on/off"
	  kernel boot param, and if turned off has zero overhead due to its use
	  of static branches (see JUMP_LABEL).

	  If unsure, say Y.

config RANDOMIZE_KSTACK_OFFSET_DEFAULT
	bool "Default state of kernel stack offset randomization"
	depends on RANDOMIZE_KSTACK_OFFSET
	help
	  Kernel stack offset randomization is controlled by kernel boot param
	  "randomize_kstack_offset=on/off", and this config chooses the default
	  boot state.

config ARCH_OPTIONAL_KERNEL_RWX
	def_bool n

config ARCH_OPTIONAL_KERNEL_RWX_DEFAULT
	def_bool n

config ARCH_HAS_STRICT_KERNEL_RWX
	def_bool n

config STRICT_KERNEL_RWX
	bool "Make kernel text and rodata read-only" if ARCH_OPTIONAL_KERNEL_RWX
	depends on ARCH_HAS_STRICT_KERNEL_RWX
	default !ARCH_OPTIONAL_KERNEL_RWX || ARCH_OPTIONAL_KERNEL_RWX_DEFAULT
	help
	  If this is set, kernel text and rodata memory will be made read-only,
	  and non-text memory will be made non-executable. This provides
	  protection against certain security exploits (e.g. executing the heap
	  or modifying text)

	  These features are considered standard security practice these days.
	  You should say Y here in almost all cases.

config ARCH_HAS_STRICT_MODULE_RWX
	def_bool n

config STRICT_MODULE_RWX
	bool "Set loadable kernel module data as NX and text as RO" if ARCH_OPTIONAL_KERNEL_RWX
	depends on ARCH_HAS_STRICT_MODULE_RWX && MODULES
	default !ARCH_OPTIONAL_KERNEL_RWX || ARCH_OPTIONAL_KERNEL_RWX_DEFAULT
	help
	  If this is set, module text and rodata memory will be made read-only,
	  and non-text memory will be made non-executable. This provides
	  protection against certain security exploits (e.g. writing to text)

# select if the architecture provides an asm/dma-direct.h header
config ARCH_HAS_PHYS_TO_DMA
	bool

config HAVE_ARCH_COMPILER_H
	bool
	help
	  An architecture can select this if it provides an
	  asm/compiler.h header that should be included after
	  linux/compiler-*.h in order to override macro definitions that those
	  headers generally provide.

config HAVE_ARCH_PREL32_RELOCATIONS
	bool
	help
	  May be selected by an architecture if it supports place-relative
	  32-bit relocations, both in the toolchain and in the module loader,
	  in which case relative references can be used in special sections
	  for PCI fixup, initcalls etc which are only half the size on 64 bit
	  architectures, and don't require runtime relocation on relocatable
	  kernels.

config ARCH_USE_MEMREMAP_PROT
	bool

config LOCK_EVENT_COUNTS
	bool "Locking event counts collection"
	depends on DEBUG_FS
	help
	  Enable light-weight counting of various locking related events
	  in the system with minimal performance impact. This reduces
	  the chance of application behavior change because of timing
	  differences. The counts are reported via debugfs.

# Select if the architecture has support for applying RELR relocations.
config ARCH_HAS_RELR
	bool

config RELR
	bool "Use RELR relocation packing"
	depends on ARCH_HAS_RELR && TOOLS_SUPPORT_RELR
	default y
	help
	  Store the kernel's dynamic relocations in the RELR relocation packing
	  format. Requires a compatible linker (LLD supports this feature), as
	  well as compatible NM and OBJCOPY utilities (llvm-nm and llvm-objcopy
	  are compatible).

config ARCH_HAS_MEM_ENCRYPT
	bool

config ARCH_HAS_CC_PLATFORM
	bool

config HAVE_SPARSE_SYSCALL_NR
	bool
	help
	  An architecture should select this if its syscall numbering is sparse
	  to save space. For example, MIPS architecture has a syscall array with
	  entries at 4000, 5000 and 6000 locations. This option turns on syscall
	  related optimizations for a given architecture.

config ARCH_HAS_VDSO_DATA
	bool

config HAVE_STATIC_CALL
	bool

config HAVE_STATIC_CALL_INLINE
	bool
	depends on HAVE_STATIC_CALL
	select OBJTOOL

config HAVE_PREEMPT_DYNAMIC
	bool

config HAVE_PREEMPT_DYNAMIC_CALL
	bool
	depends on HAVE_STATIC_CALL
	select HAVE_PREEMPT_DYNAMIC
	help
	  An architecture should select this if it can handle the preemption
	  model being selected at boot time using static calls.

	  Where an architecture selects HAVE_STATIC_CALL_INLINE, any call to a
	  preemption function will be patched directly.

	  Where an architecture does not select HAVE_STATIC_CALL_INLINE, any
	  call to a preemption function will go through a trampoline, and the
	  trampoline will be patched.

	  It is strongly advised to support inline static call to avoid any
	  overhead.

config HAVE_PREEMPT_DYNAMIC_KEY
	bool
	depends on HAVE_ARCH_JUMP_LABEL
	select HAVE_PREEMPT_DYNAMIC
	help
	  An architecture should select this if it can handle the preemption
	  model being selected at boot time using static keys.

	  Each preemption function will be given an early return based on a
	  static key. This should have slightly lower overhead than non-inline
	  static calls, as this effectively inlines each trampoline into the
	  start of its callee. This may avoid redundant work, and may
	  integrate better with CFI schemes.

	  This will have greater overhead than using inline static calls as
	  the call to the preemption function cannot be entirely elided.

config ARCH_WANT_LD_ORPHAN_WARN
	bool
	help
	  An arch should select this symbol once all linker sections are explicitly
	  included, size-asserted, or discarded in the linker scripts. This is
	  important because we never want expected sections to be placed heuristically
	  by the linker, since the locations of such sections can change between linker
	  versions.

config HAVE_ARCH_PFN_VALID
	bool

config ARCH_SUPPORTS_DEBUG_PAGEALLOC
	bool

config ARCH_SUPPORTS_PAGE_TABLE_CHECK
	bool

config ARCH_SPLIT_ARG64
	bool
	help
	  If a 32-bit architecture requires 64-bit arguments to be split into
	  pairs of 32-bit arguments, select this option.

config ARCH_HAS_ELFCORE_COMPAT
	bool

config ARCH_HAS_PARANOID_L1D_FLUSH
	bool

config ARCH_HAVE_TRACE_MMIO_ACCESS
	bool

config DYNAMIC_SIGFRAME
	bool

# Select, if arch has a named attribute group bound to NUMA device nodes.
config HAVE_ARCH_NODE_DEV_GROUP
	bool

config ARCH_HAS_HW_PTE_YOUNG
	bool
	help
	  Architectures that select this option are capable of setting the
	  accessed bit in PTE entries when using them as part of linear address
	  translations. Architectures that require runtime check should select
	  this option and override arch_has_hw_pte_young().

config ARCH_HAS_NONLEAF_PMD_YOUNG
	bool
	help
	  Architectures that select this option are capable of setting the
	  accessed bit in non-leaf PMD entries when using them as part of linear
	  address translations. Page table walkers that clear the accessed bit
	  may use this capability to reduce their search space.

source "kernel/gcov/Kconfig"

source "scripts/gcc-plugins/Kconfig"

config FUNCTION_ALIGNMENT_4B
	bool

config FUNCTION_ALIGNMENT_8B
	bool

config FUNCTION_ALIGNMENT_16B
	bool

config FUNCTION_ALIGNMENT_32B
	bool

config FUNCTION_ALIGNMENT_64B
	bool

config FUNCTION_ALIGNMENT
	int
	default 64 if FUNCTION_ALIGNMENT_64B
	default 32 if FUNCTION_ALIGNMENT_32B
	default 16 if FUNCTION_ALIGNMENT_16B
	default 8 if FUNCTION_ALIGNMENT_8B
	default 4 if FUNCTION_ALIGNMENT_4B
	default 0

config CC_HAS_MIN_FUNCTION_ALIGNMENT
	# Detect availability of the GCC option -fmin-function-alignment which
	# guarantees minimal alignment for all functions, unlike
	# -falign-functions which the compiler ignores for cold functions.
	def_bool $(cc-option, -fmin-function-alignment=8)

config CC_HAS_SANE_FUNCTION_ALIGNMENT
	# Set if the guaranteed alignment with -fmin-function-alignment is
	# available or extra care is required in the kernel. Clang provides
	# strict alignment always, even with -falign-functions.
	def_bool CC_HAS_MIN_FUNCTION_ALIGNMENT || CC_IS_CLANG

endmenu