/* * arch/arm/include/asm/pgtable-3level.h * * Copyright (C) 2011 ARM Ltd. * Author: Catalin Marinas * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _ASM_PGTABLE_3LEVEL_H #define _ASM_PGTABLE_3LEVEL_H /* * With LPAE, there are 3 levels of page tables. Each level has 512 entries of * 8 bytes each, occupying a 4K page. The first level table covers a range of * 512GB, each entry representing 1GB. Since we are limited to 4GB input * address range, only 4 entries in the PGD are used. * * There are enough spare bits in a page table entry for the kernel specific * state. */ #define PTRS_PER_PTE 512 #define PTRS_PER_PMD 512 #define PTRS_PER_PGD 4 #define PTE_HWTABLE_PTRS (0) #define PTE_HWTABLE_OFF (0) #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64)) /* * PGDIR_SHIFT determines the size a top-level page table entry can map. */ #define PGDIR_SHIFT 30 /* * PMD_SHIFT determines the size a middle-level page table entry can map. */ #define PMD_SHIFT 21 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~((1 << PMD_SHIFT) - 1)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1)) /* * section address mask and size definitions. */ #define SECTION_SHIFT 21 #define SECTION_SIZE (1UL << SECTION_SHIFT) #define SECTION_MASK (~((1 << SECTION_SHIFT) - 1)) #define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE) /* * Hugetlb definitions. */ #define HPAGE_SHIFT PMD_SHIFT #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) #define HPAGE_MASK (~(HPAGE_SIZE - 1)) #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) /* * "Linux" PTE definitions for LPAE. * * These bits overlap with the hardware bits but the naming is preserved for * consistency with the classic page table format. */ #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */ #define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */ #define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */ #define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */ #define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */ #define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */ #define L_PTE_DIRTY (_AT(pteval_t, 1) << 55) #define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56) #define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */ #define L_PTE_RDONLY (_AT(pteval_t, 1) << 58) /* READ ONLY */ #define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0) #define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55) #define L_PMD_SECT_SPLITTING (_AT(pmdval_t, 1) << 56) #define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57) #define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58) /* * To be used in assembly code with the upper page attributes. */ #define L_PTE_XN_HIGH (1 << (54 - 32)) #define L_PTE_DIRTY_HIGH (1 << (55 - 32)) /* * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers). */ #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */ #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */ #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */ #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */ #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */ #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */ #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */ #define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */ #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */ #define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2) /* * Software PGD flags. */ #define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */ /* * 2nd stage PTE definitions for LPAE. */ #define L_PTE_S2_MT_UNCACHED (_AT(pteval_t, 0x0) << 2) /* strongly ordered */ #define L_PTE_S2_MT_WRITETHROUGH (_AT(pteval_t, 0xa) << 2) /* normal inner write-through */ #define L_PTE_S2_MT_WRITEBACK (_AT(pteval_t, 0xf) << 2) /* normal inner write-back */ #define L_PTE_S2_MT_DEV_SHARED (_AT(pteval_t, 0x1) << 2) /* device */ #define L_PTE_S2_MT_MASK (_AT(pteval_t, 0xf) << 2) #define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */ #define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */ #define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */ /* * Hyp-mode PL2 PTE definitions for LPAE. */ #define L_PTE_HYP L_PTE_USER #ifndef __ASSEMBLY__ #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (!(pud_val(pud) & 2)) #define pud_present(pud) (pud_val(pud)) #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ PMD_TYPE_TABLE) #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ PMD_TYPE_SECT) #define pmd_large(pmd) pmd_sect(pmd) #define pud_clear(pudp) \ do { \ *pudp = __pud(0); \ clean_pmd_entry(pudp); \ } while (0) #define set_pud(pudp, pud) \ do { \ *pudp = pud; \ flush_pmd_entry(pudp); \ } while (0) static inline pmd_t *pud_page_vaddr(pud_t pud) { return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK); } /* Find an entry in the second-level page table.. */ #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr) { return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr); } #define pmd_bad(pmd) (!(pmd_val(pmd) & 2)) #define copy_pmd(pmdpd,pmdps) \ do { \ *pmdpd = *pmdps; \ flush_pmd_entry(pmdpd); \ } while (0) #define pmd_clear(pmdp) \ do { \ *pmdp = __pmd(0); \ clean_pmd_entry(pmdp); \ } while (0) /* * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes * that are written to a page table but not for ptes created with mk_pte. * * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to * hugetlb_cow, where it is compared with an entry in a page table. * This comparison test fails erroneously leading ultimately to a memory leak. * * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is * present before running the comparison. */ #define __HAVE_ARCH_PTE_SAME #define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \ : pte_val(pte_a)) \ == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \ : pte_val(pte_b))) #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext))) #define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT)) #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) #define pmd_isset(pmd, val) ((u32)(val) == (val) ? pmd_val(pmd) & (val) \ : !!(pmd_val(pmd) & (val))) #define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val))) #define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF)) #define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL)) static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= L_PTE_SPECIAL; return pte; } #define __HAVE_ARCH_PTE_SPECIAL #define __HAVE_ARCH_PMD_WRITE #define pmd_write(pmd) (pmd_isclear((pmd), L_PMD_SECT_RDONLY)) #define pmd_dirty(pmd) (pmd_isset((pmd), L_PMD_SECT_DIRTY)) #define pud_page(pud) pmd_page(__pmd(pud_val(pud))) #define pud_write(pud) pmd_write(__pmd(pud_val(pud))) #define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd)) #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd)) #define pmd_trans_splitting(pmd) (pmd_isset((pmd), L_PMD_SECT_SPLITTING)) #ifdef CONFIG_HAVE_RCU_TABLE_FREE #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #endif #define PMD_BIT_FUNC(fn,op) \ static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; } PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY); PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF); PMD_BIT_FUNC(mksplitting, |= L_PMD_SECT_SPLITTING); PMD_BIT_FUNC(mkwrite, &= ~L_PMD_SECT_RDONLY); PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY); PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF); #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) #define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT) #define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))) #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) /* represent a notpresent pmd by zero, this is used by pmdp_invalidate */ #define pmd_mknotpresent(pmd) (__pmd(0)) static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY | L_PMD_SECT_VALID | L_PMD_SECT_NONE; pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask); return pmd; } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { BUG_ON(addr >= TASK_SIZE); /* create a faulting entry if PROT_NONE protected */ if (pmd_val(pmd) & L_PMD_SECT_NONE) pmd_val(pmd) &= ~L_PMD_SECT_VALID; if (pmd_write(pmd) && pmd_dirty(pmd)) pmd_val(pmd) &= ~PMD_SECT_AP2; else pmd_val(pmd) |= PMD_SECT_AP2; *pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG); flush_pmd_entry(pmdp); } static inline int has_transparent_hugepage(void) { return 1; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_PGTABLE_3LEVEL_H */