// SPDX-License-Identifier: GPL-2.0 /* * Common Block IO controller cgroup interface * * Based on ideas and code from CFQ, CFS and BFQ: * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> * * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> * Paolo Valente <paolo.valente@unimore.it> * * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> * Nauman Rafique <nauman@google.com> * * For policy-specific per-blkcg data: * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> * Arianna Avanzini <avanzini.arianna@gmail.com> */ #include <linux/ioprio.h> #include <linux/kdev_t.h> #include <linux/module.h> #include <linux/sched/signal.h> #include <linux/err.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/slab.h> #include <linux/genhd.h> #include <linux/delay.h> #include <linux/atomic.h> #include <linux/ctype.h> #include <linux/blk-cgroup.h> #include <linux/tracehook.h> #include <linux/psi.h> #include "blk.h" #define MAX_KEY_LEN 100 /* * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. * blkcg_pol_register_mutex nests outside of it and synchronizes entire * policy [un]register operations including cgroup file additions / * removals. Putting cgroup file registration outside blkcg_pol_mutex * allows grabbing it from cgroup callbacks. */ static DEFINE_MUTEX(blkcg_pol_register_mutex); static DEFINE_MUTEX(blkcg_pol_mutex); struct blkcg blkcg_root; EXPORT_SYMBOL_GPL(blkcg_root); struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; EXPORT_SYMBOL_GPL(blkcg_root_css); static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ bool blkcg_debug_stats = false; static struct workqueue_struct *blkcg_punt_bio_wq; static bool blkcg_policy_enabled(struct request_queue *q, const struct blkcg_policy *pol) { return pol && test_bit(pol->plid, q->blkcg_pols); } /** * blkg_free - free a blkg * @blkg: blkg to free * * Free @blkg which may be partially allocated. */ static void blkg_free(struct blkcg_gq *blkg) { int i; if (!blkg) return; for (i = 0; i < BLKCG_MAX_POLS; i++) if (blkg->pd[i]) blkcg_policy[i]->pd_free_fn(blkg->pd[i]); free_percpu(blkg->iostat_cpu); percpu_ref_exit(&blkg->refcnt); kfree(blkg); } static void __blkg_release(struct rcu_head *rcu) { struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); WARN_ON(!bio_list_empty(&blkg->async_bios)); /* release the blkcg and parent blkg refs this blkg has been holding */ css_put(&blkg->blkcg->css); if (blkg->parent) blkg_put(blkg->parent); blkg_free(blkg); } /* * A group is RCU protected, but having an rcu lock does not mean that one * can access all the fields of blkg and assume these are valid. For * example, don't try to follow throtl_data and request queue links. * * Having a reference to blkg under an rcu allows accesses to only values * local to groups like group stats and group rate limits. */ static void blkg_release(struct percpu_ref *ref) { struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); call_rcu(&blkg->rcu_head, __blkg_release); } static void blkg_async_bio_workfn(struct work_struct *work) { struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, async_bio_work); struct bio_list bios = BIO_EMPTY_LIST; struct bio *bio; struct blk_plug plug; bool need_plug = false; /* as long as there are pending bios, @blkg can't go away */ spin_lock_bh(&blkg->async_bio_lock); bio_list_merge(&bios, &blkg->async_bios); bio_list_init(&blkg->async_bios); spin_unlock_bh(&blkg->async_bio_lock); /* start plug only when bio_list contains at least 2 bios */ if (bios.head && bios.head->bi_next) { need_plug = true; blk_start_plug(&plug); } while ((bio = bio_list_pop(&bios))) submit_bio(bio); if (need_plug) blk_finish_plug(&plug); } /** * blkg_alloc - allocate a blkg * @blkcg: block cgroup the new blkg is associated with * @q: request_queue the new blkg is associated with * @gfp_mask: allocation mask to use * * Allocate a new blkg assocating @blkcg and @q. */ static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, gfp_t gfp_mask) { struct blkcg_gq *blkg; int i, cpu; /* alloc and init base part */ blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); if (!blkg) return NULL; if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) goto err_free; blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); if (!blkg->iostat_cpu) goto err_free; blkg->q = q; INIT_LIST_HEAD(&blkg->q_node); spin_lock_init(&blkg->async_bio_lock); bio_list_init(&blkg->async_bios); INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); blkg->blkcg = blkcg; u64_stats_init(&blkg->iostat.sync); for_each_possible_cpu(cpu) u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); for (i = 0; i < BLKCG_MAX_POLS; i++) { struct blkcg_policy *pol = blkcg_policy[i]; struct blkg_policy_data *pd; if (!blkcg_policy_enabled(q, pol)) continue; /* alloc per-policy data and attach it to blkg */ pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); if (!pd) goto err_free; blkg->pd[i] = pd; pd->blkg = blkg; pd->plid = i; } return blkg; err_free: blkg_free(blkg); return NULL; } struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, struct request_queue *q, bool update_hint) { struct blkcg_gq *blkg; /* * Hint didn't match. Look up from the radix tree. Note that the * hint can only be updated under queue_lock as otherwise @blkg * could have already been removed from blkg_tree. The caller is * responsible for grabbing queue_lock if @update_hint. */ blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); if (blkg && blkg->q == q) { if (update_hint) { lockdep_assert_held(&q->queue_lock); rcu_assign_pointer(blkcg->blkg_hint, blkg); } return blkg; } return NULL; } EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); /* * If @new_blkg is %NULL, this function tries to allocate a new one as * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. */ static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct request_queue *q, struct blkcg_gq *new_blkg) { struct blkcg_gq *blkg; int i, ret; WARN_ON_ONCE(!rcu_read_lock_held()); lockdep_assert_held(&q->queue_lock); /* request_queue is dying, do not create/recreate a blkg */ if (blk_queue_dying(q)) { ret = -ENODEV; goto err_free_blkg; } /* blkg holds a reference to blkcg */ if (!css_tryget_online(&blkcg->css)) { ret = -ENODEV; goto err_free_blkg; } /* allocate */ if (!new_blkg) { new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); if (unlikely(!new_blkg)) { ret = -ENOMEM; goto err_put_css; } } blkg = new_blkg; /* link parent */ if (blkcg_parent(blkcg)) { blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); if (WARN_ON_ONCE(!blkg->parent)) { ret = -ENODEV; goto err_put_css; } blkg_get(blkg->parent); } /* invoke per-policy init */ for (i = 0; i < BLKCG_MAX_POLS; i++) { struct blkcg_policy *pol = blkcg_policy[i]; if (blkg->pd[i] && pol->pd_init_fn) pol->pd_init_fn(blkg->pd[i]); } /* insert */ spin_lock(&blkcg->lock); ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); if (likely(!ret)) { hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); list_add(&blkg->q_node, &q->blkg_list); for (i = 0; i < BLKCG_MAX_POLS; i++) { struct blkcg_policy *pol = blkcg_policy[i]; if (blkg->pd[i] && pol->pd_online_fn) pol->pd_online_fn(blkg->pd[i]); } } blkg->online = true; spin_unlock(&blkcg->lock); if (!ret) return blkg; /* @blkg failed fully initialized, use the usual release path */ blkg_put(blkg); return ERR_PTR(ret); err_put_css: css_put(&blkcg->css); err_free_blkg: blkg_free(new_blkg); return ERR_PTR(ret); } /** * blkg_lookup_create - lookup blkg, try to create one if not there * @blkcg: blkcg of interest * @q: request_queue of interest * * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to * create one. blkg creation is performed recursively from blkcg_root such * that all non-root blkg's have access to the parent blkg. This function * should be called under RCU read lock and takes @q->queue_lock. * * Returns the blkg or the closest blkg if blkg_create() fails as it walks * down from root. */ static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, struct request_queue *q) { struct blkcg_gq *blkg; unsigned long flags; WARN_ON_ONCE(!rcu_read_lock_held()); blkg = blkg_lookup(blkcg, q); if (blkg) return blkg; spin_lock_irqsave(&q->queue_lock, flags); blkg = __blkg_lookup(blkcg, q, true); if (blkg) goto found; /* * Create blkgs walking down from blkcg_root to @blkcg, so that all * non-root blkgs have access to their parents. Returns the closest * blkg to the intended blkg should blkg_create() fail. */ while (true) { struct blkcg *pos = blkcg; struct blkcg *parent = blkcg_parent(blkcg); struct blkcg_gq *ret_blkg = q->root_blkg; while (parent) { blkg = __blkg_lookup(parent, q, false); if (blkg) { /* remember closest blkg */ ret_blkg = blkg; break; } pos = parent; parent = blkcg_parent(parent); } blkg = blkg_create(pos, q, NULL); if (IS_ERR(blkg)) { blkg = ret_blkg; break; } if (pos == blkcg) break; } found: spin_unlock_irqrestore(&q->queue_lock, flags); return blkg; } static void blkg_destroy(struct blkcg_gq *blkg) { struct blkcg *blkcg = blkg->blkcg; int i; lockdep_assert_held(&blkg->q->queue_lock); lockdep_assert_held(&blkcg->lock); /* Something wrong if we are trying to remove same group twice */ WARN_ON_ONCE(list_empty(&blkg->q_node)); WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); for (i = 0; i < BLKCG_MAX_POLS; i++) { struct blkcg_policy *pol = blkcg_policy[i]; if (blkg->pd[i] && pol->pd_offline_fn) pol->pd_offline_fn(blkg->pd[i]); } blkg->online = false; radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); list_del_init(&blkg->q_node); hlist_del_init_rcu(&blkg->blkcg_node); /* * Both setting lookup hint to and clearing it from @blkg are done * under queue_lock. If it's not pointing to @blkg now, it never * will. Hint assignment itself can race safely. */ if (rcu_access_pointer(blkcg->blkg_hint) == blkg) rcu_assign_pointer(blkcg->blkg_hint, NULL); /* * Put the reference taken at the time of creation so that when all * queues are gone, group can be destroyed. */ percpu_ref_kill(&blkg->refcnt); } /** * blkg_destroy_all - destroy all blkgs associated with a request_queue * @q: request_queue of interest * * Destroy all blkgs associated with @q. */ static void blkg_destroy_all(struct request_queue *q) { struct blkcg_gq *blkg, *n; spin_lock_irq(&q->queue_lock); list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { struct blkcg *blkcg = blkg->blkcg; spin_lock(&blkcg->lock); blkg_destroy(blkg); spin_unlock(&blkcg->lock); } q->root_blkg = NULL; spin_unlock_irq(&q->queue_lock); } static int blkcg_reset_stats(struct cgroup_subsys_state *css, struct cftype *cftype, u64 val) { struct blkcg *blkcg = css_to_blkcg(css); struct blkcg_gq *blkg; int i, cpu; mutex_lock(&blkcg_pol_mutex); spin_lock_irq(&blkcg->lock); /* * Note that stat reset is racy - it doesn't synchronize against * stat updates. This is a debug feature which shouldn't exist * anyway. If you get hit by a race, retry. */ hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { for_each_possible_cpu(cpu) { struct blkg_iostat_set *bis = per_cpu_ptr(blkg->iostat_cpu, cpu); memset(bis, 0, sizeof(*bis)); } memset(&blkg->iostat, 0, sizeof(blkg->iostat)); for (i = 0; i < BLKCG_MAX_POLS; i++) { struct blkcg_policy *pol = blkcg_policy[i]; if (blkg->pd[i] && pol->pd_reset_stats_fn) pol->pd_reset_stats_fn(blkg->pd[i]); } } spin_unlock_irq(&blkcg->lock); mutex_unlock(&blkcg_pol_mutex); return 0; } const char *blkg_dev_name(struct blkcg_gq *blkg) { /* some drivers (floppy) instantiate a queue w/o disk registered */ if (blkg->q->backing_dev_info->dev) return bdi_dev_name(blkg->q->backing_dev_info); return NULL; } /** * blkcg_print_blkgs - helper for printing per-blkg data * @sf: seq_file to print to * @blkcg: blkcg of interest * @prfill: fill function to print out a blkg * @pol: policy in question * @data: data to be passed to @prfill * @show_total: to print out sum of prfill return values or not * * This function invokes @prfill on each blkg of @blkcg if pd for the * policy specified by @pol exists. @prfill is invoked with @sf, the * policy data and @data and the matching queue lock held. If @show_total * is %true, the sum of the return values from @prfill is printed with * "Total" label at the end. * * This is to be used to construct print functions for * cftype->read_seq_string method. */ void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, u64 (*prfill)(struct seq_file *, struct blkg_policy_data *, int), const struct blkcg_policy *pol, int data, bool show_total) { struct blkcg_gq *blkg; u64 total = 0; rcu_read_lock(); hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { spin_lock_irq(&blkg->q->queue_lock); if (blkcg_policy_enabled(blkg->q, pol)) total += prfill(sf, blkg->pd[pol->plid], data); spin_unlock_irq(&blkg->q->queue_lock); } rcu_read_unlock(); if (show_total) seq_printf(sf, "Total %llu\n", (unsigned long long)total); } EXPORT_SYMBOL_GPL(blkcg_print_blkgs); /** * __blkg_prfill_u64 - prfill helper for a single u64 value * @sf: seq_file to print to * @pd: policy private data of interest * @v: value to print * * Print @v to @sf for the device assocaited with @pd. */ u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) { const char *dname = blkg_dev_name(pd->blkg); if (!dname) return 0; seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); return v; } EXPORT_SYMBOL_GPL(__blkg_prfill_u64); /* Performs queue bypass and policy enabled checks then looks up blkg. */ static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, const struct blkcg_policy *pol, struct request_queue *q) { WARN_ON_ONCE(!rcu_read_lock_held()); lockdep_assert_held(&q->queue_lock); if (!blkcg_policy_enabled(q, pol)) return ERR_PTR(-EOPNOTSUPP); return __blkg_lookup(blkcg, q, true /* update_hint */); } /** * blkg_conf_prep - parse and prepare for per-blkg config update * @inputp: input string pointer * * Parse the device node prefix part, MAJ:MIN, of per-blkg config update * from @input and get and return the matching gendisk. *@inputp is * updated to point past the device node prefix. Returns an ERR_PTR() * value on error. * * Use this function iff blkg_conf_prep() can't be used for some reason. */ struct gendisk *blkcg_conf_get_disk(char **inputp) { char *input = *inputp; unsigned int major, minor; struct gendisk *disk; int key_len, part; if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) return ERR_PTR(-EINVAL); input += key_len; if (!isspace(*input)) return ERR_PTR(-EINVAL); input = skip_spaces(input); disk = get_gendisk(MKDEV(major, minor), &part); if (!disk) return ERR_PTR(-ENODEV); if (part) { put_disk_and_module(disk); return ERR_PTR(-ENODEV); } *inputp = input; return disk; } /** * blkg_conf_prep - parse and prepare for per-blkg config update * @blkcg: target block cgroup * @pol: target policy * @input: input string * @ctx: blkg_conf_ctx to be filled * * Parse per-blkg config update from @input and initialize @ctx with the * result. @ctx->blkg points to the blkg to be updated and @ctx->body the * part of @input following MAJ:MIN. This function returns with RCU read * lock and queue lock held and must be paired with blkg_conf_finish(). */ int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, char *input, struct blkg_conf_ctx *ctx) __acquires(rcu) __acquires(&disk->queue->queue_lock) { struct gendisk *disk; struct request_queue *q; struct blkcg_gq *blkg; int ret; disk = blkcg_conf_get_disk(&input); if (IS_ERR(disk)) return PTR_ERR(disk); q = disk->queue; rcu_read_lock(); spin_lock_irq(&q->queue_lock); blkg = blkg_lookup_check(blkcg, pol, q); if (IS_ERR(blkg)) { ret = PTR_ERR(blkg); goto fail_unlock; } if (blkg) goto success; /* * Create blkgs walking down from blkcg_root to @blkcg, so that all * non-root blkgs have access to their parents. */ while (true) { struct blkcg *pos = blkcg; struct blkcg *parent; struct blkcg_gq *new_blkg; parent = blkcg_parent(blkcg); while (parent && !__blkg_lookup(parent, q, false)) { pos = parent; parent = blkcg_parent(parent); } /* Drop locks to do new blkg allocation with GFP_KERNEL. */ spin_unlock_irq(&q->queue_lock); rcu_read_unlock(); new_blkg = blkg_alloc(pos, q, GFP_KERNEL); if (unlikely(!new_blkg)) { ret = -ENOMEM; goto fail; } if (radix_tree_preload(GFP_KERNEL)) { blkg_free(new_blkg); ret = -ENOMEM; goto fail; } rcu_read_lock(); spin_lock_irq(&q->queue_lock); blkg = blkg_lookup_check(pos, pol, q); if (IS_ERR(blkg)) { ret = PTR_ERR(blkg); blkg_free(new_blkg); goto fail_preloaded; } if (blkg) { blkg_free(new_blkg); } else { blkg = blkg_create(pos, q, new_blkg); if (IS_ERR(blkg)) { ret = PTR_ERR(blkg); goto fail_preloaded; } } radix_tree_preload_end(); if (pos == blkcg) goto success; } success: ctx->disk = disk; ctx->blkg = blkg; ctx->body = input; return 0; fail_preloaded: radix_tree_preload_end(); fail_unlock: spin_unlock_irq(&q->queue_lock); rcu_read_unlock(); fail: put_disk_and_module(disk); /* * If queue was bypassing, we should retry. Do so after a * short msleep(). It isn't strictly necessary but queue * can be bypassing for some time and it's always nice to * avoid busy looping. */ if (ret == -EBUSY) { msleep(10); ret = restart_syscall(); } return ret; } EXPORT_SYMBOL_GPL(blkg_conf_prep); /** * blkg_conf_finish - finish up per-blkg config update * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() * * Finish up after per-blkg config update. This function must be paired * with blkg_conf_prep(). */ void blkg_conf_finish(struct blkg_conf_ctx *ctx) __releases(&ctx->disk->queue->queue_lock) __releases(rcu) { spin_unlock_irq(&ctx->disk->queue->queue_lock); rcu_read_unlock(); put_disk_and_module(ctx->disk); } EXPORT_SYMBOL_GPL(blkg_conf_finish); static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) { int i; for (i = 0; i < BLKG_IOSTAT_NR; i++) { dst->bytes[i] = src->bytes[i]; dst->ios[i] = src->ios[i]; } } static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) { int i; for (i = 0; i < BLKG_IOSTAT_NR; i++) { dst->bytes[i] += src->bytes[i]; dst->ios[i] += src->ios[i]; } } static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) { int i; for (i = 0; i < BLKG_IOSTAT_NR; i++) { dst->bytes[i] -= src->bytes[i]; dst->ios[i] -= src->ios[i]; } } static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) { struct blkcg *blkcg = css_to_blkcg(css); struct blkcg_gq *blkg; rcu_read_lock(); hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { struct blkcg_gq *parent = blkg->parent; struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); struct blkg_iostat cur, delta; unsigned int seq; /* fetch the current per-cpu values */ do { seq = u64_stats_fetch_begin(&bisc->sync); blkg_iostat_set(&cur, &bisc->cur); } while (u64_stats_fetch_retry(&bisc->sync, seq)); /* propagate percpu delta to global */ u64_stats_update_begin(&blkg->iostat.sync); blkg_iostat_set(&delta, &cur); blkg_iostat_sub(&delta, &bisc->last); blkg_iostat_add(&blkg->iostat.cur, &delta); blkg_iostat_add(&bisc->last, &delta); u64_stats_update_end(&blkg->iostat.sync); /* propagate global delta to parent */ if (parent) { u64_stats_update_begin(&parent->iostat.sync); blkg_iostat_set(&delta, &blkg->iostat.cur); blkg_iostat_sub(&delta, &blkg->iostat.last); blkg_iostat_add(&parent->iostat.cur, &delta); blkg_iostat_add(&blkg->iostat.last, &delta); u64_stats_update_end(&parent->iostat.sync); } } rcu_read_unlock(); } /* * The rstat algorithms intentionally don't handle the root cgroup to avoid * incurring overhead when no cgroups are defined. For that reason, * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the * iostat in the root cgroup's blkcg_gq. * * However, we would like to re-use the printing code between the root and * non-root cgroups to the extent possible. For that reason, we simulate * flushing the root cgroup's stats by explicitly filling in the iostat * with disk level statistics. */ static void blkcg_fill_root_iostats(void) { struct class_dev_iter iter; struct device *dev; class_dev_iter_init(&iter, &block_class, NULL, &disk_type); while ((dev = class_dev_iter_next(&iter))) { struct gendisk *disk = dev_to_disk(dev); struct hd_struct *part = disk_get_part(disk, 0); struct blkcg_gq *blkg = blk_queue_root_blkg(disk->queue); struct blkg_iostat tmp; int cpu; memset(&tmp, 0, sizeof(tmp)); for_each_possible_cpu(cpu) { struct disk_stats *cpu_dkstats; cpu_dkstats = per_cpu_ptr(part->dkstats, cpu); tmp.ios[BLKG_IOSTAT_READ] += cpu_dkstats->ios[STAT_READ]; tmp.ios[BLKG_IOSTAT_WRITE] += cpu_dkstats->ios[STAT_WRITE]; tmp.ios[BLKG_IOSTAT_DISCARD] += cpu_dkstats->ios[STAT_DISCARD]; // convert sectors to bytes tmp.bytes[BLKG_IOSTAT_READ] += cpu_dkstats->sectors[STAT_READ] << 9; tmp.bytes[BLKG_IOSTAT_WRITE] += cpu_dkstats->sectors[STAT_WRITE] << 9; tmp.bytes[BLKG_IOSTAT_DISCARD] += cpu_dkstats->sectors[STAT_DISCARD] << 9; u64_stats_update_begin(&blkg->iostat.sync); blkg_iostat_set(&blkg->iostat.cur, &tmp); u64_stats_update_end(&blkg->iostat.sync); } disk_put_part(part); } } static int blkcg_print_stat(struct seq_file *sf, void *v) { struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); struct blkcg_gq *blkg; if (!seq_css(sf)->parent) blkcg_fill_root_iostats(); else cgroup_rstat_flush(blkcg->css.cgroup); rcu_read_lock(); hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { struct blkg_iostat_set *bis = &blkg->iostat; const char *dname; char *buf; u64 rbytes, wbytes, rios, wios, dbytes, dios; size_t size = seq_get_buf(sf, &buf), off = 0; int i; bool has_stats = false; unsigned seq; spin_lock_irq(&blkg->q->queue_lock); if (!blkg->online) goto skip; dname = blkg_dev_name(blkg); if (!dname) goto skip; /* * Hooray string manipulation, count is the size written NOT * INCLUDING THE \0, so size is now count+1 less than what we * had before, but we want to start writing the next bit from * the \0 so we only add count to buf. */ off += scnprintf(buf+off, size-off, "%s ", dname); do { seq = u64_stats_fetch_begin(&bis->sync); rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; rios = bis->cur.ios[BLKG_IOSTAT_READ]; wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; } while (u64_stats_fetch_retry(&bis->sync, seq)); if (rbytes || wbytes || rios || wios) { has_stats = true; off += scnprintf(buf+off, size-off, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", rbytes, wbytes, rios, wios, dbytes, dios); } if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { has_stats = true; off += scnprintf(buf+off, size-off, " use_delay=%d delay_nsec=%llu", atomic_read(&blkg->use_delay), (unsigned long long)atomic64_read(&blkg->delay_nsec)); } for (i = 0; i < BLKCG_MAX_POLS; i++) { struct blkcg_policy *pol = blkcg_policy[i]; size_t written; if (!blkg->pd[i] || !pol->pd_stat_fn) continue; written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off); if (written) has_stats = true; off += written; } if (has_stats) { if (off < size - 1) { off += scnprintf(buf+off, size-off, "\n"); seq_commit(sf, off); } else { seq_commit(sf, -1); } } skip: spin_unlock_irq(&blkg->q->queue_lock); } rcu_read_unlock(); return 0; } static struct cftype blkcg_files[] = { { .name = "stat", .seq_show = blkcg_print_stat, }, { } /* terminate */ }; static struct cftype blkcg_legacy_files[] = { { .name = "reset_stats", .write_u64 = blkcg_reset_stats, }, { } /* terminate */ }; /* * blkcg destruction is a three-stage process. * * 1. Destruction starts. The blkcg_css_offline() callback is invoked * which offlines writeback. Here we tie the next stage of blkg destruction * to the completion of writeback associated with the blkcg. This lets us * avoid punting potentially large amounts of outstanding writeback to root * while maintaining any ongoing policies. The next stage is triggered when * the nr_cgwbs count goes to zero. * * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called * and handles the destruction of blkgs. Here the css reference held by * the blkg is put back eventually allowing blkcg_css_free() to be called. * This work may occur in cgwb_release_workfn() on the cgwb_release * workqueue. Any submitted ios that fail to get the blkg ref will be * punted to the root_blkg. * * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. * This finally frees the blkcg. */ /** * blkcg_css_offline - cgroup css_offline callback * @css: css of interest * * This function is called when @css is about to go away. Here the cgwbs are * offlined first and only once writeback associated with the blkcg has * finished do we start step 2 (see above). */ static void blkcg_css_offline(struct cgroup_subsys_state *css) { struct blkcg *blkcg = css_to_blkcg(css); /* this prevents anyone from attaching or migrating to this blkcg */ wb_blkcg_offline(blkcg); /* put the base online pin allowing step 2 to be triggered */ blkcg_unpin_online(blkcg); } /** * blkcg_destroy_blkgs - responsible for shooting down blkgs * @blkcg: blkcg of interest * * blkgs should be removed while holding both q and blkcg locks. As blkcg lock * is nested inside q lock, this function performs reverse double lock dancing. * Destroying the blkgs releases the reference held on the blkcg's css allowing * blkcg_css_free to eventually be called. * * This is the blkcg counterpart of ioc_release_fn(). */ void blkcg_destroy_blkgs(struct blkcg *blkcg) { spin_lock_irq(&blkcg->lock); while (!hlist_empty(&blkcg->blkg_list)) { struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, struct blkcg_gq, blkcg_node); struct request_queue *q = blkg->q; if (spin_trylock(&q->queue_lock)) { blkg_destroy(blkg); spin_unlock(&q->queue_lock); } else { spin_unlock_irq(&blkcg->lock); cpu_relax(); spin_lock_irq(&blkcg->lock); } } spin_unlock_irq(&blkcg->lock); } static void blkcg_css_free(struct cgroup_subsys_state *css) { struct blkcg *blkcg = css_to_blkcg(css); int i; mutex_lock(&blkcg_pol_mutex); list_del(&blkcg->all_blkcgs_node); for (i = 0; i < BLKCG_MAX_POLS; i++) if (blkcg->cpd[i]) blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); mutex_unlock(&blkcg_pol_mutex); kfree(blkcg); } static struct cgroup_subsys_state * blkcg_css_alloc(struct cgroup_subsys_state *parent_css) { struct blkcg *blkcg; struct cgroup_subsys_state *ret; int i; mutex_lock(&blkcg_pol_mutex); if (!parent_css) { blkcg = &blkcg_root; } else { blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); if (!blkcg) { ret = ERR_PTR(-ENOMEM); goto unlock; } } for (i = 0; i < BLKCG_MAX_POLS ; i++) { struct blkcg_policy *pol = blkcg_policy[i]; struct blkcg_policy_data *cpd; /* * If the policy hasn't been attached yet, wait for it * to be attached before doing anything else. Otherwise, * check if the policy requires any specific per-cgroup * data: if it does, allocate and initialize it. */ if (!pol || !pol->cpd_alloc_fn) continue; cpd = pol->cpd_alloc_fn(GFP_KERNEL); if (!cpd) { ret = ERR_PTR(-ENOMEM); goto free_pd_blkcg; } blkcg->cpd[i] = cpd; cpd->blkcg = blkcg; cpd->plid = i; if (pol->cpd_init_fn) pol->cpd_init_fn(cpd); } spin_lock_init(&blkcg->lock); refcount_set(&blkcg->online_pin, 1); INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); INIT_HLIST_HEAD(&blkcg->blkg_list); #ifdef CONFIG_CGROUP_WRITEBACK INIT_LIST_HEAD(&blkcg->cgwb_list); #endif list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); mutex_unlock(&blkcg_pol_mutex); return &blkcg->css; free_pd_blkcg: for (i--; i >= 0; i--) if (blkcg->cpd[i]) blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); if (blkcg != &blkcg_root) kfree(blkcg); unlock: mutex_unlock(&blkcg_pol_mutex); return ret; } static int blkcg_css_online(struct cgroup_subsys_state *css) { struct blkcg *blkcg = css_to_blkcg(css); struct blkcg *parent = blkcg_parent(blkcg); /* * blkcg_pin_online() is used to delay blkcg offline so that blkgs * don't go offline while cgwbs are still active on them. Pin the * parent so that offline always happens towards the root. */ if (parent) blkcg_pin_online(parent); return 0; } /** * blkcg_init_queue - initialize blkcg part of request queue * @q: request_queue to initialize * * Called from blk_alloc_queue(). Responsible for initializing blkcg * part of new request_queue @q. * * RETURNS: * 0 on success, -errno on failure. */ int blkcg_init_queue(struct request_queue *q) { struct blkcg_gq *new_blkg, *blkg; bool preloaded; int ret; new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); if (!new_blkg) return -ENOMEM; preloaded = !radix_tree_preload(GFP_KERNEL); /* Make sure the root blkg exists. */ rcu_read_lock(); spin_lock_irq(&q->queue_lock); blkg = blkg_create(&blkcg_root, q, new_blkg); if (IS_ERR(blkg)) goto err_unlock; q->root_blkg = blkg; spin_unlock_irq(&q->queue_lock); rcu_read_unlock(); if (preloaded) radix_tree_preload_end(); ret = blk_throtl_init(q); if (ret) goto err_destroy_all; ret = blk_iolatency_init(q); if (ret) { blk_throtl_exit(q); goto err_destroy_all; } return 0; err_destroy_all: blkg_destroy_all(q); return ret; err_unlock: spin_unlock_irq(&q->queue_lock); rcu_read_unlock(); if (preloaded) radix_tree_preload_end(); return PTR_ERR(blkg); } /** * blkcg_exit_queue - exit and release blkcg part of request_queue * @q: request_queue being released * * Called from blk_exit_queue(). Responsible for exiting blkcg part. */ void blkcg_exit_queue(struct request_queue *q) { blkg_destroy_all(q); blk_throtl_exit(q); } /* * We cannot support shared io contexts, as we have no mean to support * two tasks with the same ioc in two different groups without major rework * of the main cic data structures. For now we allow a task to change * its cgroup only if it's the only owner of its ioc. */ static int blkcg_can_attach(struct cgroup_taskset *tset) { struct task_struct *task; struct cgroup_subsys_state *dst_css; struct io_context *ioc; int ret = 0; /* task_lock() is needed to avoid races with exit_io_context() */ cgroup_taskset_for_each(task, dst_css, tset) { task_lock(task); ioc = task->io_context; if (ioc && atomic_read(&ioc->nr_tasks) > 1) ret = -EINVAL; task_unlock(task); if (ret) break; } return ret; } static void blkcg_bind(struct cgroup_subsys_state *root_css) { int i; mutex_lock(&blkcg_pol_mutex); for (i = 0; i < BLKCG_MAX_POLS; i++) { struct blkcg_policy *pol = blkcg_policy[i]; struct blkcg *blkcg; if (!pol || !pol->cpd_bind_fn) continue; list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) if (blkcg->cpd[pol->plid]) pol->cpd_bind_fn(blkcg->cpd[pol->plid]); } mutex_unlock(&blkcg_pol_mutex); } static void blkcg_exit(struct task_struct *tsk) { if (tsk->throttle_queue) blk_put_queue(tsk->throttle_queue); tsk->throttle_queue = NULL; } struct cgroup_subsys io_cgrp_subsys = { .css_alloc = blkcg_css_alloc, .css_online = blkcg_css_online, .css_offline = blkcg_css_offline, .css_free = blkcg_css_free, .can_attach = blkcg_can_attach, .css_rstat_flush = blkcg_rstat_flush, .bind = blkcg_bind, .dfl_cftypes = blkcg_files, .legacy_cftypes = blkcg_legacy_files, .legacy_name = "blkio", .exit = blkcg_exit, #ifdef CONFIG_MEMCG /* * This ensures that, if available, memcg is automatically enabled * together on the default hierarchy so that the owner cgroup can * be retrieved from writeback pages. */ .depends_on = 1 << memory_cgrp_id, #endif }; EXPORT_SYMBOL_GPL(io_cgrp_subsys); /** * blkcg_activate_policy - activate a blkcg policy on a request_queue * @q: request_queue of interest * @pol: blkcg policy to activate * * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through * bypass mode to populate its blkgs with policy_data for @pol. * * Activation happens with @q bypassed, so nobody would be accessing blkgs * from IO path. Update of each blkg is protected by both queue and blkcg * locks so that holding either lock and testing blkcg_policy_enabled() is * always enough for dereferencing policy data. * * The caller is responsible for synchronizing [de]activations and policy * [un]registerations. Returns 0 on success, -errno on failure. */ int blkcg_activate_policy(struct request_queue *q, const struct blkcg_policy *pol) { struct blkg_policy_data *pd_prealloc = NULL; struct blkcg_gq *blkg, *pinned_blkg = NULL; int ret; if (blkcg_policy_enabled(q, pol)) return 0; if (queue_is_mq(q)) blk_mq_freeze_queue(q); retry: spin_lock_irq(&q->queue_lock); /* blkg_list is pushed at the head, reverse walk to allocate parents first */ list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { struct blkg_policy_data *pd; if (blkg->pd[pol->plid]) continue; /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ if (blkg == pinned_blkg) { pd = pd_prealloc; pd_prealloc = NULL; } else { pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, blkg->blkcg); } if (!pd) { /* * GFP_NOWAIT failed. Free the existing one and * prealloc for @blkg w/ GFP_KERNEL. */ if (pinned_blkg) blkg_put(pinned_blkg); blkg_get(blkg); pinned_blkg = blkg; spin_unlock_irq(&q->queue_lock); if (pd_prealloc) pol->pd_free_fn(pd_prealloc); pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, blkg->blkcg); if (pd_prealloc) goto retry; else goto enomem; } blkg->pd[pol->plid] = pd; pd->blkg = blkg; pd->plid = pol->plid; } /* all allocated, init in the same order */ if (pol->pd_init_fn) list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) pol->pd_init_fn(blkg->pd[pol->plid]); __set_bit(pol->plid, q->blkcg_pols); ret = 0; spin_unlock_irq(&q->queue_lock); out: if (queue_is_mq(q)) blk_mq_unfreeze_queue(q); if (pinned_blkg) blkg_put(pinned_blkg); if (pd_prealloc) pol->pd_free_fn(pd_prealloc); return ret; enomem: /* alloc failed, nothing's initialized yet, free everything */ spin_lock_irq(&q->queue_lock); list_for_each_entry(blkg, &q->blkg_list, q_node) { if (blkg->pd[pol->plid]) { pol->pd_free_fn(blkg->pd[pol->plid]); blkg->pd[pol->plid] = NULL; } } spin_unlock_irq(&q->queue_lock); ret = -ENOMEM; goto out; } EXPORT_SYMBOL_GPL(blkcg_activate_policy); /** * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue * @q: request_queue of interest * @pol: blkcg policy to deactivate * * Deactivate @pol on @q. Follows the same synchronization rules as * blkcg_activate_policy(). */ void blkcg_deactivate_policy(struct request_queue *q, const struct blkcg_policy *pol) { struct blkcg_gq *blkg; if (!blkcg_policy_enabled(q, pol)) return; if (queue_is_mq(q)) blk_mq_freeze_queue(q); spin_lock_irq(&q->queue_lock); __clear_bit(pol->plid, q->blkcg_pols); list_for_each_entry(blkg, &q->blkg_list, q_node) { if (blkg->pd[pol->plid]) { if (pol->pd_offline_fn) pol->pd_offline_fn(blkg->pd[pol->plid]); pol->pd_free_fn(blkg->pd[pol->plid]); blkg->pd[pol->plid] = NULL; } } spin_unlock_irq(&q->queue_lock); if (queue_is_mq(q)) blk_mq_unfreeze_queue(q); } EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); /** * blkcg_policy_register - register a blkcg policy * @pol: blkcg policy to register * * Register @pol with blkcg core. Might sleep and @pol may be modified on * successful registration. Returns 0 on success and -errno on failure. */ int blkcg_policy_register(struct blkcg_policy *pol) { struct blkcg *blkcg; int i, ret; mutex_lock(&blkcg_pol_register_mutex); mutex_lock(&blkcg_pol_mutex); /* find an empty slot */ ret = -ENOSPC; for (i = 0; i < BLKCG_MAX_POLS; i++) if (!blkcg_policy[i]) break; if (i >= BLKCG_MAX_POLS) { pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); goto err_unlock; } /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) goto err_unlock; /* register @pol */ pol->plid = i; blkcg_policy[pol->plid] = pol; /* allocate and install cpd's */ if (pol->cpd_alloc_fn) { list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { struct blkcg_policy_data *cpd; cpd = pol->cpd_alloc_fn(GFP_KERNEL); if (!cpd) goto err_free_cpds; blkcg->cpd[pol->plid] = cpd; cpd->blkcg = blkcg; cpd->plid = pol->plid; if (pol->cpd_init_fn) pol->cpd_init_fn(cpd); } } mutex_unlock(&blkcg_pol_mutex); /* everything is in place, add intf files for the new policy */ if (pol->dfl_cftypes) WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, pol->dfl_cftypes)); if (pol->legacy_cftypes) WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, pol->legacy_cftypes)); mutex_unlock(&blkcg_pol_register_mutex); return 0; err_free_cpds: if (pol->cpd_free_fn) { list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { if (blkcg->cpd[pol->plid]) { pol->cpd_free_fn(blkcg->cpd[pol->plid]); blkcg->cpd[pol->plid] = NULL; } } } blkcg_policy[pol->plid] = NULL; err_unlock: mutex_unlock(&blkcg_pol_mutex); mutex_unlock(&blkcg_pol_register_mutex); return ret; } EXPORT_SYMBOL_GPL(blkcg_policy_register); /** * blkcg_policy_unregister - unregister a blkcg policy * @pol: blkcg policy to unregister * * Undo blkcg_policy_register(@pol). Might sleep. */ void blkcg_policy_unregister(struct blkcg_policy *pol) { struct blkcg *blkcg; mutex_lock(&blkcg_pol_register_mutex); if (WARN_ON(blkcg_policy[pol->plid] != pol)) goto out_unlock; /* kill the intf files first */ if (pol->dfl_cftypes) cgroup_rm_cftypes(pol->dfl_cftypes); if (pol->legacy_cftypes) cgroup_rm_cftypes(pol->legacy_cftypes); /* remove cpds and unregister */ mutex_lock(&blkcg_pol_mutex); if (pol->cpd_free_fn) { list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { if (blkcg->cpd[pol->plid]) { pol->cpd_free_fn(blkcg->cpd[pol->plid]); blkcg->cpd[pol->plid] = NULL; } } } blkcg_policy[pol->plid] = NULL; mutex_unlock(&blkcg_pol_mutex); out_unlock: mutex_unlock(&blkcg_pol_register_mutex); } EXPORT_SYMBOL_GPL(blkcg_policy_unregister); bool __blkcg_punt_bio_submit(struct bio *bio) { struct blkcg_gq *blkg = bio->bi_blkg; /* consume the flag first */ bio->bi_opf &= ~REQ_CGROUP_PUNT; /* never bounce for the root cgroup */ if (!blkg->parent) return false; spin_lock_bh(&blkg->async_bio_lock); bio_list_add(&blkg->async_bios, bio); spin_unlock_bh(&blkg->async_bio_lock); queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); return true; } /* * Scale the accumulated delay based on how long it has been since we updated * the delay. We only call this when we are adding delay, in case it's been a * while since we added delay, and when we are checking to see if we need to * delay a task, to account for any delays that may have occurred. */ static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) { u64 old = atomic64_read(&blkg->delay_start); /* negative use_delay means no scaling, see blkcg_set_delay() */ if (atomic_read(&blkg->use_delay) < 0) return; /* * We only want to scale down every second. The idea here is that we * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain * time window. We only want to throttle tasks for recent delay that * has occurred, in 1 second time windows since that's the maximum * things can be throttled. We save the current delay window in * blkg->last_delay so we know what amount is still left to be charged * to the blkg from this point onward. blkg->last_use keeps track of * the use_delay counter. The idea is if we're unthrottling the blkg we * are ok with whatever is happening now, and we can take away more of * the accumulated delay as we've already throttled enough that * everybody is happy with their IO latencies. */ if (time_before64(old + NSEC_PER_SEC, now) && atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { u64 cur = atomic64_read(&blkg->delay_nsec); u64 sub = min_t(u64, blkg->last_delay, now - old); int cur_use = atomic_read(&blkg->use_delay); /* * We've been unthrottled, subtract a larger chunk of our * accumulated delay. */ if (cur_use < blkg->last_use) sub = max_t(u64, sub, blkg->last_delay >> 1); /* * This shouldn't happen, but handle it anyway. Our delay_nsec * should only ever be growing except here where we subtract out * min(last_delay, 1 second), but lord knows bugs happen and I'd * rather not end up with negative numbers. */ if (unlikely(cur < sub)) { atomic64_set(&blkg->delay_nsec, 0); blkg->last_delay = 0; } else { atomic64_sub(sub, &blkg->delay_nsec); blkg->last_delay = cur - sub; } blkg->last_use = cur_use; } } /* * This is called when we want to actually walk up the hierarchy and check to * see if we need to throttle, and then actually throttle if there is some * accumulated delay. This should only be called upon return to user space so * we're not holding some lock that would induce a priority inversion. */ static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) { unsigned long pflags; bool clamp; u64 now = ktime_to_ns(ktime_get()); u64 exp; u64 delay_nsec = 0; int tok; while (blkg->parent) { int use_delay = atomic_read(&blkg->use_delay); if (use_delay) { u64 this_delay; blkcg_scale_delay(blkg, now); this_delay = atomic64_read(&blkg->delay_nsec); if (this_delay > delay_nsec) { delay_nsec = this_delay; clamp = use_delay > 0; } } blkg = blkg->parent; } if (!delay_nsec) return; /* * Let's not sleep for all eternity if we've amassed a huge delay. * Swapping or metadata IO can accumulate 10's of seconds worth of * delay, and we want userspace to be able to do _something_ so cap the * delays at 0.25s. If there's 10's of seconds worth of delay then the * tasks will be delayed for 0.25 second for every syscall. If * blkcg_set_delay() was used as indicated by negative use_delay, the * caller is responsible for regulating the range. */ if (clamp) delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); if (use_memdelay) psi_memstall_enter(&pflags); exp = ktime_add_ns(now, delay_nsec); tok = io_schedule_prepare(); do { __set_current_state(TASK_KILLABLE); if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) break; } while (!fatal_signal_pending(current)); io_schedule_finish(tok); if (use_memdelay) psi_memstall_leave(&pflags); } /** * blkcg_maybe_throttle_current - throttle the current task if it has been marked * * This is only called if we've been marked with set_notify_resume(). Obviously * we can be set_notify_resume() for reasons other than blkcg throttling, so we * check to see if current->throttle_queue is set and if not this doesn't do * anything. This should only ever be called by the resume code, it's not meant * to be called by people willy-nilly as it will actually do the work to * throttle the task if it is setup for throttling. */ void blkcg_maybe_throttle_current(void) { struct request_queue *q = current->throttle_queue; struct cgroup_subsys_state *css; struct blkcg *blkcg; struct blkcg_gq *blkg; bool use_memdelay = current->use_memdelay; if (!q) return; current->throttle_queue = NULL; current->use_memdelay = false; rcu_read_lock(); css = kthread_blkcg(); if (css) blkcg = css_to_blkcg(css); else blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); if (!blkcg) goto out; blkg = blkg_lookup(blkcg, q); if (!blkg) goto out; if (!blkg_tryget(blkg)) goto out; rcu_read_unlock(); blkcg_maybe_throttle_blkg(blkg, use_memdelay); blkg_put(blkg); blk_put_queue(q); return; out: rcu_read_unlock(); blk_put_queue(q); } /** * blkcg_schedule_throttle - this task needs to check for throttling * @q: the request queue IO was submitted on * @use_memdelay: do we charge this to memory delay for PSI * * This is called by the IO controller when we know there's delay accumulated * for the blkg for this task. We do not pass the blkg because there are places * we call this that may not have that information, the swapping code for * instance will only have a request_queue at that point. This set's the * notify_resume for the task to check and see if it requires throttling before * returning to user space. * * We will only schedule once per syscall. You can call this over and over * again and it will only do the check once upon return to user space, and only * throttle once. If the task needs to be throttled again it'll need to be * re-set at the next time we see the task. */ void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) { if (unlikely(current->flags & PF_KTHREAD)) return; if (!blk_get_queue(q)) return; if (current->throttle_queue) blk_put_queue(current->throttle_queue); current->throttle_queue = q; if (use_memdelay) current->use_memdelay = use_memdelay; set_notify_resume(current); } /** * blkcg_add_delay - add delay to this blkg * @blkg: blkg of interest * @now: the current time in nanoseconds * @delta: how many nanoseconds of delay to add * * Charge @delta to the blkg's current delay accumulation. This is used to * throttle tasks if an IO controller thinks we need more throttling. */ void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) { if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) return; blkcg_scale_delay(blkg, now); atomic64_add(delta, &blkg->delay_nsec); } /** * blkg_tryget_closest - try and get a blkg ref on the closet blkg * @bio: target bio * @css: target css * * As the failure mode here is to walk up the blkg tree, this ensure that the * blkg->parent pointers are always valid. This returns the blkg that it ended * up taking a reference on or %NULL if no reference was taken. */ static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, struct cgroup_subsys_state *css) { struct blkcg_gq *blkg, *ret_blkg = NULL; rcu_read_lock(); blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_disk->queue); while (blkg) { if (blkg_tryget(blkg)) { ret_blkg = blkg; break; } blkg = blkg->parent; } rcu_read_unlock(); return ret_blkg; } /** * bio_associate_blkg_from_css - associate a bio with a specified css * @bio: target bio * @css: target css * * Associate @bio with the blkg found by combining the css's blkg and the * request_queue of the @bio. An association failure is handled by walking up * the blkg tree. Therefore, the blkg associated can be anything between @blkg * and q->root_blkg. This situation only happens when a cgroup is dying and * then the remaining bios will spill to the closest alive blkg. * * A reference will be taken on the blkg and will be released when @bio is * freed. */ void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css) { if (bio->bi_blkg) blkg_put(bio->bi_blkg); if (css && css->parent) { bio->bi_blkg = blkg_tryget_closest(bio, css); } else { blkg_get(bio->bi_disk->queue->root_blkg); bio->bi_blkg = bio->bi_disk->queue->root_blkg; } } EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); /** * bio_associate_blkg - associate a bio with a blkg * @bio: target bio * * Associate @bio with the blkg found from the bio's css and request_queue. * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is * already associated, the css is reused and association redone as the * request_queue may have changed. */ void bio_associate_blkg(struct bio *bio) { struct cgroup_subsys_state *css; rcu_read_lock(); if (bio->bi_blkg) css = &bio_blkcg(bio)->css; else css = blkcg_css(); bio_associate_blkg_from_css(bio, css); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(bio_associate_blkg); /** * bio_clone_blkg_association - clone blkg association from src to dst bio * @dst: destination bio * @src: source bio */ void bio_clone_blkg_association(struct bio *dst, struct bio *src) { if (src->bi_blkg) { if (dst->bi_blkg) blkg_put(dst->bi_blkg); blkg_get(src->bi_blkg); dst->bi_blkg = src->bi_blkg; } } EXPORT_SYMBOL_GPL(bio_clone_blkg_association); static int blk_cgroup_io_type(struct bio *bio) { if (op_is_discard(bio->bi_opf)) return BLKG_IOSTAT_DISCARD; if (op_is_write(bio->bi_opf)) return BLKG_IOSTAT_WRITE; return BLKG_IOSTAT_READ; } void blk_cgroup_bio_start(struct bio *bio) { int rwd = blk_cgroup_io_type(bio), cpu; struct blkg_iostat_set *bis; cpu = get_cpu(); bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); u64_stats_update_begin(&bis->sync); /* * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split * bio and we would have already accounted for the size of the bio. */ if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { bio_set_flag(bio, BIO_CGROUP_ACCT); bis->cur.bytes[rwd] += bio->bi_iter.bi_size; } bis->cur.ios[rwd]++; u64_stats_update_end(&bis->sync); if (cgroup_subsys_on_dfl(io_cgrp_subsys)) cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); put_cpu(); } static int __init blkcg_init(void) { blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND | WQ_SYSFS, 0); if (!blkcg_punt_bio_wq) return -ENOMEM; return 0; } subsys_initcall(blkcg_init); module_param(blkcg_debug_stats, bool, 0644); MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");