// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* * Copyright 2015-2016 Freescale Semiconductor Inc. * Copyright 2017-2019 NXP */ #include "compat.h" #include "regs.h" #include "caamalg_qi2.h" #include "dpseci_cmd.h" #include "desc_constr.h" #include "error.h" #include "sg_sw_sec4.h" #include "sg_sw_qm2.h" #include "key_gen.h" #include "caamalg_desc.h" #include "caamhash_desc.h" #include "dpseci-debugfs.h" #include #include #include #include #include #define CAAM_CRA_PRIORITY 2000 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */ #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE + \ SHA512_DIGEST_SIZE * 2) /* * This is a a cache of buffers, from which the users of CAAM QI driver * can allocate short buffers. It's speedier than doing kmalloc on the hotpath. * NOTE: A more elegant solution would be to have some headroom in the frames * being processed. This can be added by the dpaa2-eth driver. This would * pose a problem for userspace application processing which cannot * know of this limitation. So for now, this will work. * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here */ static struct kmem_cache *qi_cache; struct caam_alg_entry { struct device *dev; int class1_alg_type; int class2_alg_type; bool rfc3686; bool geniv; bool nodkp; }; struct caam_aead_alg { struct aead_alg aead; struct caam_alg_entry caam; bool registered; }; struct caam_skcipher_alg { struct skcipher_alg skcipher; struct caam_alg_entry caam; bool registered; }; /** * struct caam_ctx - per-session context * @flc: Flow Contexts array * @key: [authentication key], encryption key * @flc_dma: I/O virtual addresses of the Flow Contexts * @key_dma: I/O virtual address of the key * @dir: DMA direction for mapping key and Flow Contexts * @dev: dpseci device * @adata: authentication algorithm details * @cdata: encryption algorithm details * @authsize: authentication tag (a.k.a. ICV / MAC) size */ struct caam_ctx { struct caam_flc flc[NUM_OP]; u8 key[CAAM_MAX_KEY_SIZE]; dma_addr_t flc_dma[NUM_OP]; dma_addr_t key_dma; enum dma_data_direction dir; struct device *dev; struct alginfo adata; struct alginfo cdata; unsigned int authsize; bool xts_key_fallback; struct crypto_skcipher *fallback; }; static void *dpaa2_caam_iova_to_virt(struct dpaa2_caam_priv *priv, dma_addr_t iova_addr) { phys_addr_t phys_addr; phys_addr = priv->domain ? iommu_iova_to_phys(priv->domain, iova_addr) : iova_addr; return phys_to_virt(phys_addr); } /* * qi_cache_zalloc - Allocate buffers from CAAM-QI cache * * Allocate data on the hotpath. Instead of using kzalloc, one can use the * services of the CAAM QI memory cache (backed by kmem_cache). The buffers * will have a size of CAAM_QI_MEMCACHE_SIZE, which should be sufficient for * hosting 16 SG entries. * * @flags - flags that would be used for the equivalent kmalloc(..) call * * Returns a pointer to a retrieved buffer on success or NULL on failure. */ static inline void *qi_cache_zalloc(gfp_t flags) { return kmem_cache_zalloc(qi_cache, flags); } /* * qi_cache_free - Frees buffers allocated from CAAM-QI cache * * @obj - buffer previously allocated by qi_cache_zalloc * * No checking is being done, the call is a passthrough call to * kmem_cache_free(...) */ static inline void qi_cache_free(void *obj) { kmem_cache_free(qi_cache, obj); } static struct caam_request *to_caam_req(struct crypto_async_request *areq) { switch (crypto_tfm_alg_type(areq->tfm)) { case CRYPTO_ALG_TYPE_SKCIPHER: return skcipher_request_ctx(skcipher_request_cast(areq)); case CRYPTO_ALG_TYPE_AEAD: return aead_request_ctx(container_of(areq, struct aead_request, base)); case CRYPTO_ALG_TYPE_AHASH: return ahash_request_ctx(ahash_request_cast(areq)); default: return ERR_PTR(-EINVAL); } } static void caam_unmap(struct device *dev, struct scatterlist *src, struct scatterlist *dst, int src_nents, int dst_nents, dma_addr_t iv_dma, int ivsize, enum dma_data_direction iv_dir, dma_addr_t qm_sg_dma, int qm_sg_bytes) { if (dst != src) { if (src_nents) dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE); if (dst_nents) dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE); } else { dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL); } if (iv_dma) dma_unmap_single(dev, iv_dma, ivsize, iv_dir); if (qm_sg_bytes) dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE); } static int aead_set_sh_desc(struct crypto_aead *aead) { struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead), typeof(*alg), aead); struct caam_ctx *ctx = crypto_aead_ctx(aead); unsigned int ivsize = crypto_aead_ivsize(aead); struct device *dev = ctx->dev; struct dpaa2_caam_priv *priv = dev_get_drvdata(dev); struct caam_flc *flc; u32 *desc; u32 ctx1_iv_off = 0; u32 *nonce = NULL; unsigned int data_len[2]; u32 inl_mask; const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) == OP_ALG_AAI_CTR_MOD128); const bool is_rfc3686 = alg->caam.rfc3686; if (!ctx->cdata.keylen || !ctx->authsize) return 0; /* * AES-CTR needs to load IV in CONTEXT1 reg * at an offset of 128bits (16bytes) * CONTEXT1[255:128] = IV */ if (ctr_mode) ctx1_iv_off = 16; /* * RFC3686 specific: * CONTEXT1[255:128] = {NONCE, IV, COUNTER} */ if (is_rfc3686) { ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE; nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad + ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE); } /* * In case |user key| > |derived key|, using DKP would result * in invalid opcodes (last bytes of user key) in the resulting * descriptor. Use DKP instead => both virtual and dma key * addresses are needed. */ ctx->adata.key_virt = ctx->key; ctx->adata.key_dma = ctx->key_dma; ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad; ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad; data_len[0] = ctx->adata.keylen_pad; data_len[1] = ctx->cdata.keylen; /* aead_encrypt shared descriptor */ if (desc_inline_query((alg->caam.geniv ? DESC_QI_AEAD_GIVENC_LEN : DESC_QI_AEAD_ENC_LEN) + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0), DESC_JOB_IO_LEN, data_len, &inl_mask, ARRAY_SIZE(data_len)) < 0) return -EINVAL; ctx->adata.key_inline = !!(inl_mask & 1); ctx->cdata.key_inline = !!(inl_mask & 2); flc = &ctx->flc[ENCRYPT]; desc = flc->sh_desc; if (alg->caam.geniv) cnstr_shdsc_aead_givencap(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, is_rfc3686, nonce, ctx1_iv_off, true, priv->sec_attr.era); else cnstr_shdsc_aead_encap(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, is_rfc3686, nonce, ctx1_iv_off, true, priv->sec_attr.era); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); /* aead_decrypt shared descriptor */ if (desc_inline_query(DESC_QI_AEAD_DEC_LEN + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0), DESC_JOB_IO_LEN, data_len, &inl_mask, ARRAY_SIZE(data_len)) < 0) return -EINVAL; ctx->adata.key_inline = !!(inl_mask & 1); ctx->cdata.key_inline = !!(inl_mask & 2); flc = &ctx->flc[DECRYPT]; desc = flc->sh_desc; cnstr_shdsc_aead_decap(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, alg->caam.geniv, is_rfc3686, nonce, ctx1_iv_off, true, priv->sec_attr.era); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); return 0; } static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(authenc); ctx->authsize = authsize; aead_set_sh_desc(authenc); return 0; } static int aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; struct crypto_authenc_keys keys; if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) goto badkey; dev_dbg(dev, "keylen %d enckeylen %d authkeylen %d\n", keys.authkeylen + keys.enckeylen, keys.enckeylen, keys.authkeylen); print_hex_dump_debug("key in @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); ctx->adata.keylen = keys.authkeylen; ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype & OP_ALG_ALGSEL_MASK); if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE) goto badkey; memcpy(ctx->key, keys.authkey, keys.authkeylen); memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen); dma_sync_single_for_device(dev, ctx->key_dma, ctx->adata.keylen_pad + keys.enckeylen, ctx->dir); print_hex_dump_debug("ctx.key@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, ctx->adata.keylen_pad + keys.enckeylen, 1); ctx->cdata.keylen = keys.enckeylen; memzero_explicit(&keys, sizeof(keys)); return aead_set_sh_desc(aead); badkey: memzero_explicit(&keys, sizeof(keys)); return -EINVAL; } static int des3_aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct crypto_authenc_keys keys; int err; err = crypto_authenc_extractkeys(&keys, key, keylen); if (unlikely(err)) goto out; err = -EINVAL; if (keys.enckeylen != DES3_EDE_KEY_SIZE) goto out; err = crypto_des3_ede_verify_key(crypto_aead_tfm(aead), keys.enckey) ?: aead_setkey(aead, key, keylen); out: memzero_explicit(&keys, sizeof(keys)); return err; } static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, bool encrypt) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_request *req_ctx = aead_request_ctx(req); struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; struct caam_ctx *ctx = crypto_aead_ctx(aead); struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead), typeof(*alg), aead); struct device *dev = ctx->dev; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0; int src_len, dst_len = 0; struct aead_edesc *edesc; dma_addr_t qm_sg_dma, iv_dma = 0; int ivsize = 0; unsigned int authsize = ctx->authsize; int qm_sg_index = 0, qm_sg_nents = 0, qm_sg_bytes; int in_len, out_len; struct dpaa2_sg_entry *sg_table; /* allocate space for base edesc, link tables and IV */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (unlikely(!edesc)) { dev_err(dev, "could not allocate extended descriptor\n"); return ERR_PTR(-ENOMEM); } if (unlikely(req->dst != req->src)) { src_len = req->assoclen + req->cryptlen; dst_len = src_len + (encrypt ? authsize : (-authsize)); src_nents = sg_nents_for_len(req->src, src_len); if (unlikely(src_nents < 0)) { dev_err(dev, "Insufficient bytes (%d) in src S/G\n", src_len); qi_cache_free(edesc); return ERR_PTR(src_nents); } dst_nents = sg_nents_for_len(req->dst, dst_len); if (unlikely(dst_nents < 0)) { dev_err(dev, "Insufficient bytes (%d) in dst S/G\n", dst_len); qi_cache_free(edesc); return ERR_PTR(dst_nents); } if (src_nents) { mapped_src_nents = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE); if (unlikely(!mapped_src_nents)) { dev_err(dev, "unable to map source\n"); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } } else { mapped_src_nents = 0; } if (dst_nents) { mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!mapped_dst_nents)) { dev_err(dev, "unable to map destination\n"); dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } } else { mapped_dst_nents = 0; } } else { src_len = req->assoclen + req->cryptlen + (encrypt ? authsize : 0); src_nents = sg_nents_for_len(req->src, src_len); if (unlikely(src_nents < 0)) { dev_err(dev, "Insufficient bytes (%d) in src S/G\n", src_len); qi_cache_free(edesc); return ERR_PTR(src_nents); } mapped_src_nents = dma_map_sg(dev, req->src, src_nents, DMA_BIDIRECTIONAL); if (unlikely(!mapped_src_nents)) { dev_err(dev, "unable to map source\n"); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } } if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv) ivsize = crypto_aead_ivsize(aead); /* * Create S/G table: req->assoclen, [IV,] req->src [, req->dst]. * Input is not contiguous. * HW reads 4 S/G entries at a time; make sure the reads don't go beyond * the end of the table by allocating more S/G entries. Logic: * if (src != dst && output S/G) * pad output S/G, if needed * else if (src == dst && S/G) * overlapping S/Gs; pad one of them * else if (input S/G) ... * pad input S/G, if needed */ qm_sg_nents = 1 + !!ivsize + mapped_src_nents; if (mapped_dst_nents > 1) qm_sg_nents += pad_sg_nents(mapped_dst_nents); else if ((req->src == req->dst) && (mapped_src_nents > 1)) qm_sg_nents = max(pad_sg_nents(qm_sg_nents), 1 + !!ivsize + pad_sg_nents(mapped_src_nents)); else qm_sg_nents = pad_sg_nents(qm_sg_nents); sg_table = &edesc->sgt[0]; qm_sg_bytes = qm_sg_nents * sizeof(*sg_table); if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize > CAAM_QI_MEMCACHE_SIZE)) { dev_err(dev, "No space for %d S/G entries and/or %dB IV\n", qm_sg_nents, ivsize); caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0, 0, DMA_NONE, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } if (ivsize) { u8 *iv = (u8 *)(sg_table + qm_sg_nents); /* Make sure IV is located in a DMAable area */ memcpy(iv, req->iv, ivsize); iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE); if (dma_mapping_error(dev, iv_dma)) { dev_err(dev, "unable to map IV\n"); caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0, 0, DMA_NONE, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } } edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->iv_dma = iv_dma; if ((alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK) == OP_ALG_ALGSEL_CHACHA20 && ivsize != CHACHAPOLY_IV_SIZE) /* * The associated data comes already with the IV but we need * to skip it when we authenticate or encrypt... */ edesc->assoclen = cpu_to_caam32(req->assoclen - ivsize); else edesc->assoclen = cpu_to_caam32(req->assoclen); edesc->assoclen_dma = dma_map_single(dev, &edesc->assoclen, 4, DMA_TO_DEVICE); if (dma_mapping_error(dev, edesc->assoclen_dma)) { dev_err(dev, "unable to map assoclen\n"); caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, DMA_TO_DEVICE, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0); qm_sg_index++; if (ivsize) { dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0); qm_sg_index++; } sg_to_qm_sg_last(req->src, src_len, sg_table + qm_sg_index, 0); qm_sg_index += mapped_src_nents; if (mapped_dst_nents > 1) sg_to_qm_sg_last(req->dst, dst_len, sg_table + qm_sg_index, 0); qm_sg_dma = dma_map_single(dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(dev, qm_sg_dma)) { dev_err(dev, "unable to map S/G table\n"); dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE); caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, DMA_TO_DEVICE, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } edesc->qm_sg_dma = qm_sg_dma; edesc->qm_sg_bytes = qm_sg_bytes; out_len = req->assoclen + req->cryptlen + (encrypt ? ctx->authsize : (-ctx->authsize)); in_len = 4 + ivsize + req->assoclen + req->cryptlen; memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, qm_sg_dma); dpaa2_fl_set_len(in_fle, in_len); if (req->dst == req->src) { if (mapped_src_nents == 1) { dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, sg_dma_address(req->src)); } else { dpaa2_fl_set_format(out_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(out_fle, qm_sg_dma + (1 + !!ivsize) * sizeof(*sg_table)); } } else if (!mapped_dst_nents) { /* * crypto engine requires the output entry to be present when * "frame list" FD is used. * Since engine does not support FMT=2'b11 (unused entry type), * leaving out_fle zeroized is the best option. */ goto skip_out_fle; } else if (mapped_dst_nents == 1) { dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, sg_dma_address(req->dst)); } else { dpaa2_fl_set_format(out_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(out_fle, qm_sg_dma + qm_sg_index * sizeof(*sg_table)); } dpaa2_fl_set_len(out_fle, out_len); skip_out_fle: return edesc; } static int chachapoly_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx(aead); unsigned int ivsize = crypto_aead_ivsize(aead); struct device *dev = ctx->dev; struct caam_flc *flc; u32 *desc; if (!ctx->cdata.keylen || !ctx->authsize) return 0; flc = &ctx->flc[ENCRYPT]; desc = flc->sh_desc; cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, true, true); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); flc = &ctx->flc[DECRYPT]; desc = flc->sh_desc; cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize, ctx->authsize, false, true); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); return 0; } static int chachapoly_setauthsize(struct crypto_aead *aead, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(aead); if (authsize != POLY1305_DIGEST_SIZE) return -EINVAL; ctx->authsize = authsize; return chachapoly_set_sh_desc(aead); } static int chachapoly_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx(aead); unsigned int ivsize = crypto_aead_ivsize(aead); unsigned int saltlen = CHACHAPOLY_IV_SIZE - ivsize; if (keylen != CHACHA_KEY_SIZE + saltlen) return -EINVAL; ctx->cdata.key_virt = key; ctx->cdata.keylen = keylen - saltlen; return chachapoly_set_sh_desc(aead); } static int gcm_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; unsigned int ivsize = crypto_aead_ivsize(aead); struct caam_flc *flc; u32 *desc; int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN - ctx->cdata.keylen; if (!ctx->cdata.keylen || !ctx->authsize) return 0; /* * AES GCM encrypt shared descriptor * Job Descriptor and Shared Descriptor * must fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_QI_GCM_ENC_LEN) { ctx->cdata.key_inline = true; ctx->cdata.key_virt = ctx->key; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } flc = &ctx->flc[ENCRYPT]; desc = flc->sh_desc; cnstr_shdsc_gcm_encap(desc, &ctx->cdata, ivsize, ctx->authsize, true); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_QI_GCM_DEC_LEN) { ctx->cdata.key_inline = true; ctx->cdata.key_virt = ctx->key; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } flc = &ctx->flc[DECRYPT]; desc = flc->sh_desc; cnstr_shdsc_gcm_decap(desc, &ctx->cdata, ivsize, ctx->authsize, true); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); return 0; } static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(authenc); int err; err = crypto_gcm_check_authsize(authsize); if (err) return err; ctx->authsize = authsize; gcm_set_sh_desc(authenc); return 0; } static int gcm_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; int ret; ret = aes_check_keylen(keylen); if (ret) return ret; print_hex_dump_debug("key in @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); memcpy(ctx->key, key, keylen); dma_sync_single_for_device(dev, ctx->key_dma, keylen, ctx->dir); ctx->cdata.keylen = keylen; return gcm_set_sh_desc(aead); } static int rfc4106_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; unsigned int ivsize = crypto_aead_ivsize(aead); struct caam_flc *flc; u32 *desc; int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN - ctx->cdata.keylen; if (!ctx->cdata.keylen || !ctx->authsize) return 0; ctx->cdata.key_virt = ctx->key; /* * RFC4106 encrypt shared descriptor * Job Descriptor and Shared Descriptor * must fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) { ctx->cdata.key_inline = true; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } flc = &ctx->flc[ENCRYPT]; desc = flc->sh_desc; cnstr_shdsc_rfc4106_encap(desc, &ctx->cdata, ivsize, ctx->authsize, true); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) { ctx->cdata.key_inline = true; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } flc = &ctx->flc[DECRYPT]; desc = flc->sh_desc; cnstr_shdsc_rfc4106_decap(desc, &ctx->cdata, ivsize, ctx->authsize, true); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); return 0; } static int rfc4106_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(authenc); int err; err = crypto_rfc4106_check_authsize(authsize); if (err) return err; ctx->authsize = authsize; rfc4106_set_sh_desc(authenc); return 0; } static int rfc4106_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; int ret; ret = aes_check_keylen(keylen - 4); if (ret) return ret; print_hex_dump_debug("key in @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); memcpy(ctx->key, key, keylen); /* * The last four bytes of the key material are used as the salt value * in the nonce. Update the AES key length. */ ctx->cdata.keylen = keylen - 4; dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen, ctx->dir); return rfc4106_set_sh_desc(aead); } static int rfc4543_set_sh_desc(struct crypto_aead *aead) { struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; unsigned int ivsize = crypto_aead_ivsize(aead); struct caam_flc *flc; u32 *desc; int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN - ctx->cdata.keylen; if (!ctx->cdata.keylen || !ctx->authsize) return 0; ctx->cdata.key_virt = ctx->key; /* * RFC4543 encrypt shared descriptor * Job Descriptor and Shared Descriptor * must fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) { ctx->cdata.key_inline = true; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } flc = &ctx->flc[ENCRYPT]; desc = flc->sh_desc; cnstr_shdsc_rfc4543_encap(desc, &ctx->cdata, ivsize, ctx->authsize, true); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) { ctx->cdata.key_inline = true; } else { ctx->cdata.key_inline = false; ctx->cdata.key_dma = ctx->key_dma; } flc = &ctx->flc[DECRYPT]; desc = flc->sh_desc; cnstr_shdsc_rfc4543_decap(desc, &ctx->cdata, ivsize, ctx->authsize, true); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); return 0; } static int rfc4543_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(authenc); if (authsize != 16) return -EINVAL; ctx->authsize = authsize; rfc4543_set_sh_desc(authenc); return 0; } static int rfc4543_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *dev = ctx->dev; int ret; ret = aes_check_keylen(keylen - 4); if (ret) return ret; print_hex_dump_debug("key in @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); memcpy(ctx->key, key, keylen); /* * The last four bytes of the key material are used as the salt value * in the nonce. Update the AES key length. */ ctx->cdata.keylen = keylen - 4; dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen, ctx->dir); return rfc4543_set_sh_desc(aead); } static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen, const u32 ctx1_iv_off) { struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher); struct caam_skcipher_alg *alg = container_of(crypto_skcipher_alg(skcipher), struct caam_skcipher_alg, skcipher); struct device *dev = ctx->dev; struct caam_flc *flc; unsigned int ivsize = crypto_skcipher_ivsize(skcipher); u32 *desc; const bool is_rfc3686 = alg->caam.rfc3686; print_hex_dump_debug("key in @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); ctx->cdata.keylen = keylen; ctx->cdata.key_virt = key; ctx->cdata.key_inline = true; /* skcipher_encrypt shared descriptor */ flc = &ctx->flc[ENCRYPT]; desc = flc->sh_desc; cnstr_shdsc_skcipher_encap(desc, &ctx->cdata, ivsize, is_rfc3686, ctx1_iv_off); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); /* skcipher_decrypt shared descriptor */ flc = &ctx->flc[DECRYPT]; desc = flc->sh_desc; cnstr_shdsc_skcipher_decap(desc, &ctx->cdata, ivsize, is_rfc3686, ctx1_iv_off); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); return 0; } static int aes_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { int err; err = aes_check_keylen(keylen); if (err) return err; return skcipher_setkey(skcipher, key, keylen, 0); } static int rfc3686_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { u32 ctx1_iv_off; int err; /* * RFC3686 specific: * | CONTEXT1[255:128] = {NONCE, IV, COUNTER} * | *key = {KEY, NONCE} */ ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE; keylen -= CTR_RFC3686_NONCE_SIZE; err = aes_check_keylen(keylen); if (err) return err; return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off); } static int ctr_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { u32 ctx1_iv_off; int err; /* * AES-CTR needs to load IV in CONTEXT1 reg * at an offset of 128bits (16bytes) * CONTEXT1[255:128] = IV */ ctx1_iv_off = 16; err = aes_check_keylen(keylen); if (err) return err; return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off); } static int chacha20_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { if (keylen != CHACHA_KEY_SIZE) return -EINVAL; return skcipher_setkey(skcipher, key, keylen, 0); } static int des_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { return verify_skcipher_des_key(skcipher, key) ?: skcipher_setkey(skcipher, key, keylen, 0); } static int des3_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { return verify_skcipher_des3_key(skcipher, key) ?: skcipher_setkey(skcipher, key, keylen, 0); } static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher); struct device *dev = ctx->dev; struct dpaa2_caam_priv *priv = dev_get_drvdata(dev); struct caam_flc *flc; u32 *desc; int err; err = xts_verify_key(skcipher, key, keylen); if (err) { dev_dbg(dev, "key size mismatch\n"); return err; } if (keylen != 2 * AES_KEYSIZE_128 && keylen != 2 * AES_KEYSIZE_256) ctx->xts_key_fallback = true; if (priv->sec_attr.era <= 8 || ctx->xts_key_fallback) { err = crypto_skcipher_setkey(ctx->fallback, key, keylen); if (err) return err; } ctx->cdata.keylen = keylen; ctx->cdata.key_virt = key; ctx->cdata.key_inline = true; /* xts_skcipher_encrypt shared descriptor */ flc = &ctx->flc[ENCRYPT]; desc = flc->sh_desc; cnstr_shdsc_xts_skcipher_encap(desc, &ctx->cdata); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); /* xts_skcipher_decrypt shared descriptor */ flc = &ctx->flc[DECRYPT]; desc = flc->sh_desc; cnstr_shdsc_xts_skcipher_decap(desc, &ctx->cdata); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT], sizeof(flc->flc) + desc_bytes(desc), ctx->dir); return 0; } static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_request *req_ctx = skcipher_request_ctx(req); struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher); struct device *dev = ctx->dev; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0; struct skcipher_edesc *edesc; dma_addr_t iv_dma; u8 *iv; int ivsize = crypto_skcipher_ivsize(skcipher); int dst_sg_idx, qm_sg_ents, qm_sg_bytes; struct dpaa2_sg_entry *sg_table; src_nents = sg_nents_for_len(req->src, req->cryptlen); if (unlikely(src_nents < 0)) { dev_err(dev, "Insufficient bytes (%d) in src S/G\n", req->cryptlen); return ERR_PTR(src_nents); } if (unlikely(req->dst != req->src)) { dst_nents = sg_nents_for_len(req->dst, req->cryptlen); if (unlikely(dst_nents < 0)) { dev_err(dev, "Insufficient bytes (%d) in dst S/G\n", req->cryptlen); return ERR_PTR(dst_nents); } mapped_src_nents = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE); if (unlikely(!mapped_src_nents)) { dev_err(dev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!mapped_dst_nents)) { dev_err(dev, "unable to map destination\n"); dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE); return ERR_PTR(-ENOMEM); } } else { mapped_src_nents = dma_map_sg(dev, req->src, src_nents, DMA_BIDIRECTIONAL); if (unlikely(!mapped_src_nents)) { dev_err(dev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } } qm_sg_ents = 1 + mapped_src_nents; dst_sg_idx = qm_sg_ents; /* * Input, output HW S/G tables: [IV, src][dst, IV] * IV entries point to the same buffer * If src == dst, S/G entries are reused (S/G tables overlap) * * HW reads 4 S/G entries at a time; make sure the reads don't go beyond * the end of the table by allocating more S/G entries. */ if (req->src != req->dst) qm_sg_ents += pad_sg_nents(mapped_dst_nents + 1); else qm_sg_ents = 1 + pad_sg_nents(qm_sg_ents); qm_sg_bytes = qm_sg_ents * sizeof(struct dpaa2_sg_entry); if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes + ivsize > CAAM_QI_MEMCACHE_SIZE)) { dev_err(dev, "No space for %d S/G entries and/or %dB IV\n", qm_sg_ents, ivsize); caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0, 0, DMA_NONE, 0, 0); return ERR_PTR(-ENOMEM); } /* allocate space for base edesc, link tables and IV */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (unlikely(!edesc)) { dev_err(dev, "could not allocate extended descriptor\n"); caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0, 0, DMA_NONE, 0, 0); return ERR_PTR(-ENOMEM); } /* Make sure IV is located in a DMAable area */ sg_table = &edesc->sgt[0]; iv = (u8 *)(sg_table + qm_sg_ents); memcpy(iv, req->iv, ivsize); iv_dma = dma_map_single(dev, iv, ivsize, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, iv_dma)) { dev_err(dev, "unable to map IV\n"); caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0, 0, DMA_NONE, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; edesc->iv_dma = iv_dma; edesc->qm_sg_bytes = qm_sg_bytes; dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0); sg_to_qm_sg(req->src, req->cryptlen, sg_table + 1, 0); if (req->src != req->dst) sg_to_qm_sg(req->dst, req->cryptlen, sg_table + dst_sg_idx, 0); dma_to_qm_sg_one(sg_table + dst_sg_idx + mapped_dst_nents, iv_dma, ivsize, 0); edesc->qm_sg_dma = dma_map_single(dev, sg_table, edesc->qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(dev, edesc->qm_sg_dma)) { dev_err(dev, "unable to map S/G table\n"); caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, iv_dma, ivsize, DMA_BIDIRECTIONAL, 0, 0); qi_cache_free(edesc); return ERR_PTR(-ENOMEM); } memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_len(in_fle, req->cryptlen + ivsize); dpaa2_fl_set_len(out_fle, req->cryptlen + ivsize); dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma); dpaa2_fl_set_format(out_fle, dpaa2_fl_sg); if (req->src == req->dst) dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma + sizeof(*sg_table)); else dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma + dst_sg_idx * sizeof(*sg_table)); return edesc; } static void aead_unmap(struct device *dev, struct aead_edesc *edesc, struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); int ivsize = crypto_aead_ivsize(aead); caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents, edesc->iv_dma, ivsize, DMA_TO_DEVICE, edesc->qm_sg_dma, edesc->qm_sg_bytes); dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE); } static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc, struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); int ivsize = crypto_skcipher_ivsize(skcipher); caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents, edesc->iv_dma, ivsize, DMA_BIDIRECTIONAL, edesc->qm_sg_dma, edesc->qm_sg_bytes); } static void aead_encrypt_done(void *cbk_ctx, u32 status) { struct crypto_async_request *areq = cbk_ctx; struct aead_request *req = container_of(areq, struct aead_request, base); struct caam_request *req_ctx = to_caam_req(areq); struct aead_edesc *edesc = req_ctx->edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ecode = 0; dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status); if (unlikely(status)) ecode = caam_qi2_strstatus(ctx->dev, status); aead_unmap(ctx->dev, edesc, req); qi_cache_free(edesc); aead_request_complete(req, ecode); } static void aead_decrypt_done(void *cbk_ctx, u32 status) { struct crypto_async_request *areq = cbk_ctx; struct aead_request *req = container_of(areq, struct aead_request, base); struct caam_request *req_ctx = to_caam_req(areq); struct aead_edesc *edesc = req_ctx->edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ecode = 0; dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status); if (unlikely(status)) ecode = caam_qi2_strstatus(ctx->dev, status); aead_unmap(ctx->dev, edesc, req); qi_cache_free(edesc); aead_request_complete(req, ecode); } static int aead_encrypt(struct aead_request *req) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct caam_request *caam_req = aead_request_ctx(req); int ret; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, true); if (IS_ERR(edesc)) return PTR_ERR(edesc); caam_req->flc = &ctx->flc[ENCRYPT]; caam_req->flc_dma = ctx->flc_dma[ENCRYPT]; caam_req->cbk = aead_encrypt_done; caam_req->ctx = &req->base; caam_req->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, caam_req); if (ret != -EINPROGRESS && !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { aead_unmap(ctx->dev, edesc, req); qi_cache_free(edesc); } return ret; } static int aead_decrypt(struct aead_request *req) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct caam_request *caam_req = aead_request_ctx(req); int ret; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, false); if (IS_ERR(edesc)) return PTR_ERR(edesc); caam_req->flc = &ctx->flc[DECRYPT]; caam_req->flc_dma = ctx->flc_dma[DECRYPT]; caam_req->cbk = aead_decrypt_done; caam_req->ctx = &req->base; caam_req->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, caam_req); if (ret != -EINPROGRESS && !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { aead_unmap(ctx->dev, edesc, req); qi_cache_free(edesc); } return ret; } static int ipsec_gcm_encrypt(struct aead_request *req) { return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_encrypt(req); } static int ipsec_gcm_decrypt(struct aead_request *req) { return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_decrypt(req); } static void skcipher_encrypt_done(void *cbk_ctx, u32 status) { struct crypto_async_request *areq = cbk_ctx; struct skcipher_request *req = skcipher_request_cast(areq); struct caam_request *req_ctx = to_caam_req(areq); struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher); struct skcipher_edesc *edesc = req_ctx->edesc; int ecode = 0; int ivsize = crypto_skcipher_ivsize(skcipher); dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status); if (unlikely(status)) ecode = caam_qi2_strstatus(ctx->dev, status); print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->iv, edesc->src_nents > 1 ? 100 : ivsize, 1); caam_dump_sg("dst @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->dst, edesc->dst_nents > 1 ? 100 : req->cryptlen, 1); skcipher_unmap(ctx->dev, edesc, req); /* * The crypto API expects us to set the IV (req->iv) to the last * ciphertext block (CBC mode) or last counter (CTR mode). * This is used e.g. by the CTS mode. */ if (!ecode) memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes, ivsize); qi_cache_free(edesc); skcipher_request_complete(req, ecode); } static void skcipher_decrypt_done(void *cbk_ctx, u32 status) { struct crypto_async_request *areq = cbk_ctx; struct skcipher_request *req = skcipher_request_cast(areq); struct caam_request *req_ctx = to_caam_req(areq); struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher); struct skcipher_edesc *edesc = req_ctx->edesc; int ecode = 0; int ivsize = crypto_skcipher_ivsize(skcipher); dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status); if (unlikely(status)) ecode = caam_qi2_strstatus(ctx->dev, status); print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->iv, edesc->src_nents > 1 ? 100 : ivsize, 1); caam_dump_sg("dst @" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->dst, edesc->dst_nents > 1 ? 100 : req->cryptlen, 1); skcipher_unmap(ctx->dev, edesc, req); /* * The crypto API expects us to set the IV (req->iv) to the last * ciphertext block (CBC mode) or last counter (CTR mode). * This is used e.g. by the CTS mode. */ if (!ecode) memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes, ivsize); qi_cache_free(edesc); skcipher_request_complete(req, ecode); } static inline bool xts_skcipher_ivsize(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); unsigned int ivsize = crypto_skcipher_ivsize(skcipher); return !!get_unaligned((u64 *)(req->iv + (ivsize / 2))); } static int skcipher_encrypt(struct skcipher_request *req) { struct skcipher_edesc *edesc; struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher); struct caam_request *caam_req = skcipher_request_ctx(req); struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev); int ret; /* * XTS is expected to return an error even for input length = 0 * Note that the case input length < block size will be caught during * HW offloading and return an error. */ if (!req->cryptlen && !ctx->fallback) return 0; if (ctx->fallback && ((priv->sec_attr.era <= 8 && xts_skcipher_ivsize(req)) || ctx->xts_key_fallback)) { skcipher_request_set_tfm(&caam_req->fallback_req, ctx->fallback); skcipher_request_set_callback(&caam_req->fallback_req, req->base.flags, req->base.complete, req->base.data); skcipher_request_set_crypt(&caam_req->fallback_req, req->src, req->dst, req->cryptlen, req->iv); return crypto_skcipher_encrypt(&caam_req->fallback_req); } /* allocate extended descriptor */ edesc = skcipher_edesc_alloc(req); if (IS_ERR(edesc)) return PTR_ERR(edesc); caam_req->flc = &ctx->flc[ENCRYPT]; caam_req->flc_dma = ctx->flc_dma[ENCRYPT]; caam_req->cbk = skcipher_encrypt_done; caam_req->ctx = &req->base; caam_req->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, caam_req); if (ret != -EINPROGRESS && !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { skcipher_unmap(ctx->dev, edesc, req); qi_cache_free(edesc); } return ret; } static int skcipher_decrypt(struct skcipher_request *req) { struct skcipher_edesc *edesc; struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher); struct caam_request *caam_req = skcipher_request_ctx(req); struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev); int ret; /* * XTS is expected to return an error even for input length = 0 * Note that the case input length < block size will be caught during * HW offloading and return an error. */ if (!req->cryptlen && !ctx->fallback) return 0; if (ctx->fallback && ((priv->sec_attr.era <= 8 && xts_skcipher_ivsize(req)) || ctx->xts_key_fallback)) { skcipher_request_set_tfm(&caam_req->fallback_req, ctx->fallback); skcipher_request_set_callback(&caam_req->fallback_req, req->base.flags, req->base.complete, req->base.data); skcipher_request_set_crypt(&caam_req->fallback_req, req->src, req->dst, req->cryptlen, req->iv); return crypto_skcipher_decrypt(&caam_req->fallback_req); } /* allocate extended descriptor */ edesc = skcipher_edesc_alloc(req); if (IS_ERR(edesc)) return PTR_ERR(edesc); caam_req->flc = &ctx->flc[DECRYPT]; caam_req->flc_dma = ctx->flc_dma[DECRYPT]; caam_req->cbk = skcipher_decrypt_done; caam_req->ctx = &req->base; caam_req->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, caam_req); if (ret != -EINPROGRESS && !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { skcipher_unmap(ctx->dev, edesc, req); qi_cache_free(edesc); } return ret; } static int caam_cra_init(struct caam_ctx *ctx, struct caam_alg_entry *caam, bool uses_dkp) { dma_addr_t dma_addr; int i; /* copy descriptor header template value */ ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type; ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type; ctx->dev = caam->dev; ctx->dir = uses_dkp ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc, offsetof(struct caam_ctx, flc_dma), ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(ctx->dev, dma_addr)) { dev_err(ctx->dev, "unable to map key, shared descriptors\n"); return -ENOMEM; } for (i = 0; i < NUM_OP; i++) ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]); ctx->key_dma = dma_addr + NUM_OP * sizeof(ctx->flc[0]); return 0; } static int caam_cra_init_skcipher(struct crypto_skcipher *tfm) { struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct caam_skcipher_alg *caam_alg = container_of(alg, typeof(*caam_alg), skcipher); struct caam_ctx *ctx = crypto_skcipher_ctx(tfm); u32 alg_aai = caam_alg->caam.class1_alg_type & OP_ALG_AAI_MASK; int ret = 0; if (alg_aai == OP_ALG_AAI_XTS) { const char *tfm_name = crypto_tfm_alg_name(&tfm->base); struct crypto_skcipher *fallback; fallback = crypto_alloc_skcipher(tfm_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(fallback)) { dev_err(caam_alg->caam.dev, "Failed to allocate %s fallback: %ld\n", tfm_name, PTR_ERR(fallback)); return PTR_ERR(fallback); } ctx->fallback = fallback; crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_request) + crypto_skcipher_reqsize(fallback)); } else { crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_request)); } ret = caam_cra_init(ctx, &caam_alg->caam, false); if (ret && ctx->fallback) crypto_free_skcipher(ctx->fallback); return ret; } static int caam_cra_init_aead(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg), aead); crypto_aead_set_reqsize(tfm, sizeof(struct caam_request)); return caam_cra_init(crypto_aead_ctx(tfm), &caam_alg->caam, !caam_alg->caam.nodkp); } static void caam_exit_common(struct caam_ctx *ctx) { dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0], offsetof(struct caam_ctx, flc_dma), ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); } static void caam_cra_exit(struct crypto_skcipher *tfm) { struct caam_ctx *ctx = crypto_skcipher_ctx(tfm); if (ctx->fallback) crypto_free_skcipher(ctx->fallback); caam_exit_common(ctx); } static void caam_cra_exit_aead(struct crypto_aead *tfm) { caam_exit_common(crypto_aead_ctx(tfm)); } static struct caam_skcipher_alg driver_algs[] = { { .skcipher = { .base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aes_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, }, { .skcipher = { .base = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "cbc-3des-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, }, { .skcipher = { .base = { .cra_name = "cbc(des)", .cra_driver_name = "cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = des_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, }, { .skcipher = { .base = { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = ctr_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .chunksize = AES_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, }, { .skcipher = { .base = { .cra_name = "rfc3686(ctr(aes))", .cra_driver_name = "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = rfc3686_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, .chunksize = AES_BLOCK_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .rfc3686 = true, }, }, { .skcipher = { .base = { .cra_name = "xts(aes)", .cra_driver_name = "xts-aes-caam-qi2", .cra_flags = CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = xts_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS, }, { .skcipher = { .base = { .cra_name = "chacha20", .cra_driver_name = "chacha20-caam-qi2", .cra_blocksize = 1, }, .setkey = chacha20_skcipher_setkey, .encrypt = skcipher_encrypt, .decrypt = skcipher_decrypt, .min_keysize = CHACHA_KEY_SIZE, .max_keysize = CHACHA_KEY_SIZE, .ivsize = CHACHA_IV_SIZE, }, .caam.class1_alg_type = OP_ALG_ALGSEL_CHACHA20, }, }; static struct caam_aead_alg driver_aeads[] = { { .aead = { .base = { .cra_name = "rfc4106(gcm(aes))", .cra_driver_name = "rfc4106-gcm-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = rfc4106_setkey, .setauthsize = rfc4106_setauthsize, .encrypt = ipsec_gcm_encrypt, .decrypt = ipsec_gcm_decrypt, .ivsize = 8, .maxauthsize = AES_BLOCK_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, .nodkp = true, }, }, { .aead = { .base = { .cra_name = "rfc4543(gcm(aes))", .cra_driver_name = "rfc4543-gcm-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = rfc4543_setkey, .setauthsize = rfc4543_setauthsize, .encrypt = ipsec_gcm_encrypt, .decrypt = ipsec_gcm_decrypt, .ivsize = 8, .maxauthsize = AES_BLOCK_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, .nodkp = true, }, }, /* Galois Counter Mode */ { .aead = { .base = { .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = gcm_setkey, .setauthsize = gcm_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = 12, .maxauthsize = AES_BLOCK_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, .nodkp = true, } }, /* single-pass ipsec_esp descriptor */ { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_driver_name = "authenc-hmac-md5-" "cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(aes))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-cbc-aes-" "caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-cbc-aes-" "caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-aes-caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(aes)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-cbc-aes-" "caam-qi2", .cra_blocksize = AES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-md5-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512)," "cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(des3_ede)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-" "cbc-des3_ede-caam-qi2", .cra_blocksize = DES3_EDE_BLOCK_SIZE, }, .setkey = des3_aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(md5),cbc(des))", .cra_driver_name = "authenc-hmac-md5-" "cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(md5)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-hmac-md5-" "cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1),cbc(des))", .cra_driver_name = "authenc-hmac-sha1-" "cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha1)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha1-cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224),cbc(des))", .cra_driver_name = "authenc-hmac-sha224-" "cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha224)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha224-cbc-des-" "caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256),cbc(des))", .cra_driver_name = "authenc-hmac-sha256-" "cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha256)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha256-cbc-des-" "caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384),cbc(des))", .cra_driver_name = "authenc-hmac-sha384-" "cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, }, }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha384)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha384-cbc-des-" "caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512),cbc(des))", .cra_driver_name = "authenc-hmac-sha512-" "cbc-des-caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, } }, { .aead = { .base = { .cra_name = "echainiv(authenc(hmac(sha512)," "cbc(des)))", .cra_driver_name = "echainiv-authenc-" "hmac-sha512-cbc-des-" "caam-qi2", .cra_blocksize = DES_BLOCK_SIZE, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .geniv = true, } }, { .aead = { .base = { .cra_name = "authenc(hmac(md5)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-md5-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(" "hmac(md5),rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-md5-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha1)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha1-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(" "hmac(sha1),rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha1-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha224)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha224-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(" "hmac(sha224),rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha224-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha256)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha256-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(hmac(sha256)," "rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha256-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha384)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha384-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(hmac(sha384)," "rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha384-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, { .aead = { .base = { .cra_name = "rfc7539(chacha20,poly1305)", .cra_driver_name = "rfc7539-chacha20-poly1305-" "caam-qi2", .cra_blocksize = 1, }, .setkey = chachapoly_setkey, .setauthsize = chachapoly_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CHACHAPOLY_IV_SIZE, .maxauthsize = POLY1305_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_CHACHA20 | OP_ALG_AAI_AEAD, .class2_alg_type = OP_ALG_ALGSEL_POLY1305 | OP_ALG_AAI_AEAD, .nodkp = true, }, }, { .aead = { .base = { .cra_name = "rfc7539esp(chacha20,poly1305)", .cra_driver_name = "rfc7539esp-chacha20-" "poly1305-caam-qi2", .cra_blocksize = 1, }, .setkey = chachapoly_setkey, .setauthsize = chachapoly_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = 8, .maxauthsize = POLY1305_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_CHACHA20 | OP_ALG_AAI_AEAD, .class2_alg_type = OP_ALG_ALGSEL_POLY1305 | OP_ALG_AAI_AEAD, .nodkp = true, }, }, { .aead = { .base = { .cra_name = "authenc(hmac(sha512)," "rfc3686(ctr(aes)))", .cra_driver_name = "authenc-hmac-sha512-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, }, }, { .aead = { .base = { .cra_name = "seqiv(authenc(hmac(sha512)," "rfc3686(ctr(aes))))", .cra_driver_name = "seqiv-authenc-hmac-sha512-" "rfc3686-ctr-aes-caam-qi2", .cra_blocksize = 1, }, .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .caam = { .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .rfc3686 = true, .geniv = true, }, }, }; static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg) { struct skcipher_alg *alg = &t_alg->skcipher; alg->base.cra_module = THIS_MODULE; alg->base.cra_priority = CAAM_CRA_PRIORITY; alg->base.cra_ctxsize = sizeof(struct caam_ctx); alg->base.cra_flags |= (CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY); alg->init = caam_cra_init_skcipher; alg->exit = caam_cra_exit; } static void caam_aead_alg_init(struct caam_aead_alg *t_alg) { struct aead_alg *alg = &t_alg->aead; alg->base.cra_module = THIS_MODULE; alg->base.cra_priority = CAAM_CRA_PRIORITY; alg->base.cra_ctxsize = sizeof(struct caam_ctx); alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY; alg->init = caam_cra_init_aead; alg->exit = caam_cra_exit_aead; } /* max hash key is max split key size */ #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2) #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE /* caam context sizes for hashes: running digest + 8 */ #define HASH_MSG_LEN 8 #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE) enum hash_optype { UPDATE = 0, UPDATE_FIRST, FINALIZE, DIGEST, HASH_NUM_OP }; /** * struct caam_hash_ctx - ahash per-session context * @flc: Flow Contexts array * @key: authentication key * @flc_dma: I/O virtual addresses of the Flow Contexts * @dev: dpseci device * @ctx_len: size of Context Register * @adata: hashing algorithm details */ struct caam_hash_ctx { struct caam_flc flc[HASH_NUM_OP]; u8 key[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned; dma_addr_t flc_dma[HASH_NUM_OP]; struct device *dev; int ctx_len; struct alginfo adata; }; /* ahash state */ struct caam_hash_state { struct caam_request caam_req; dma_addr_t buf_dma; dma_addr_t ctx_dma; int ctx_dma_len; u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned; int buflen; int next_buflen; u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned; int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); }; struct caam_export_state { u8 buf[CAAM_MAX_HASH_BLOCK_SIZE]; u8 caam_ctx[MAX_CTX_LEN]; int buflen; int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); }; /* Map current buffer in state (if length > 0) and put it in link table */ static inline int buf_map_to_qm_sg(struct device *dev, struct dpaa2_sg_entry *qm_sg, struct caam_hash_state *state) { int buflen = state->buflen; if (!buflen) return 0; state->buf_dma = dma_map_single(dev, state->buf, buflen, DMA_TO_DEVICE); if (dma_mapping_error(dev, state->buf_dma)) { dev_err(dev, "unable to map buf\n"); state->buf_dma = 0; return -ENOMEM; } dma_to_qm_sg_one(qm_sg, state->buf_dma, buflen, 0); return 0; } /* Map state->caam_ctx, and add it to link table */ static inline int ctx_map_to_qm_sg(struct device *dev, struct caam_hash_state *state, int ctx_len, struct dpaa2_sg_entry *qm_sg, u32 flag) { state->ctx_dma_len = ctx_len; state->ctx_dma = dma_map_single(dev, state->caam_ctx, ctx_len, flag); if (dma_mapping_error(dev, state->ctx_dma)) { dev_err(dev, "unable to map ctx\n"); state->ctx_dma = 0; return -ENOMEM; } dma_to_qm_sg_one(qm_sg, state->ctx_dma, ctx_len, 0); return 0; } static int ahash_set_sh_desc(struct crypto_ahash *ahash) { struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); int digestsize = crypto_ahash_digestsize(ahash); struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev); struct caam_flc *flc; u32 *desc; /* ahash_update shared descriptor */ flc = &ctx->flc[UPDATE]; desc = flc->sh_desc; cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx->ctx_len, true, priv->sec_attr.era); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE], desc_bytes(desc), DMA_BIDIRECTIONAL); print_hex_dump_debug("ahash update shdesc@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* ahash_update_first shared descriptor */ flc = &ctx->flc[UPDATE_FIRST]; desc = flc->sh_desc; cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, ctx->ctx_len, false, priv->sec_attr.era); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE_FIRST], desc_bytes(desc), DMA_BIDIRECTIONAL); print_hex_dump_debug("ahash update first shdesc@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* ahash_final shared descriptor */ flc = &ctx->flc[FINALIZE]; desc = flc->sh_desc; cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize, ctx->ctx_len, true, priv->sec_attr.era); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(ctx->dev, ctx->flc_dma[FINALIZE], desc_bytes(desc), DMA_BIDIRECTIONAL); print_hex_dump_debug("ahash final shdesc@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* ahash_digest shared descriptor */ flc = &ctx->flc[DIGEST]; desc = flc->sh_desc; cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize, ctx->ctx_len, false, priv->sec_attr.era); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ dma_sync_single_for_device(ctx->dev, ctx->flc_dma[DIGEST], desc_bytes(desc), DMA_BIDIRECTIONAL); print_hex_dump_debug("ahash digest shdesc@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return 0; } struct split_key_sh_result { struct completion completion; int err; struct device *dev; }; static void split_key_sh_done(void *cbk_ctx, u32 err) { struct split_key_sh_result *res = cbk_ctx; dev_dbg(res->dev, "%s %d: err 0x%x\n", __func__, __LINE__, err); res->err = err ? caam_qi2_strstatus(res->dev, err) : 0; complete(&res->completion); } /* Digest hash size if it is too large */ static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key, u32 digestsize) { struct caam_request *req_ctx; u32 *desc; struct split_key_sh_result result; dma_addr_t key_dma; struct caam_flc *flc; dma_addr_t flc_dma; int ret = -ENOMEM; struct dpaa2_fl_entry *in_fle, *out_fle; req_ctx = kzalloc(sizeof(*req_ctx), GFP_KERNEL | GFP_DMA); if (!req_ctx) return -ENOMEM; in_fle = &req_ctx->fd_flt[1]; out_fle = &req_ctx->fd_flt[0]; flc = kzalloc(sizeof(*flc), GFP_KERNEL | GFP_DMA); if (!flc) goto err_flc; key_dma = dma_map_single(ctx->dev, key, *keylen, DMA_BIDIRECTIONAL); if (dma_mapping_error(ctx->dev, key_dma)) { dev_err(ctx->dev, "unable to map key memory\n"); goto err_key_dma; } desc = flc->sh_desc; init_sh_desc(desc, 0); /* descriptor to perform unkeyed hash on key_in */ append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT | OP_ALG_AS_INITFINAL); append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG); append_seq_store(desc, digestsize, LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */ flc_dma = dma_map_single(ctx->dev, flc, sizeof(flc->flc) + desc_bytes(desc), DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, flc_dma)) { dev_err(ctx->dev, "unable to map shared descriptor\n"); goto err_flc_dma; } dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_format(in_fle, dpaa2_fl_single); dpaa2_fl_set_addr(in_fle, key_dma); dpaa2_fl_set_len(in_fle, *keylen); dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, key_dma); dpaa2_fl_set_len(out_fle, digestsize); print_hex_dump_debug("key_in@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1); print_hex_dump_debug("shdesc@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); result.err = 0; init_completion(&result.completion); result.dev = ctx->dev; req_ctx->flc = flc; req_ctx->flc_dma = flc_dma; req_ctx->cbk = split_key_sh_done; req_ctx->ctx = &result; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret == -EINPROGRESS) { /* in progress */ wait_for_completion(&result.completion); ret = result.err; print_hex_dump_debug("digested key@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, digestsize, 1); } dma_unmap_single(ctx->dev, flc_dma, sizeof(flc->flc) + desc_bytes(desc), DMA_TO_DEVICE); err_flc_dma: dma_unmap_single(ctx->dev, key_dma, *keylen, DMA_BIDIRECTIONAL); err_key_dma: kfree(flc); err_flc: kfree(req_ctx); *keylen = digestsize; return ret; } static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); unsigned int blocksize = crypto_tfm_alg_blocksize(&ahash->base); unsigned int digestsize = crypto_ahash_digestsize(ahash); int ret; u8 *hashed_key = NULL; dev_dbg(ctx->dev, "keylen %d blocksize %d\n", keylen, blocksize); if (keylen > blocksize) { hashed_key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA); if (!hashed_key) return -ENOMEM; ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize); if (ret) goto bad_free_key; key = hashed_key; } ctx->adata.keylen = keylen; ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype & OP_ALG_ALGSEL_MASK); if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE) goto bad_free_key; ctx->adata.key_virt = key; ctx->adata.key_inline = true; /* * In case |user key| > |derived key|, using DKP would result * in invalid opcodes (last bytes of user key) in the resulting * descriptor. Use DKP instead => both virtual and dma key * addresses are needed. */ if (keylen > ctx->adata.keylen_pad) { memcpy(ctx->key, key, keylen); dma_sync_single_for_device(ctx->dev, ctx->adata.key_dma, ctx->adata.keylen_pad, DMA_TO_DEVICE); } ret = ahash_set_sh_desc(ahash); kfree(hashed_key); return ret; bad_free_key: kfree(hashed_key); return -EINVAL; } static inline void ahash_unmap(struct device *dev, struct ahash_edesc *edesc, struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx(req); if (edesc->src_nents) dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); if (edesc->qm_sg_bytes) dma_unmap_single(dev, edesc->qm_sg_dma, edesc->qm_sg_bytes, DMA_TO_DEVICE); if (state->buf_dma) { dma_unmap_single(dev, state->buf_dma, state->buflen, DMA_TO_DEVICE); state->buf_dma = 0; } } static inline void ahash_unmap_ctx(struct device *dev, struct ahash_edesc *edesc, struct ahash_request *req, u32 flag) { struct caam_hash_state *state = ahash_request_ctx(req); if (state->ctx_dma) { dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag); state->ctx_dma = 0; } ahash_unmap(dev, edesc, req); } static void ahash_done(void *cbk_ctx, u32 status) { struct crypto_async_request *areq = cbk_ctx; struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_state *state = ahash_request_ctx(req); struct ahash_edesc *edesc = state->caam_req.edesc; struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); int digestsize = crypto_ahash_digestsize(ahash); int ecode = 0; dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status); if (unlikely(status)) ecode = caam_qi2_strstatus(ctx->dev, status); ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE); memcpy(req->result, state->caam_ctx, digestsize); qi_cache_free(edesc); print_hex_dump_debug("ctx@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, ctx->ctx_len, 1); req->base.complete(&req->base, ecode); } static void ahash_done_bi(void *cbk_ctx, u32 status) { struct crypto_async_request *areq = cbk_ctx; struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_state *state = ahash_request_ctx(req); struct ahash_edesc *edesc = state->caam_req.edesc; struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); int ecode = 0; dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status); if (unlikely(status)) ecode = caam_qi2_strstatus(ctx->dev, status); ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL); qi_cache_free(edesc); scatterwalk_map_and_copy(state->buf, req->src, req->nbytes - state->next_buflen, state->next_buflen, 0); state->buflen = state->next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->buf, state->buflen, 1); print_hex_dump_debug("ctx@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, ctx->ctx_len, 1); if (req->result) print_hex_dump_debug("result@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->result, crypto_ahash_digestsize(ahash), 1); req->base.complete(&req->base, ecode); } static void ahash_done_ctx_src(void *cbk_ctx, u32 status) { struct crypto_async_request *areq = cbk_ctx; struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_state *state = ahash_request_ctx(req); struct ahash_edesc *edesc = state->caam_req.edesc; struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); int digestsize = crypto_ahash_digestsize(ahash); int ecode = 0; dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status); if (unlikely(status)) ecode = caam_qi2_strstatus(ctx->dev, status); ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL); memcpy(req->result, state->caam_ctx, digestsize); qi_cache_free(edesc); print_hex_dump_debug("ctx@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, ctx->ctx_len, 1); req->base.complete(&req->base, ecode); } static void ahash_done_ctx_dst(void *cbk_ctx, u32 status) { struct crypto_async_request *areq = cbk_ctx; struct ahash_request *req = ahash_request_cast(areq); struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_state *state = ahash_request_ctx(req); struct ahash_edesc *edesc = state->caam_req.edesc; struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); int ecode = 0; dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status); if (unlikely(status)) ecode = caam_qi2_strstatus(ctx->dev, status); ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE); qi_cache_free(edesc); scatterwalk_map_and_copy(state->buf, req->src, req->nbytes - state->next_buflen, state->next_buflen, 0); state->buflen = state->next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->buf, state->buflen, 1); print_hex_dump_debug("ctx@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, ctx->ctx_len, 1); if (req->result) print_hex_dump_debug("result@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->result, crypto_ahash_digestsize(ahash), 1); req->base.complete(&req->base, ecode); } static int ahash_update_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct caam_hash_state *state = ahash_request_ctx(req); struct caam_request *req_ctx = &state->caam_req; struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; u8 *buf = state->buf; int *buflen = &state->buflen; int *next_buflen = &state->next_buflen; int in_len = *buflen + req->nbytes, to_hash; int src_nents, mapped_nents, qm_sg_bytes, qm_sg_src_index; struct ahash_edesc *edesc; int ret = 0; *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1); to_hash = in_len - *next_buflen; if (to_hash) { struct dpaa2_sg_entry *sg_table; int src_len = req->nbytes - *next_buflen; src_nents = sg_nents_for_len(req->src, src_len); if (src_nents < 0) { dev_err(ctx->dev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(ctx->dev, "unable to DMA map source\n"); return -ENOMEM; } } else { mapped_nents = 0; } /* allocate space for base edesc and link tables */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (!edesc) { dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } edesc->src_nents = src_nents; qm_sg_src_index = 1 + (*buflen ? 1 : 0); qm_sg_bytes = pad_sg_nents(qm_sg_src_index + mapped_nents) * sizeof(*sg_table); sg_table = &edesc->sgt[0]; ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table, DMA_BIDIRECTIONAL); if (ret) goto unmap_ctx; ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state); if (ret) goto unmap_ctx; if (mapped_nents) { sg_to_qm_sg_last(req->src, src_len, sg_table + qm_sg_src_index, 0); } else { dpaa2_sg_set_final(sg_table + qm_sg_src_index - 1, true); } edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) { dev_err(ctx->dev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap_ctx; } edesc->qm_sg_bytes = qm_sg_bytes; memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma); dpaa2_fl_set_len(in_fle, ctx->ctx_len + to_hash); dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, state->ctx_dma); dpaa2_fl_set_len(out_fle, ctx->ctx_len); req_ctx->flc = &ctx->flc[UPDATE]; req_ctx->flc_dma = ctx->flc_dma[UPDATE]; req_ctx->cbk = ahash_done_bi; req_ctx->ctx = &req->base; req_ctx->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret != -EINPROGRESS && !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) goto unmap_ctx; } else if (*next_buflen) { scatterwalk_map_and_copy(buf + *buflen, req->src, 0, req->nbytes, 0); *buflen = *next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1); } return ret; unmap_ctx: ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL); qi_cache_free(edesc); return ret; } static int ahash_final_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct caam_hash_state *state = ahash_request_ctx(req); struct caam_request *req_ctx = &state->caam_req; struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int buflen = state->buflen; int qm_sg_bytes; int digestsize = crypto_ahash_digestsize(ahash); struct ahash_edesc *edesc; struct dpaa2_sg_entry *sg_table; int ret; /* allocate space for base edesc and link tables */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (!edesc) return -ENOMEM; qm_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * sizeof(*sg_table); sg_table = &edesc->sgt[0]; ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table, DMA_BIDIRECTIONAL); if (ret) goto unmap_ctx; ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state); if (ret) goto unmap_ctx; dpaa2_sg_set_final(sg_table + (buflen ? 1 : 0), true); edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) { dev_err(ctx->dev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap_ctx; } edesc->qm_sg_bytes = qm_sg_bytes; memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma); dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen); dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, state->ctx_dma); dpaa2_fl_set_len(out_fle, digestsize); req_ctx->flc = &ctx->flc[FINALIZE]; req_ctx->flc_dma = ctx->flc_dma[FINALIZE]; req_ctx->cbk = ahash_done_ctx_src; req_ctx->ctx = &req->base; req_ctx->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret == -EINPROGRESS || (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return ret; unmap_ctx: ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL); qi_cache_free(edesc); return ret; } static int ahash_finup_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct caam_hash_state *state = ahash_request_ctx(req); struct caam_request *req_ctx = &state->caam_req; struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int buflen = state->buflen; int qm_sg_bytes, qm_sg_src_index; int src_nents, mapped_nents; int digestsize = crypto_ahash_digestsize(ahash); struct ahash_edesc *edesc; struct dpaa2_sg_entry *sg_table; int ret; src_nents = sg_nents_for_len(req->src, req->nbytes); if (src_nents < 0) { dev_err(ctx->dev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(ctx->dev, "unable to DMA map source\n"); return -ENOMEM; } } else { mapped_nents = 0; } /* allocate space for base edesc and link tables */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (!edesc) { dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } edesc->src_nents = src_nents; qm_sg_src_index = 1 + (buflen ? 1 : 0); qm_sg_bytes = pad_sg_nents(qm_sg_src_index + mapped_nents) * sizeof(*sg_table); sg_table = &edesc->sgt[0]; ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table, DMA_BIDIRECTIONAL); if (ret) goto unmap_ctx; ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state); if (ret) goto unmap_ctx; sg_to_qm_sg_last(req->src, req->nbytes, sg_table + qm_sg_src_index, 0); edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) { dev_err(ctx->dev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap_ctx; } edesc->qm_sg_bytes = qm_sg_bytes; memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma); dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen + req->nbytes); dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, state->ctx_dma); dpaa2_fl_set_len(out_fle, digestsize); req_ctx->flc = &ctx->flc[FINALIZE]; req_ctx->flc_dma = ctx->flc_dma[FINALIZE]; req_ctx->cbk = ahash_done_ctx_src; req_ctx->ctx = &req->base; req_ctx->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret == -EINPROGRESS || (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return ret; unmap_ctx: ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL); qi_cache_free(edesc); return ret; } static int ahash_digest(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct caam_hash_state *state = ahash_request_ctx(req); struct caam_request *req_ctx = &state->caam_req; struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int digestsize = crypto_ahash_digestsize(ahash); int src_nents, mapped_nents; struct ahash_edesc *edesc; int ret = -ENOMEM; state->buf_dma = 0; src_nents = sg_nents_for_len(req->src, req->nbytes); if (src_nents < 0) { dev_err(ctx->dev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(ctx->dev, "unable to map source for DMA\n"); return ret; } } else { mapped_nents = 0; } /* allocate space for base edesc and link tables */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (!edesc) { dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); return ret; } edesc->src_nents = src_nents; memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); if (mapped_nents > 1) { int qm_sg_bytes; struct dpaa2_sg_entry *sg_table = &edesc->sgt[0]; qm_sg_bytes = pad_sg_nents(mapped_nents) * sizeof(*sg_table); sg_to_qm_sg_last(req->src, req->nbytes, sg_table, 0); edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) { dev_err(ctx->dev, "unable to map S/G table\n"); goto unmap; } edesc->qm_sg_bytes = qm_sg_bytes; dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma); } else { dpaa2_fl_set_format(in_fle, dpaa2_fl_single); dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src)); } state->ctx_dma_len = digestsize; state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize, DMA_FROM_DEVICE); if (dma_mapping_error(ctx->dev, state->ctx_dma)) { dev_err(ctx->dev, "unable to map ctx\n"); state->ctx_dma = 0; goto unmap; } dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_len(in_fle, req->nbytes); dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, state->ctx_dma); dpaa2_fl_set_len(out_fle, digestsize); req_ctx->flc = &ctx->flc[DIGEST]; req_ctx->flc_dma = ctx->flc_dma[DIGEST]; req_ctx->cbk = ahash_done; req_ctx->ctx = &req->base; req_ctx->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret == -EINPROGRESS || (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return ret; unmap: ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE); qi_cache_free(edesc); return ret; } static int ahash_final_no_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct caam_hash_state *state = ahash_request_ctx(req); struct caam_request *req_ctx = &state->caam_req; struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; u8 *buf = state->buf; int buflen = state->buflen; int digestsize = crypto_ahash_digestsize(ahash); struct ahash_edesc *edesc; int ret = -ENOMEM; /* allocate space for base edesc and link tables */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (!edesc) return ret; if (buflen) { state->buf_dma = dma_map_single(ctx->dev, buf, buflen, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, state->buf_dma)) { dev_err(ctx->dev, "unable to map src\n"); goto unmap; } } state->ctx_dma_len = digestsize; state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize, DMA_FROM_DEVICE); if (dma_mapping_error(ctx->dev, state->ctx_dma)) { dev_err(ctx->dev, "unable to map ctx\n"); state->ctx_dma = 0; goto unmap; } memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); /* * crypto engine requires the input entry to be present when * "frame list" FD is used. * Since engine does not support FMT=2'b11 (unused entry type), leaving * in_fle zeroized (except for "Final" flag) is the best option. */ if (buflen) { dpaa2_fl_set_format(in_fle, dpaa2_fl_single); dpaa2_fl_set_addr(in_fle, state->buf_dma); dpaa2_fl_set_len(in_fle, buflen); } dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, state->ctx_dma); dpaa2_fl_set_len(out_fle, digestsize); req_ctx->flc = &ctx->flc[DIGEST]; req_ctx->flc_dma = ctx->flc_dma[DIGEST]; req_ctx->cbk = ahash_done; req_ctx->ctx = &req->base; req_ctx->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret == -EINPROGRESS || (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) return ret; unmap: ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE); qi_cache_free(edesc); return ret; } static int ahash_update_no_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct caam_hash_state *state = ahash_request_ctx(req); struct caam_request *req_ctx = &state->caam_req; struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; u8 *buf = state->buf; int *buflen = &state->buflen; int *next_buflen = &state->next_buflen; int in_len = *buflen + req->nbytes, to_hash; int qm_sg_bytes, src_nents, mapped_nents; struct ahash_edesc *edesc; int ret = 0; *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1); to_hash = in_len - *next_buflen; if (to_hash) { struct dpaa2_sg_entry *sg_table; int src_len = req->nbytes - *next_buflen; src_nents = sg_nents_for_len(req->src, src_len); if (src_nents < 0) { dev_err(ctx->dev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(ctx->dev, "unable to DMA map source\n"); return -ENOMEM; } } else { mapped_nents = 0; } /* allocate space for base edesc and link tables */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (!edesc) { dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } edesc->src_nents = src_nents; qm_sg_bytes = pad_sg_nents(1 + mapped_nents) * sizeof(*sg_table); sg_table = &edesc->sgt[0]; ret = buf_map_to_qm_sg(ctx->dev, sg_table, state); if (ret) goto unmap_ctx; sg_to_qm_sg_last(req->src, src_len, sg_table + 1, 0); edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) { dev_err(ctx->dev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap_ctx; } edesc->qm_sg_bytes = qm_sg_bytes; state->ctx_dma_len = ctx->ctx_len; state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, ctx->ctx_len, DMA_FROM_DEVICE); if (dma_mapping_error(ctx->dev, state->ctx_dma)) { dev_err(ctx->dev, "unable to map ctx\n"); state->ctx_dma = 0; ret = -ENOMEM; goto unmap_ctx; } memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma); dpaa2_fl_set_len(in_fle, to_hash); dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, state->ctx_dma); dpaa2_fl_set_len(out_fle, ctx->ctx_len); req_ctx->flc = &ctx->flc[UPDATE_FIRST]; req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST]; req_ctx->cbk = ahash_done_ctx_dst; req_ctx->ctx = &req->base; req_ctx->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret != -EINPROGRESS && !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) goto unmap_ctx; state->update = ahash_update_ctx; state->finup = ahash_finup_ctx; state->final = ahash_final_ctx; } else if (*next_buflen) { scatterwalk_map_and_copy(buf + *buflen, req->src, 0, req->nbytes, 0); *buflen = *next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1); } return ret; unmap_ctx: ahash_unmap_ctx(ctx->dev, edesc, req, DMA_TO_DEVICE); qi_cache_free(edesc); return ret; } static int ahash_finup_no_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct caam_hash_state *state = ahash_request_ctx(req); struct caam_request *req_ctx = &state->caam_req; struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int buflen = state->buflen; int qm_sg_bytes, src_nents, mapped_nents; int digestsize = crypto_ahash_digestsize(ahash); struct ahash_edesc *edesc; struct dpaa2_sg_entry *sg_table; int ret = -ENOMEM; src_nents = sg_nents_for_len(req->src, req->nbytes); if (src_nents < 0) { dev_err(ctx->dev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(ctx->dev, "unable to DMA map source\n"); return ret; } } else { mapped_nents = 0; } /* allocate space for base edesc and link tables */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (!edesc) { dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); return ret; } edesc->src_nents = src_nents; qm_sg_bytes = pad_sg_nents(2 + mapped_nents) * sizeof(*sg_table); sg_table = &edesc->sgt[0]; ret = buf_map_to_qm_sg(ctx->dev, sg_table, state); if (ret) goto unmap; sg_to_qm_sg_last(req->src, req->nbytes, sg_table + 1, 0); edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) { dev_err(ctx->dev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap; } edesc->qm_sg_bytes = qm_sg_bytes; state->ctx_dma_len = digestsize; state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize, DMA_FROM_DEVICE); if (dma_mapping_error(ctx->dev, state->ctx_dma)) { dev_err(ctx->dev, "unable to map ctx\n"); state->ctx_dma = 0; ret = -ENOMEM; goto unmap; } memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma); dpaa2_fl_set_len(in_fle, buflen + req->nbytes); dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, state->ctx_dma); dpaa2_fl_set_len(out_fle, digestsize); req_ctx->flc = &ctx->flc[DIGEST]; req_ctx->flc_dma = ctx->flc_dma[DIGEST]; req_ctx->cbk = ahash_done; req_ctx->ctx = &req->base; req_ctx->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret != -EINPROGRESS && !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) goto unmap; return ret; unmap: ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE); qi_cache_free(edesc); return ret; } static int ahash_update_first(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct caam_hash_state *state = ahash_request_ctx(req); struct caam_request *req_ctx = &state->caam_req; struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1]; struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0]; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; u8 *buf = state->buf; int *buflen = &state->buflen; int *next_buflen = &state->next_buflen; int to_hash; int src_nents, mapped_nents; struct ahash_edesc *edesc; int ret = 0; *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) - 1); to_hash = req->nbytes - *next_buflen; if (to_hash) { struct dpaa2_sg_entry *sg_table; int src_len = req->nbytes - *next_buflen; src_nents = sg_nents_for_len(req->src, src_len); if (src_nents < 0) { dev_err(ctx->dev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(ctx->dev, "unable to map source for DMA\n"); return -ENOMEM; } } else { mapped_nents = 0; } /* allocate space for base edesc and link tables */ edesc = qi_cache_zalloc(GFP_DMA | flags); if (!edesc) { dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } edesc->src_nents = src_nents; sg_table = &edesc->sgt[0]; memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt)); dpaa2_fl_set_final(in_fle, true); dpaa2_fl_set_len(in_fle, to_hash); if (mapped_nents > 1) { int qm_sg_bytes; sg_to_qm_sg_last(req->src, src_len, sg_table, 0); qm_sg_bytes = pad_sg_nents(mapped_nents) * sizeof(*sg_table); edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) { dev_err(ctx->dev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap_ctx; } edesc->qm_sg_bytes = qm_sg_bytes; dpaa2_fl_set_format(in_fle, dpaa2_fl_sg); dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma); } else { dpaa2_fl_set_format(in_fle, dpaa2_fl_single); dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src)); } state->ctx_dma_len = ctx->ctx_len; state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, ctx->ctx_len, DMA_FROM_DEVICE); if (dma_mapping_error(ctx->dev, state->ctx_dma)) { dev_err(ctx->dev, "unable to map ctx\n"); state->ctx_dma = 0; ret = -ENOMEM; goto unmap_ctx; } dpaa2_fl_set_format(out_fle, dpaa2_fl_single); dpaa2_fl_set_addr(out_fle, state->ctx_dma); dpaa2_fl_set_len(out_fle, ctx->ctx_len); req_ctx->flc = &ctx->flc[UPDATE_FIRST]; req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST]; req_ctx->cbk = ahash_done_ctx_dst; req_ctx->ctx = &req->base; req_ctx->edesc = edesc; ret = dpaa2_caam_enqueue(ctx->dev, req_ctx); if (ret != -EINPROGRESS && !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) goto unmap_ctx; state->update = ahash_update_ctx; state->finup = ahash_finup_ctx; state->final = ahash_final_ctx; } else if (*next_buflen) { state->update = ahash_update_no_ctx; state->finup = ahash_finup_no_ctx; state->final = ahash_final_no_ctx; scatterwalk_map_and_copy(buf, req->src, 0, req->nbytes, 0); *buflen = *next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1); } return ret; unmap_ctx: ahash_unmap_ctx(ctx->dev, edesc, req, DMA_TO_DEVICE); qi_cache_free(edesc); return ret; } static int ahash_finup_first(struct ahash_request *req) { return ahash_digest(req); } static int ahash_init(struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx(req); state->update = ahash_update_first; state->finup = ahash_finup_first; state->final = ahash_final_no_ctx; state->ctx_dma = 0; state->ctx_dma_len = 0; state->buf_dma = 0; state->buflen = 0; state->next_buflen = 0; return 0; } static int ahash_update(struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx(req); return state->update(req); } static int ahash_finup(struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx(req); return state->finup(req); } static int ahash_final(struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx(req); return state->final(req); } static int ahash_export(struct ahash_request *req, void *out) { struct caam_hash_state *state = ahash_request_ctx(req); struct caam_export_state *export = out; u8 *buf = state->buf; int len = state->buflen; memcpy(export->buf, buf, len); memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx)); export->buflen = len; export->update = state->update; export->final = state->final; export->finup = state->finup; return 0; } static int ahash_import(struct ahash_request *req, const void *in) { struct caam_hash_state *state = ahash_request_ctx(req); const struct caam_export_state *export = in; memset(state, 0, sizeof(*state)); memcpy(state->buf, export->buf, export->buflen); memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx)); state->buflen = export->buflen; state->update = export->update; state->final = export->final; state->finup = export->finup; return 0; } struct caam_hash_template { char name[CRYPTO_MAX_ALG_NAME]; char driver_name[CRYPTO_MAX_ALG_NAME]; char hmac_name[CRYPTO_MAX_ALG_NAME]; char hmac_driver_name[CRYPTO_MAX_ALG_NAME]; unsigned int blocksize; struct ahash_alg template_ahash; u32 alg_type; }; /* ahash descriptors */ static struct caam_hash_template driver_hash[] = { { .name = "sha1", .driver_name = "sha1-caam-qi2", .hmac_name = "hmac(sha1)", .hmac_driver_name = "hmac-sha1-caam-qi2", .blocksize = SHA1_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA1, }, { .name = "sha224", .driver_name = "sha224-caam-qi2", .hmac_name = "hmac(sha224)", .hmac_driver_name = "hmac-sha224-caam-qi2", .blocksize = SHA224_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA224, }, { .name = "sha256", .driver_name = "sha256-caam-qi2", .hmac_name = "hmac(sha256)", .hmac_driver_name = "hmac-sha256-caam-qi2", .blocksize = SHA256_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA256, }, { .name = "sha384", .driver_name = "sha384-caam-qi2", .hmac_name = "hmac(sha384)", .hmac_driver_name = "hmac-sha384-caam-qi2", .blocksize = SHA384_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA384, }, { .name = "sha512", .driver_name = "sha512-caam-qi2", .hmac_name = "hmac(sha512)", .hmac_driver_name = "hmac-sha512-caam-qi2", .blocksize = SHA512_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA512, }, { .name = "md5", .driver_name = "md5-caam-qi2", .hmac_name = "hmac(md5)", .hmac_driver_name = "hmac-md5-caam-qi2", .blocksize = MD5_BLOCK_WORDS * 4, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_MD5, } }; struct caam_hash_alg { struct list_head entry; struct device *dev; int alg_type; struct ahash_alg ahash_alg; }; static int caam_hash_cra_init(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct crypto_alg *base = tfm->__crt_alg; struct hash_alg_common *halg = container_of(base, struct hash_alg_common, base); struct ahash_alg *alg = container_of(halg, struct ahash_alg, halg); struct caam_hash_alg *caam_hash = container_of(alg, struct caam_hash_alg, ahash_alg); struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm); /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */ static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE, HASH_MSG_LEN + SHA1_DIGEST_SIZE, HASH_MSG_LEN + 32, HASH_MSG_LEN + SHA256_DIGEST_SIZE, HASH_MSG_LEN + 64, HASH_MSG_LEN + SHA512_DIGEST_SIZE }; dma_addr_t dma_addr; int i; ctx->dev = caam_hash->dev; if (alg->setkey) { ctx->adata.key_dma = dma_map_single_attrs(ctx->dev, ctx->key, ARRAY_SIZE(ctx->key), DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(ctx->dev, ctx->adata.key_dma)) { dev_err(ctx->dev, "unable to map key\n"); return -ENOMEM; } } dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc, sizeof(ctx->flc), DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(ctx->dev, dma_addr)) { dev_err(ctx->dev, "unable to map shared descriptors\n"); if (ctx->adata.key_dma) dma_unmap_single_attrs(ctx->dev, ctx->adata.key_dma, ARRAY_SIZE(ctx->key), DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); return -ENOMEM; } for (i = 0; i < HASH_NUM_OP; i++) ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]); /* copy descriptor header template value */ ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type; ctx->ctx_len = runninglen[(ctx->adata.algtype & OP_ALG_ALGSEL_SUBMASK) >> OP_ALG_ALGSEL_SHIFT]; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct caam_hash_state)); /* * For keyed hash algorithms shared descriptors * will be created later in setkey() callback */ return alg->setkey ? 0 : ahash_set_sh_desc(ahash); } static void caam_hash_cra_exit(struct crypto_tfm *tfm) { struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm); dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0], sizeof(ctx->flc), DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC); if (ctx->adata.key_dma) dma_unmap_single_attrs(ctx->dev, ctx->adata.key_dma, ARRAY_SIZE(ctx->key), DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); } static struct caam_hash_alg *caam_hash_alloc(struct device *dev, struct caam_hash_template *template, bool keyed) { struct caam_hash_alg *t_alg; struct ahash_alg *halg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); if (!t_alg) return ERR_PTR(-ENOMEM); t_alg->ahash_alg = template->template_ahash; halg = &t_alg->ahash_alg; alg = &halg->halg.base; if (keyed) { snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->hmac_name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->hmac_driver_name); } else { snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->driver_name); t_alg->ahash_alg.setkey = NULL; } alg->cra_module = THIS_MODULE; alg->cra_init = caam_hash_cra_init; alg->cra_exit = caam_hash_cra_exit; alg->cra_ctxsize = sizeof(struct caam_hash_ctx); alg->cra_priority = CAAM_CRA_PRIORITY; alg->cra_blocksize = template->blocksize; alg->cra_alignmask = 0; alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; t_alg->alg_type = template->alg_type; t_alg->dev = dev; return t_alg; } static void dpaa2_caam_fqdan_cb(struct dpaa2_io_notification_ctx *nctx) { struct dpaa2_caam_priv_per_cpu *ppriv; ppriv = container_of(nctx, struct dpaa2_caam_priv_per_cpu, nctx); napi_schedule_irqoff(&ppriv->napi); } static int __cold dpaa2_dpseci_dpio_setup(struct dpaa2_caam_priv *priv) { struct device *dev = priv->dev; struct dpaa2_io_notification_ctx *nctx; struct dpaa2_caam_priv_per_cpu *ppriv; int err, i = 0, cpu; for_each_online_cpu(cpu) { ppriv = per_cpu_ptr(priv->ppriv, cpu); ppriv->priv = priv; nctx = &ppriv->nctx; nctx->is_cdan = 0; nctx->id = ppriv->rsp_fqid; nctx->desired_cpu = cpu; nctx->cb = dpaa2_caam_fqdan_cb; /* Register notification callbacks */ ppriv->dpio = dpaa2_io_service_select(cpu); err = dpaa2_io_service_register(ppriv->dpio, nctx, dev); if (unlikely(err)) { dev_dbg(dev, "No affine DPIO for cpu %d\n", cpu); nctx->cb = NULL; /* * If no affine DPIO for this core, there's probably * none available for next cores either. Signal we want * to retry later, in case the DPIO devices weren't * probed yet. */ err = -EPROBE_DEFER; goto err; } ppriv->store = dpaa2_io_store_create(DPAA2_CAAM_STORE_SIZE, dev); if (unlikely(!ppriv->store)) { dev_err(dev, "dpaa2_io_store_create() failed\n"); err = -ENOMEM; goto err; } if (++i == priv->num_pairs) break; } return 0; err: for_each_online_cpu(cpu) { ppriv = per_cpu_ptr(priv->ppriv, cpu); if (!ppriv->nctx.cb) break; dpaa2_io_service_deregister(ppriv->dpio, &ppriv->nctx, dev); } for_each_online_cpu(cpu) { ppriv = per_cpu_ptr(priv->ppriv, cpu); if (!ppriv->store) break; dpaa2_io_store_destroy(ppriv->store); } return err; } static void __cold dpaa2_dpseci_dpio_free(struct dpaa2_caam_priv *priv) { struct dpaa2_caam_priv_per_cpu *ppriv; int i = 0, cpu; for_each_online_cpu(cpu) { ppriv = per_cpu_ptr(priv->ppriv, cpu); dpaa2_io_service_deregister(ppriv->dpio, &ppriv->nctx, priv->dev); dpaa2_io_store_destroy(ppriv->store); if (++i == priv->num_pairs) return; } } static int dpaa2_dpseci_bind(struct dpaa2_caam_priv *priv) { struct dpseci_rx_queue_cfg rx_queue_cfg; struct device *dev = priv->dev; struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev); struct dpaa2_caam_priv_per_cpu *ppriv; int err = 0, i = 0, cpu; /* Configure Rx queues */ for_each_online_cpu(cpu) { ppriv = per_cpu_ptr(priv->ppriv, cpu); rx_queue_cfg.options = DPSECI_QUEUE_OPT_DEST | DPSECI_QUEUE_OPT_USER_CTX; rx_queue_cfg.order_preservation_en = 0; rx_queue_cfg.dest_cfg.dest_type = DPSECI_DEST_DPIO; rx_queue_cfg.dest_cfg.dest_id = ppriv->nctx.dpio_id; /* * Rx priority (WQ) doesn't really matter, since we use * pull mode, i.e. volatile dequeues from specific FQs */ rx_queue_cfg.dest_cfg.priority = 0; rx_queue_cfg.user_ctx = ppriv->nctx.qman64; err = dpseci_set_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i, &rx_queue_cfg); if (err) { dev_err(dev, "dpseci_set_rx_queue() failed with err %d\n", err); return err; } if (++i == priv->num_pairs) break; } return err; } static void dpaa2_dpseci_congestion_free(struct dpaa2_caam_priv *priv) { struct device *dev = priv->dev; if (!priv->cscn_mem) return; dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE); kfree(priv->cscn_mem); } static void dpaa2_dpseci_free(struct dpaa2_caam_priv *priv) { struct device *dev = priv->dev; struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev); int err; if (DPSECI_VER(priv->major_ver, priv->minor_ver) > DPSECI_VER(5, 3)) { err = dpseci_reset(priv->mc_io, 0, ls_dev->mc_handle); if (err) dev_err(dev, "dpseci_reset() failed\n"); } dpaa2_dpseci_congestion_free(priv); dpseci_close(priv->mc_io, 0, ls_dev->mc_handle); } static void dpaa2_caam_process_fd(struct dpaa2_caam_priv *priv, const struct dpaa2_fd *fd) { struct caam_request *req; u32 fd_err; if (dpaa2_fd_get_format(fd) != dpaa2_fd_list) { dev_err(priv->dev, "Only Frame List FD format is supported!\n"); return; } fd_err = dpaa2_fd_get_ctrl(fd) & FD_CTRL_ERR_MASK; if (unlikely(fd_err)) dev_err_ratelimited(priv->dev, "FD error: %08x\n", fd_err); /* * FD[ADDR] is guaranteed to be valid, irrespective of errors reported * in FD[ERR] or FD[FRC]. */ req = dpaa2_caam_iova_to_virt(priv, dpaa2_fd_get_addr(fd)); dma_unmap_single(priv->dev, req->fd_flt_dma, sizeof(req->fd_flt), DMA_BIDIRECTIONAL); req->cbk(req->ctx, dpaa2_fd_get_frc(fd)); } static int dpaa2_caam_pull_fq(struct dpaa2_caam_priv_per_cpu *ppriv) { int err; /* Retry while portal is busy */ do { err = dpaa2_io_service_pull_fq(ppriv->dpio, ppriv->rsp_fqid, ppriv->store); } while (err == -EBUSY); if (unlikely(err)) dev_err(ppriv->priv->dev, "dpaa2_io_service_pull err %d", err); return err; } static int dpaa2_caam_store_consume(struct dpaa2_caam_priv_per_cpu *ppriv) { struct dpaa2_dq *dq; int cleaned = 0, is_last; do { dq = dpaa2_io_store_next(ppriv->store, &is_last); if (unlikely(!dq)) { if (unlikely(!is_last)) { dev_dbg(ppriv->priv->dev, "FQ %d returned no valid frames\n", ppriv->rsp_fqid); /* * MUST retry until we get some sort of * valid response token (be it "empty dequeue" * or a valid frame). */ continue; } break; } /* Process FD */ dpaa2_caam_process_fd(ppriv->priv, dpaa2_dq_fd(dq)); cleaned++; } while (!is_last); return cleaned; } static int dpaa2_dpseci_poll(struct napi_struct *napi, int budget) { struct dpaa2_caam_priv_per_cpu *ppriv; struct dpaa2_caam_priv *priv; int err, cleaned = 0, store_cleaned; ppriv = container_of(napi, struct dpaa2_caam_priv_per_cpu, napi); priv = ppriv->priv; if (unlikely(dpaa2_caam_pull_fq(ppriv))) return 0; do { store_cleaned = dpaa2_caam_store_consume(ppriv); cleaned += store_cleaned; if (store_cleaned == 0 || cleaned > budget - DPAA2_CAAM_STORE_SIZE) break; /* Try to dequeue some more */ err = dpaa2_caam_pull_fq(ppriv); if (unlikely(err)) break; } while (1); if (cleaned < budget) { napi_complete_done(napi, cleaned); err = dpaa2_io_service_rearm(ppriv->dpio, &ppriv->nctx); if (unlikely(err)) dev_err(priv->dev, "Notification rearm failed: %d\n", err); } return cleaned; } static int dpaa2_dpseci_congestion_setup(struct dpaa2_caam_priv *priv, u16 token) { struct dpseci_congestion_notification_cfg cong_notif_cfg = { 0 }; struct device *dev = priv->dev; int err; /* * Congestion group feature supported starting with DPSECI API v5.1 * and only when object has been created with this capability. */ if ((DPSECI_VER(priv->major_ver, priv->minor_ver) < DPSECI_VER(5, 1)) || !(priv->dpseci_attr.options & DPSECI_OPT_HAS_CG)) return 0; priv->cscn_mem = kzalloc(DPAA2_CSCN_SIZE + DPAA2_CSCN_ALIGN, GFP_KERNEL | GFP_DMA); if (!priv->cscn_mem) return -ENOMEM; priv->cscn_mem_aligned = PTR_ALIGN(priv->cscn_mem, DPAA2_CSCN_ALIGN); priv->cscn_dma = dma_map_single(dev, priv->cscn_mem_aligned, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dev, priv->cscn_dma)) { dev_err(dev, "Error mapping CSCN memory area\n"); err = -ENOMEM; goto err_dma_map; } cong_notif_cfg.units = DPSECI_CONGESTION_UNIT_BYTES; cong_notif_cfg.threshold_entry = DPAA2_SEC_CONG_ENTRY_THRESH; cong_notif_cfg.threshold_exit = DPAA2_SEC_CONG_EXIT_THRESH; cong_notif_cfg.message_ctx = (uintptr_t)priv; cong_notif_cfg.message_iova = priv->cscn_dma; cong_notif_cfg.notification_mode = DPSECI_CGN_MODE_WRITE_MEM_ON_ENTER | DPSECI_CGN_MODE_WRITE_MEM_ON_EXIT | DPSECI_CGN_MODE_COHERENT_WRITE; err = dpseci_set_congestion_notification(priv->mc_io, 0, token, &cong_notif_cfg); if (err) { dev_err(dev, "dpseci_set_congestion_notification failed\n"); goto err_set_cong; } return 0; err_set_cong: dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE); err_dma_map: kfree(priv->cscn_mem); return err; } static int __cold dpaa2_dpseci_setup(struct fsl_mc_device *ls_dev) { struct device *dev = &ls_dev->dev; struct dpaa2_caam_priv *priv; struct dpaa2_caam_priv_per_cpu *ppriv; int err, cpu; u8 i; priv = dev_get_drvdata(dev); priv->dev = dev; priv->dpsec_id = ls_dev->obj_desc.id; /* Get a handle for the DPSECI this interface is associate with */ err = dpseci_open(priv->mc_io, 0, priv->dpsec_id, &ls_dev->mc_handle); if (err) { dev_err(dev, "dpseci_open() failed: %d\n", err); goto err_open; } err = dpseci_get_api_version(priv->mc_io, 0, &priv->major_ver, &priv->minor_ver); if (err) { dev_err(dev, "dpseci_get_api_version() failed\n"); goto err_get_vers; } dev_info(dev, "dpseci v%d.%d\n", priv->major_ver, priv->minor_ver); if (DPSECI_VER(priv->major_ver, priv->minor_ver) > DPSECI_VER(5, 3)) { err = dpseci_reset(priv->mc_io, 0, ls_dev->mc_handle); if (err) { dev_err(dev, "dpseci_reset() failed\n"); goto err_get_vers; } } err = dpseci_get_attributes(priv->mc_io, 0, ls_dev->mc_handle, &priv->dpseci_attr); if (err) { dev_err(dev, "dpseci_get_attributes() failed\n"); goto err_get_vers; } err = dpseci_get_sec_attr(priv->mc_io, 0, ls_dev->mc_handle, &priv->sec_attr); if (err) { dev_err(dev, "dpseci_get_sec_attr() failed\n"); goto err_get_vers; } err = dpaa2_dpseci_congestion_setup(priv, ls_dev->mc_handle); if (err) { dev_err(dev, "setup_congestion() failed\n"); goto err_get_vers; } priv->num_pairs = min(priv->dpseci_attr.num_rx_queues, priv->dpseci_attr.num_tx_queues); if (priv->num_pairs > num_online_cpus()) { dev_warn(dev, "%d queues won't be used\n", priv->num_pairs - num_online_cpus()); priv->num_pairs = num_online_cpus(); } for (i = 0; i < priv->dpseci_attr.num_rx_queues; i++) { err = dpseci_get_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i, &priv->rx_queue_attr[i]); if (err) { dev_err(dev, "dpseci_get_rx_queue() failed\n"); goto err_get_rx_queue; } } for (i = 0; i < priv->dpseci_attr.num_tx_queues; i++) { err = dpseci_get_tx_queue(priv->mc_io, 0, ls_dev->mc_handle, i, &priv->tx_queue_attr[i]); if (err) { dev_err(dev, "dpseci_get_tx_queue() failed\n"); goto err_get_rx_queue; } } i = 0; for_each_online_cpu(cpu) { u8 j; j = i % priv->num_pairs; ppriv = per_cpu_ptr(priv->ppriv, cpu); ppriv->req_fqid = priv->tx_queue_attr[j].fqid; /* * Allow all cores to enqueue, while only some of them * will take part in dequeuing. */ if (++i > priv->num_pairs) continue; ppriv->rsp_fqid = priv->rx_queue_attr[j].fqid; ppriv->prio = j; dev_dbg(dev, "pair %d: rx queue %d, tx queue %d\n", j, priv->rx_queue_attr[j].fqid, priv->tx_queue_attr[j].fqid); ppriv->net_dev.dev = *dev; INIT_LIST_HEAD(&ppriv->net_dev.napi_list); netif_napi_add(&ppriv->net_dev, &ppriv->napi, dpaa2_dpseci_poll, DPAA2_CAAM_NAPI_WEIGHT); } return 0; err_get_rx_queue: dpaa2_dpseci_congestion_free(priv); err_get_vers: dpseci_close(priv->mc_io, 0, ls_dev->mc_handle); err_open: return err; } static int dpaa2_dpseci_enable(struct dpaa2_caam_priv *priv) { struct device *dev = priv->dev; struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev); struct dpaa2_caam_priv_per_cpu *ppriv; int i; for (i = 0; i < priv->num_pairs; i++) { ppriv = per_cpu_ptr(priv->ppriv, i); napi_enable(&ppriv->napi); } return dpseci_enable(priv->mc_io, 0, ls_dev->mc_handle); } static int __cold dpaa2_dpseci_disable(struct dpaa2_caam_priv *priv) { struct device *dev = priv->dev; struct dpaa2_caam_priv_per_cpu *ppriv; struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev); int i, err = 0, enabled; err = dpseci_disable(priv->mc_io, 0, ls_dev->mc_handle); if (err) { dev_err(dev, "dpseci_disable() failed\n"); return err; } err = dpseci_is_enabled(priv->mc_io, 0, ls_dev->mc_handle, &enabled); if (err) { dev_err(dev, "dpseci_is_enabled() failed\n"); return err; } dev_dbg(dev, "disable: %s\n", enabled ? "false" : "true"); for (i = 0; i < priv->num_pairs; i++) { ppriv = per_cpu_ptr(priv->ppriv, i); napi_disable(&ppriv->napi); netif_napi_del(&ppriv->napi); } return 0; } static struct list_head hash_list; static int dpaa2_caam_probe(struct fsl_mc_device *dpseci_dev) { struct device *dev; struct dpaa2_caam_priv *priv; int i, err = 0; bool registered = false; /* * There is no way to get CAAM endianness - there is no direct register * space access and MC f/w does not provide this attribute. * All DPAA2-based SoCs have little endian CAAM, thus hard-code this * property. */ caam_little_end = true; caam_imx = false; dev = &dpseci_dev->dev; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(dev, priv); priv->domain = iommu_get_domain_for_dev(dev); qi_cache = kmem_cache_create("dpaa2_caamqicache", CAAM_QI_MEMCACHE_SIZE, 0, SLAB_CACHE_DMA, NULL); if (!qi_cache) { dev_err(dev, "Can't allocate SEC cache\n"); return -ENOMEM; } err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(49)); if (err) { dev_err(dev, "dma_set_mask_and_coherent() failed\n"); goto err_dma_mask; } /* Obtain a MC portal */ err = fsl_mc_portal_allocate(dpseci_dev, 0, &priv->mc_io); if (err) { if (err == -ENXIO) err = -EPROBE_DEFER; else dev_err(dev, "MC portal allocation failed\n"); goto err_dma_mask; } priv->ppriv = alloc_percpu(*priv->ppriv); if (!priv->ppriv) { dev_err(dev, "alloc_percpu() failed\n"); err = -ENOMEM; goto err_alloc_ppriv; } /* DPSECI initialization */ err = dpaa2_dpseci_setup(dpseci_dev); if (err) { dev_err(dev, "dpaa2_dpseci_setup() failed\n"); goto err_dpseci_setup; } /* DPIO */ err = dpaa2_dpseci_dpio_setup(priv); if (err) { dev_err_probe(dev, err, "dpaa2_dpseci_dpio_setup() failed\n"); goto err_dpio_setup; } /* DPSECI binding to DPIO */ err = dpaa2_dpseci_bind(priv); if (err) { dev_err(dev, "dpaa2_dpseci_bind() failed\n"); goto err_bind; } /* DPSECI enable */ err = dpaa2_dpseci_enable(priv); if (err) { dev_err(dev, "dpaa2_dpseci_enable() failed\n"); goto err_bind; } dpaa2_dpseci_debugfs_init(priv); /* register crypto algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { struct caam_skcipher_alg *t_alg = driver_algs + i; u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK; /* Skip DES algorithms if not supported by device */ if (!priv->sec_attr.des_acc_num && (alg_sel == OP_ALG_ALGSEL_3DES || alg_sel == OP_ALG_ALGSEL_DES)) continue; /* Skip AES algorithms if not supported by device */ if (!priv->sec_attr.aes_acc_num && alg_sel == OP_ALG_ALGSEL_AES) continue; /* Skip CHACHA20 algorithms if not supported by device */ if (alg_sel == OP_ALG_ALGSEL_CHACHA20 && !priv->sec_attr.ccha_acc_num) continue; t_alg->caam.dev = dev; caam_skcipher_alg_init(t_alg); err = crypto_register_skcipher(&t_alg->skcipher); if (err) { dev_warn(dev, "%s alg registration failed: %d\n", t_alg->skcipher.base.cra_driver_name, err); continue; } t_alg->registered = true; registered = true; } for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) { struct caam_aead_alg *t_alg = driver_aeads + i; u32 c1_alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK; u32 c2_alg_sel = t_alg->caam.class2_alg_type & OP_ALG_ALGSEL_MASK; /* Skip DES algorithms if not supported by device */ if (!priv->sec_attr.des_acc_num && (c1_alg_sel == OP_ALG_ALGSEL_3DES || c1_alg_sel == OP_ALG_ALGSEL_DES)) continue; /* Skip AES algorithms if not supported by device */ if (!priv->sec_attr.aes_acc_num && c1_alg_sel == OP_ALG_ALGSEL_AES) continue; /* Skip CHACHA20 algorithms if not supported by device */ if (c1_alg_sel == OP_ALG_ALGSEL_CHACHA20 && !priv->sec_attr.ccha_acc_num) continue; /* Skip POLY1305 algorithms if not supported by device */ if (c2_alg_sel == OP_ALG_ALGSEL_POLY1305 && !priv->sec_attr.ptha_acc_num) continue; /* * Skip algorithms requiring message digests * if MD not supported by device. */ if ((c2_alg_sel & ~OP_ALG_ALGSEL_SUBMASK) == 0x40 && !priv->sec_attr.md_acc_num) continue; t_alg->caam.dev = dev; caam_aead_alg_init(t_alg); err = crypto_register_aead(&t_alg->aead); if (err) { dev_warn(dev, "%s alg registration failed: %d\n", t_alg->aead.base.cra_driver_name, err); continue; } t_alg->registered = true; registered = true; } if (registered) dev_info(dev, "algorithms registered in /proc/crypto\n"); /* register hash algorithms the device supports */ INIT_LIST_HEAD(&hash_list); /* * Skip registration of any hashing algorithms if MD block * is not present. */ if (!priv->sec_attr.md_acc_num) return 0; for (i = 0; i < ARRAY_SIZE(driver_hash); i++) { struct caam_hash_alg *t_alg; struct caam_hash_template *alg = driver_hash + i; /* register hmac version */ t_alg = caam_hash_alloc(dev, alg, true); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); dev_warn(dev, "%s hash alg allocation failed: %d\n", alg->hmac_driver_name, err); continue; } err = crypto_register_ahash(&t_alg->ahash_alg); if (err) { dev_warn(dev, "%s alg registration failed: %d\n", t_alg->ahash_alg.halg.base.cra_driver_name, err); kfree(t_alg); } else { list_add_tail(&t_alg->entry, &hash_list); } /* register unkeyed version */ t_alg = caam_hash_alloc(dev, alg, false); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); dev_warn(dev, "%s alg allocation failed: %d\n", alg->driver_name, err); continue; } err = crypto_register_ahash(&t_alg->ahash_alg); if (err) { dev_warn(dev, "%s alg registration failed: %d\n", t_alg->ahash_alg.halg.base.cra_driver_name, err); kfree(t_alg); } else { list_add_tail(&t_alg->entry, &hash_list); } } if (!list_empty(&hash_list)) dev_info(dev, "hash algorithms registered in /proc/crypto\n"); return err; err_bind: dpaa2_dpseci_dpio_free(priv); err_dpio_setup: dpaa2_dpseci_free(priv); err_dpseci_setup: free_percpu(priv->ppriv); err_alloc_ppriv: fsl_mc_portal_free(priv->mc_io); err_dma_mask: kmem_cache_destroy(qi_cache); return err; } static int __cold dpaa2_caam_remove(struct fsl_mc_device *ls_dev) { struct device *dev; struct dpaa2_caam_priv *priv; int i; dev = &ls_dev->dev; priv = dev_get_drvdata(dev); dpaa2_dpseci_debugfs_exit(priv); for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) { struct caam_aead_alg *t_alg = driver_aeads + i; if (t_alg->registered) crypto_unregister_aead(&t_alg->aead); } for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { struct caam_skcipher_alg *t_alg = driver_algs + i; if (t_alg->registered) crypto_unregister_skcipher(&t_alg->skcipher); } if (hash_list.next) { struct caam_hash_alg *t_hash_alg, *p; list_for_each_entry_safe(t_hash_alg, p, &hash_list, entry) { crypto_unregister_ahash(&t_hash_alg->ahash_alg); list_del(&t_hash_alg->entry); kfree(t_hash_alg); } } dpaa2_dpseci_disable(priv); dpaa2_dpseci_dpio_free(priv); dpaa2_dpseci_free(priv); free_percpu(priv->ppriv); fsl_mc_portal_free(priv->mc_io); kmem_cache_destroy(qi_cache); return 0; } int dpaa2_caam_enqueue(struct device *dev, struct caam_request *req) { struct dpaa2_fd fd; struct dpaa2_caam_priv *priv = dev_get_drvdata(dev); struct dpaa2_caam_priv_per_cpu *ppriv; int err = 0, i; if (IS_ERR(req)) return PTR_ERR(req); if (priv->cscn_mem) { dma_sync_single_for_cpu(priv->dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE); if (unlikely(dpaa2_cscn_state_congested(priv->cscn_mem_aligned))) { dev_dbg_ratelimited(dev, "Dropping request\n"); return -EBUSY; } } dpaa2_fl_set_flc(&req->fd_flt[1], req->flc_dma); req->fd_flt_dma = dma_map_single(dev, req->fd_flt, sizeof(req->fd_flt), DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, req->fd_flt_dma)) { dev_err(dev, "DMA mapping error for QI enqueue request\n"); goto err_out; } memset(&fd, 0, sizeof(fd)); dpaa2_fd_set_format(&fd, dpaa2_fd_list); dpaa2_fd_set_addr(&fd, req->fd_flt_dma); dpaa2_fd_set_len(&fd, dpaa2_fl_get_len(&req->fd_flt[1])); dpaa2_fd_set_flc(&fd, req->flc_dma); ppriv = this_cpu_ptr(priv->ppriv); for (i = 0; i < (priv->dpseci_attr.num_tx_queues << 1); i++) { err = dpaa2_io_service_enqueue_fq(ppriv->dpio, ppriv->req_fqid, &fd); if (err != -EBUSY) break; cpu_relax(); } if (unlikely(err)) { dev_err_ratelimited(dev, "Error enqueuing frame: %d\n", err); goto err_out; } return -EINPROGRESS; err_out: dma_unmap_single(dev, req->fd_flt_dma, sizeof(req->fd_flt), DMA_BIDIRECTIONAL); return -EIO; } EXPORT_SYMBOL(dpaa2_caam_enqueue); static const struct fsl_mc_device_id dpaa2_caam_match_id_table[] = { { .vendor = FSL_MC_VENDOR_FREESCALE, .obj_type = "dpseci", }, { .vendor = 0x0 } }; MODULE_DEVICE_TABLE(fslmc, dpaa2_caam_match_id_table); static struct fsl_mc_driver dpaa2_caam_driver = { .driver = { .name = KBUILD_MODNAME, .owner = THIS_MODULE, }, .probe = dpaa2_caam_probe, .remove = dpaa2_caam_remove, .match_id_table = dpaa2_caam_match_id_table }; MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Freescale Semiconductor, Inc"); MODULE_DESCRIPTION("Freescale DPAA2 CAAM Driver"); module_fsl_mc_driver(dpaa2_caam_driver);