/* * Copyright 2015 Linaro. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/sched.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/of_device.h> #include <linux/of.h> #include <linux/clk.h> #include <linux/of_dma.h> #include "virt-dma.h" #define DRIVER_NAME "zx-dma" #define DMA_ALIGN 4 #define DMA_MAX_SIZE (0x10000 - 512) #define LLI_BLOCK_SIZE (4 * PAGE_SIZE) #define REG_ZX_SRC_ADDR 0x00 #define REG_ZX_DST_ADDR 0x04 #define REG_ZX_TX_X_COUNT 0x08 #define REG_ZX_TX_ZY_COUNT 0x0c #define REG_ZX_SRC_ZY_STEP 0x10 #define REG_ZX_DST_ZY_STEP 0x14 #define REG_ZX_LLI_ADDR 0x1c #define REG_ZX_CTRL 0x20 #define REG_ZX_TC_IRQ 0x800 #define REG_ZX_SRC_ERR_IRQ 0x804 #define REG_ZX_DST_ERR_IRQ 0x808 #define REG_ZX_CFG_ERR_IRQ 0x80c #define REG_ZX_TC_IRQ_RAW 0x810 #define REG_ZX_SRC_ERR_IRQ_RAW 0x814 #define REG_ZX_DST_ERR_IRQ_RAW 0x818 #define REG_ZX_CFG_ERR_IRQ_RAW 0x81c #define REG_ZX_STATUS 0x820 #define REG_ZX_DMA_GRP_PRIO 0x824 #define REG_ZX_DMA_ARB 0x828 #define ZX_FORCE_CLOSE BIT(31) #define ZX_DST_BURST_WIDTH(x) (((x) & 0x7) << 13) #define ZX_MAX_BURST_LEN 16 #define ZX_SRC_BURST_LEN(x) (((x) & 0xf) << 9) #define ZX_SRC_BURST_WIDTH(x) (((x) & 0x7) << 6) #define ZX_IRQ_ENABLE_ALL (3 << 4) #define ZX_DST_FIFO_MODE BIT(3) #define ZX_SRC_FIFO_MODE BIT(2) #define ZX_SOFT_REQ BIT(1) #define ZX_CH_ENABLE BIT(0) #define ZX_DMA_BUSWIDTHS \ (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) enum zx_dma_burst_width { ZX_DMA_WIDTH_8BIT = 0, ZX_DMA_WIDTH_16BIT = 1, ZX_DMA_WIDTH_32BIT = 2, ZX_DMA_WIDTH_64BIT = 3, }; struct zx_desc_hw { u32 saddr; u32 daddr; u32 src_x; u32 src_zy; u32 src_zy_step; u32 dst_zy_step; u32 reserved1; u32 lli; u32 ctr; u32 reserved[7]; /* pack as hardware registers region size */ } __aligned(32); struct zx_dma_desc_sw { struct virt_dma_desc vd; dma_addr_t desc_hw_lli; size_t desc_num; size_t size; struct zx_desc_hw *desc_hw; }; struct zx_dma_phy; struct zx_dma_chan { struct dma_slave_config slave_cfg; int id; /* Request phy chan id */ u32 ccfg; u32 cyclic; struct virt_dma_chan vc; struct zx_dma_phy *phy; struct list_head node; dma_addr_t dev_addr; enum dma_status status; }; struct zx_dma_phy { u32 idx; void __iomem *base; struct zx_dma_chan *vchan; struct zx_dma_desc_sw *ds_run; struct zx_dma_desc_sw *ds_done; }; struct zx_dma_dev { struct dma_device slave; void __iomem *base; spinlock_t lock; /* lock for ch and phy */ struct list_head chan_pending; struct zx_dma_phy *phy; struct zx_dma_chan *chans; struct clk *clk; struct dma_pool *pool; u32 dma_channels; u32 dma_requests; int irq; }; #define to_zx_dma(dmadev) container_of(dmadev, struct zx_dma_dev, slave) static struct zx_dma_chan *to_zx_chan(struct dma_chan *chan) { return container_of(chan, struct zx_dma_chan, vc.chan); } static void zx_dma_terminate_chan(struct zx_dma_phy *phy, struct zx_dma_dev *d) { u32 val = 0; val = readl_relaxed(phy->base + REG_ZX_CTRL); val &= ~ZX_CH_ENABLE; val |= ZX_FORCE_CLOSE; writel_relaxed(val, phy->base + REG_ZX_CTRL); val = 0x1 << phy->idx; writel_relaxed(val, d->base + REG_ZX_TC_IRQ_RAW); writel_relaxed(val, d->base + REG_ZX_SRC_ERR_IRQ_RAW); writel_relaxed(val, d->base + REG_ZX_DST_ERR_IRQ_RAW); writel_relaxed(val, d->base + REG_ZX_CFG_ERR_IRQ_RAW); } static void zx_dma_set_desc(struct zx_dma_phy *phy, struct zx_desc_hw *hw) { writel_relaxed(hw->saddr, phy->base + REG_ZX_SRC_ADDR); writel_relaxed(hw->daddr, phy->base + REG_ZX_DST_ADDR); writel_relaxed(hw->src_x, phy->base + REG_ZX_TX_X_COUNT); writel_relaxed(0, phy->base + REG_ZX_TX_ZY_COUNT); writel_relaxed(0, phy->base + REG_ZX_SRC_ZY_STEP); writel_relaxed(0, phy->base + REG_ZX_DST_ZY_STEP); writel_relaxed(hw->lli, phy->base + REG_ZX_LLI_ADDR); writel_relaxed(hw->ctr, phy->base + REG_ZX_CTRL); } static u32 zx_dma_get_curr_lli(struct zx_dma_phy *phy) { return readl_relaxed(phy->base + REG_ZX_LLI_ADDR); } static u32 zx_dma_get_chan_stat(struct zx_dma_dev *d) { return readl_relaxed(d->base + REG_ZX_STATUS); } static void zx_dma_init_state(struct zx_dma_dev *d) { /* set same priority */ writel_relaxed(0x0, d->base + REG_ZX_DMA_ARB); /* clear all irq */ writel_relaxed(0xffffffff, d->base + REG_ZX_TC_IRQ_RAW); writel_relaxed(0xffffffff, d->base + REG_ZX_SRC_ERR_IRQ_RAW); writel_relaxed(0xffffffff, d->base + REG_ZX_DST_ERR_IRQ_RAW); writel_relaxed(0xffffffff, d->base + REG_ZX_CFG_ERR_IRQ_RAW); } static int zx_dma_start_txd(struct zx_dma_chan *c) { struct zx_dma_dev *d = to_zx_dma(c->vc.chan.device); struct virt_dma_desc *vd = vchan_next_desc(&c->vc); if (!c->phy) return -EAGAIN; if (BIT(c->phy->idx) & zx_dma_get_chan_stat(d)) return -EAGAIN; if (vd) { struct zx_dma_desc_sw *ds = container_of(vd, struct zx_dma_desc_sw, vd); /* * fetch and remove request from vc->desc_issued * so vc->desc_issued only contains desc pending */ list_del(&ds->vd.node); c->phy->ds_run = ds; c->phy->ds_done = NULL; /* start dma */ zx_dma_set_desc(c->phy, ds->desc_hw); return 0; } c->phy->ds_done = NULL; c->phy->ds_run = NULL; return -EAGAIN; } static void zx_dma_task(struct zx_dma_dev *d) { struct zx_dma_phy *p; struct zx_dma_chan *c, *cn; unsigned pch, pch_alloc = 0; unsigned long flags; /* check new dma request of running channel in vc->desc_issued */ list_for_each_entry_safe(c, cn, &d->slave.channels, vc.chan.device_node) { spin_lock_irqsave(&c->vc.lock, flags); p = c->phy; if (p && p->ds_done && zx_dma_start_txd(c)) { /* No current txd associated with this channel */ dev_dbg(d->slave.dev, "pchan %u: free\n", p->idx); /* Mark this channel free */ c->phy = NULL; p->vchan = NULL; } spin_unlock_irqrestore(&c->vc.lock, flags); } /* check new channel request in d->chan_pending */ spin_lock_irqsave(&d->lock, flags); while (!list_empty(&d->chan_pending)) { c = list_first_entry(&d->chan_pending, struct zx_dma_chan, node); p = &d->phy[c->id]; if (!p->vchan) { /* remove from d->chan_pending */ list_del_init(&c->node); pch_alloc |= 1 << c->id; /* Mark this channel allocated */ p->vchan = c; c->phy = p; } else { dev_dbg(d->slave.dev, "pchan %u: busy!\n", c->id); } } spin_unlock_irqrestore(&d->lock, flags); for (pch = 0; pch < d->dma_channels; pch++) { if (pch_alloc & (1 << pch)) { p = &d->phy[pch]; c = p->vchan; if (c) { spin_lock_irqsave(&c->vc.lock, flags); zx_dma_start_txd(c); spin_unlock_irqrestore(&c->vc.lock, flags); } } } } static irqreturn_t zx_dma_int_handler(int irq, void *dev_id) { struct zx_dma_dev *d = (struct zx_dma_dev *)dev_id; struct zx_dma_phy *p; struct zx_dma_chan *c; u32 tc = readl_relaxed(d->base + REG_ZX_TC_IRQ); u32 serr = readl_relaxed(d->base + REG_ZX_SRC_ERR_IRQ); u32 derr = readl_relaxed(d->base + REG_ZX_DST_ERR_IRQ); u32 cfg = readl_relaxed(d->base + REG_ZX_CFG_ERR_IRQ); u32 i, irq_chan = 0, task = 0; while (tc) { i = __ffs(tc); tc &= ~BIT(i); p = &d->phy[i]; c = p->vchan; if (c) { unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); if (c->cyclic) { vchan_cyclic_callback(&p->ds_run->vd); } else { vchan_cookie_complete(&p->ds_run->vd); p->ds_done = p->ds_run; task = 1; } spin_unlock_irqrestore(&c->vc.lock, flags); irq_chan |= BIT(i); } } if (serr || derr || cfg) dev_warn(d->slave.dev, "DMA ERR src 0x%x, dst 0x%x, cfg 0x%x\n", serr, derr, cfg); writel_relaxed(irq_chan, d->base + REG_ZX_TC_IRQ_RAW); writel_relaxed(serr, d->base + REG_ZX_SRC_ERR_IRQ_RAW); writel_relaxed(derr, d->base + REG_ZX_DST_ERR_IRQ_RAW); writel_relaxed(cfg, d->base + REG_ZX_CFG_ERR_IRQ_RAW); if (task) zx_dma_task(d); return IRQ_HANDLED; } static void zx_dma_free_chan_resources(struct dma_chan *chan) { struct zx_dma_chan *c = to_zx_chan(chan); struct zx_dma_dev *d = to_zx_dma(chan->device); unsigned long flags; spin_lock_irqsave(&d->lock, flags); list_del_init(&c->node); spin_unlock_irqrestore(&d->lock, flags); vchan_free_chan_resources(&c->vc); c->ccfg = 0; } static enum dma_status zx_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { struct zx_dma_chan *c = to_zx_chan(chan); struct zx_dma_phy *p; struct virt_dma_desc *vd; unsigned long flags; enum dma_status ret; size_t bytes = 0; ret = dma_cookie_status(&c->vc.chan, cookie, state); if (ret == DMA_COMPLETE || !state) return ret; spin_lock_irqsave(&c->vc.lock, flags); p = c->phy; ret = c->status; /* * If the cookie is on our issue queue, then the residue is * its total size. */ vd = vchan_find_desc(&c->vc, cookie); if (vd) { bytes = container_of(vd, struct zx_dma_desc_sw, vd)->size; } else if ((!p) || (!p->ds_run)) { bytes = 0; } else { struct zx_dma_desc_sw *ds = p->ds_run; u32 clli = 0, index = 0; bytes = 0; clli = zx_dma_get_curr_lli(p); index = (clli - ds->desc_hw_lli) / sizeof(struct zx_desc_hw) + 1; for (; index < ds->desc_num; index++) { bytes += ds->desc_hw[index].src_x; /* end of lli */ if (!ds->desc_hw[index].lli) break; } } spin_unlock_irqrestore(&c->vc.lock, flags); dma_set_residue(state, bytes); return ret; } static void zx_dma_issue_pending(struct dma_chan *chan) { struct zx_dma_chan *c = to_zx_chan(chan); struct zx_dma_dev *d = to_zx_dma(chan->device); unsigned long flags; int issue = 0; spin_lock_irqsave(&c->vc.lock, flags); /* add request to vc->desc_issued */ if (vchan_issue_pending(&c->vc)) { spin_lock(&d->lock); if (!c->phy && list_empty(&c->node)) { /* if new channel, add chan_pending */ list_add_tail(&c->node, &d->chan_pending); issue = 1; dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc); } spin_unlock(&d->lock); } else { dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc); } spin_unlock_irqrestore(&c->vc.lock, flags); if (issue) zx_dma_task(d); } static void zx_dma_fill_desc(struct zx_dma_desc_sw *ds, dma_addr_t dst, dma_addr_t src, size_t len, u32 num, u32 ccfg) { if ((num + 1) < ds->desc_num) ds->desc_hw[num].lli = ds->desc_hw_lli + (num + 1) * sizeof(struct zx_desc_hw); ds->desc_hw[num].saddr = src; ds->desc_hw[num].daddr = dst; ds->desc_hw[num].src_x = len; ds->desc_hw[num].ctr = ccfg; } static struct zx_dma_desc_sw *zx_alloc_desc_resource(int num, struct dma_chan *chan) { struct zx_dma_chan *c = to_zx_chan(chan); struct zx_dma_desc_sw *ds; struct zx_dma_dev *d = to_zx_dma(chan->device); int lli_limit = LLI_BLOCK_SIZE / sizeof(struct zx_desc_hw); if (num > lli_limit) { dev_dbg(chan->device->dev, "vch %p: sg num %d exceed max %d\n", &c->vc, num, lli_limit); return NULL; } ds = kzalloc(sizeof(*ds), GFP_ATOMIC); if (!ds) return NULL; ds->desc_hw = dma_pool_zalloc(d->pool, GFP_NOWAIT, &ds->desc_hw_lli); if (!ds->desc_hw) { dev_dbg(chan->device->dev, "vch %p: dma alloc fail\n", &c->vc); kfree(ds); return NULL; } ds->desc_num = num; return ds; } static enum zx_dma_burst_width zx_dma_burst_width(enum dma_slave_buswidth width) { switch (width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: case DMA_SLAVE_BUSWIDTH_2_BYTES: case DMA_SLAVE_BUSWIDTH_4_BYTES: case DMA_SLAVE_BUSWIDTH_8_BYTES: return ffs(width) - 1; default: return ZX_DMA_WIDTH_32BIT; } } static int zx_pre_config(struct zx_dma_chan *c, enum dma_transfer_direction dir) { struct dma_slave_config *cfg = &c->slave_cfg; enum zx_dma_burst_width src_width; enum zx_dma_burst_width dst_width; u32 maxburst = 0; switch (dir) { case DMA_MEM_TO_MEM: c->ccfg = ZX_CH_ENABLE | ZX_SOFT_REQ | ZX_SRC_BURST_LEN(ZX_MAX_BURST_LEN - 1) | ZX_SRC_BURST_WIDTH(ZX_DMA_WIDTH_32BIT) | ZX_DST_BURST_WIDTH(ZX_DMA_WIDTH_32BIT); break; case DMA_MEM_TO_DEV: c->dev_addr = cfg->dst_addr; /* dst len is calculated from src width, len and dst width. * We need make sure dst len not exceed MAX LEN. * Trailing single transaction that does not fill a full * burst also require identical src/dst data width. */ dst_width = zx_dma_burst_width(cfg->dst_addr_width); maxburst = cfg->dst_maxburst; maxburst = maxburst < ZX_MAX_BURST_LEN ? maxburst : ZX_MAX_BURST_LEN; c->ccfg = ZX_DST_FIFO_MODE | ZX_CH_ENABLE | ZX_SRC_BURST_LEN(maxburst - 1) | ZX_SRC_BURST_WIDTH(dst_width) | ZX_DST_BURST_WIDTH(dst_width); break; case DMA_DEV_TO_MEM: c->dev_addr = cfg->src_addr; src_width = zx_dma_burst_width(cfg->src_addr_width); maxburst = cfg->src_maxburst; maxburst = maxburst < ZX_MAX_BURST_LEN ? maxburst : ZX_MAX_BURST_LEN; c->ccfg = ZX_SRC_FIFO_MODE | ZX_CH_ENABLE | ZX_SRC_BURST_LEN(maxburst - 1) | ZX_SRC_BURST_WIDTH(src_width) | ZX_DST_BURST_WIDTH(src_width); break; default: return -EINVAL; } return 0; } static struct dma_async_tx_descriptor *zx_dma_prep_memcpy( struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags) { struct zx_dma_chan *c = to_zx_chan(chan); struct zx_dma_desc_sw *ds; size_t copy = 0; int num = 0; if (!len) return NULL; if (zx_pre_config(c, DMA_MEM_TO_MEM)) return NULL; num = DIV_ROUND_UP(len, DMA_MAX_SIZE); ds = zx_alloc_desc_resource(num, chan); if (!ds) return NULL; ds->size = len; num = 0; do { copy = min_t(size_t, len, DMA_MAX_SIZE); zx_dma_fill_desc(ds, dst, src, copy, num++, c->ccfg); src += copy; dst += copy; len -= copy; } while (len); c->cyclic = 0; ds->desc_hw[num - 1].lli = 0; /* end of link */ ds->desc_hw[num - 1].ctr |= ZX_IRQ_ENABLE_ALL; return vchan_tx_prep(&c->vc, &ds->vd, flags); } static struct dma_async_tx_descriptor *zx_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct zx_dma_chan *c = to_zx_chan(chan); struct zx_dma_desc_sw *ds; size_t len, avail, total = 0; struct scatterlist *sg; dma_addr_t addr, src = 0, dst = 0; int num = sglen, i; if (!sgl) return NULL; if (zx_pre_config(c, dir)) return NULL; for_each_sg(sgl, sg, sglen, i) { avail = sg_dma_len(sg); if (avail > DMA_MAX_SIZE) num += DIV_ROUND_UP(avail, DMA_MAX_SIZE) - 1; } ds = zx_alloc_desc_resource(num, chan); if (!ds) return NULL; c->cyclic = 0; num = 0; for_each_sg(sgl, sg, sglen, i) { addr = sg_dma_address(sg); avail = sg_dma_len(sg); total += avail; do { len = min_t(size_t, avail, DMA_MAX_SIZE); if (dir == DMA_MEM_TO_DEV) { src = addr; dst = c->dev_addr; } else if (dir == DMA_DEV_TO_MEM) { src = c->dev_addr; dst = addr; } zx_dma_fill_desc(ds, dst, src, len, num++, c->ccfg); addr += len; avail -= len; } while (avail); } ds->desc_hw[num - 1].lli = 0; /* end of link */ ds->desc_hw[num - 1].ctr |= ZX_IRQ_ENABLE_ALL; ds->size = total; return vchan_tx_prep(&c->vc, &ds->vd, flags); } static struct dma_async_tx_descriptor *zx_dma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { struct zx_dma_chan *c = to_zx_chan(chan); struct zx_dma_desc_sw *ds; dma_addr_t src = 0, dst = 0; int num_periods = buf_len / period_len; int buf = 0, num = 0; if (period_len > DMA_MAX_SIZE) { dev_err(chan->device->dev, "maximum period size exceeded\n"); return NULL; } if (zx_pre_config(c, dir)) return NULL; ds = zx_alloc_desc_resource(num_periods, chan); if (!ds) return NULL; c->cyclic = 1; while (buf < buf_len) { if (dir == DMA_MEM_TO_DEV) { src = dma_addr; dst = c->dev_addr; } else if (dir == DMA_DEV_TO_MEM) { src = c->dev_addr; dst = dma_addr; } zx_dma_fill_desc(ds, dst, src, period_len, num++, c->ccfg | ZX_IRQ_ENABLE_ALL); dma_addr += period_len; buf += period_len; } ds->desc_hw[num - 1].lli = ds->desc_hw_lli; ds->size = buf_len; return vchan_tx_prep(&c->vc, &ds->vd, flags); } static int zx_dma_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct zx_dma_chan *c = to_zx_chan(chan); if (!cfg) return -EINVAL; memcpy(&c->slave_cfg, cfg, sizeof(*cfg)); return 0; } static int zx_dma_terminate_all(struct dma_chan *chan) { struct zx_dma_chan *c = to_zx_chan(chan); struct zx_dma_dev *d = to_zx_dma(chan->device); struct zx_dma_phy *p = c->phy; unsigned long flags; LIST_HEAD(head); dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc); /* Prevent this channel being scheduled */ spin_lock(&d->lock); list_del_init(&c->node); spin_unlock(&d->lock); /* Clear the tx descriptor lists */ spin_lock_irqsave(&c->vc.lock, flags); vchan_get_all_descriptors(&c->vc, &head); if (p) { /* vchan is assigned to a pchan - stop the channel */ zx_dma_terminate_chan(p, d); c->phy = NULL; p->vchan = NULL; p->ds_run = NULL; p->ds_done = NULL; } spin_unlock_irqrestore(&c->vc.lock, flags); vchan_dma_desc_free_list(&c->vc, &head); return 0; } static int zx_dma_transfer_pause(struct dma_chan *chan) { struct zx_dma_chan *c = to_zx_chan(chan); u32 val = 0; val = readl_relaxed(c->phy->base + REG_ZX_CTRL); val &= ~ZX_CH_ENABLE; writel_relaxed(val, c->phy->base + REG_ZX_CTRL); return 0; } static int zx_dma_transfer_resume(struct dma_chan *chan) { struct zx_dma_chan *c = to_zx_chan(chan); u32 val = 0; val = readl_relaxed(c->phy->base + REG_ZX_CTRL); val |= ZX_CH_ENABLE; writel_relaxed(val, c->phy->base + REG_ZX_CTRL); return 0; } static void zx_dma_free_desc(struct virt_dma_desc *vd) { struct zx_dma_desc_sw *ds = container_of(vd, struct zx_dma_desc_sw, vd); struct zx_dma_dev *d = to_zx_dma(vd->tx.chan->device); dma_pool_free(d->pool, ds->desc_hw, ds->desc_hw_lli); kfree(ds); } static const struct of_device_id zx6702_dma_dt_ids[] = { { .compatible = "zte,zx296702-dma", }, {} }; MODULE_DEVICE_TABLE(of, zx6702_dma_dt_ids); static struct dma_chan *zx_of_dma_simple_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct zx_dma_dev *d = ofdma->of_dma_data; unsigned int request = dma_spec->args[0]; struct dma_chan *chan; struct zx_dma_chan *c; if (request >= d->dma_requests) return NULL; chan = dma_get_any_slave_channel(&d->slave); if (!chan) { dev_err(d->slave.dev, "get channel fail in %s.\n", __func__); return NULL; } c = to_zx_chan(chan); c->id = request; dev_info(d->slave.dev, "zx_dma: pchan %u: alloc vchan %p\n", c->id, &c->vc); return chan; } static int zx_dma_probe(struct platform_device *op) { struct zx_dma_dev *d; struct resource *iores; int i, ret = 0; iores = platform_get_resource(op, IORESOURCE_MEM, 0); if (!iores) return -EINVAL; d = devm_kzalloc(&op->dev, sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->base = devm_ioremap_resource(&op->dev, iores); if (IS_ERR(d->base)) return PTR_ERR(d->base); of_property_read_u32((&op->dev)->of_node, "dma-channels", &d->dma_channels); of_property_read_u32((&op->dev)->of_node, "dma-requests", &d->dma_requests); if (!d->dma_requests || !d->dma_channels) return -EINVAL; d->clk = devm_clk_get(&op->dev, NULL); if (IS_ERR(d->clk)) { dev_err(&op->dev, "no dma clk\n"); return PTR_ERR(d->clk); } d->irq = platform_get_irq(op, 0); ret = devm_request_irq(&op->dev, d->irq, zx_dma_int_handler, 0, DRIVER_NAME, d); if (ret) return ret; /* A DMA memory pool for LLIs, align on 32-byte boundary */ d->pool = dmam_pool_create(DRIVER_NAME, &op->dev, LLI_BLOCK_SIZE, 32, 0); if (!d->pool) return -ENOMEM; /* init phy channel */ d->phy = devm_kzalloc(&op->dev, d->dma_channels * sizeof(struct zx_dma_phy), GFP_KERNEL); if (!d->phy) return -ENOMEM; for (i = 0; i < d->dma_channels; i++) { struct zx_dma_phy *p = &d->phy[i]; p->idx = i; p->base = d->base + i * 0x40; } INIT_LIST_HEAD(&d->slave.channels); dma_cap_set(DMA_SLAVE, d->slave.cap_mask); dma_cap_set(DMA_MEMCPY, d->slave.cap_mask); dma_cap_set(DMA_CYCLIC, d->slave.cap_mask); dma_cap_set(DMA_PRIVATE, d->slave.cap_mask); d->slave.dev = &op->dev; d->slave.device_free_chan_resources = zx_dma_free_chan_resources; d->slave.device_tx_status = zx_dma_tx_status; d->slave.device_prep_dma_memcpy = zx_dma_prep_memcpy; d->slave.device_prep_slave_sg = zx_dma_prep_slave_sg; d->slave.device_prep_dma_cyclic = zx_dma_prep_dma_cyclic; d->slave.device_issue_pending = zx_dma_issue_pending; d->slave.device_config = zx_dma_config; d->slave.device_terminate_all = zx_dma_terminate_all; d->slave.device_pause = zx_dma_transfer_pause; d->slave.device_resume = zx_dma_transfer_resume; d->slave.copy_align = DMA_ALIGN; d->slave.src_addr_widths = ZX_DMA_BUSWIDTHS; d->slave.dst_addr_widths = ZX_DMA_BUSWIDTHS; d->slave.directions = BIT(DMA_MEM_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); d->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; /* init virtual channel */ d->chans = devm_kzalloc(&op->dev, d->dma_requests * sizeof(struct zx_dma_chan), GFP_KERNEL); if (!d->chans) return -ENOMEM; for (i = 0; i < d->dma_requests; i++) { struct zx_dma_chan *c = &d->chans[i]; c->status = DMA_IN_PROGRESS; INIT_LIST_HEAD(&c->node); c->vc.desc_free = zx_dma_free_desc; vchan_init(&c->vc, &d->slave); } /* Enable clock before accessing registers */ ret = clk_prepare_enable(d->clk); if (ret < 0) { dev_err(&op->dev, "clk_prepare_enable failed: %d\n", ret); goto zx_dma_out; } zx_dma_init_state(d); spin_lock_init(&d->lock); INIT_LIST_HEAD(&d->chan_pending); platform_set_drvdata(op, d); ret = dma_async_device_register(&d->slave); if (ret) goto clk_dis; ret = of_dma_controller_register((&op->dev)->of_node, zx_of_dma_simple_xlate, d); if (ret) goto of_dma_register_fail; dev_info(&op->dev, "initialized\n"); return 0; of_dma_register_fail: dma_async_device_unregister(&d->slave); clk_dis: clk_disable_unprepare(d->clk); zx_dma_out: return ret; } static int zx_dma_remove(struct platform_device *op) { struct zx_dma_chan *c, *cn; struct zx_dma_dev *d = platform_get_drvdata(op); /* explictly free the irq */ devm_free_irq(&op->dev, d->irq, d); dma_async_device_unregister(&d->slave); of_dma_controller_free((&op->dev)->of_node); list_for_each_entry_safe(c, cn, &d->slave.channels, vc.chan.device_node) { list_del(&c->vc.chan.device_node); } clk_disable_unprepare(d->clk); dmam_pool_destroy(d->pool); return 0; } #ifdef CONFIG_PM_SLEEP static int zx_dma_suspend_dev(struct device *dev) { struct zx_dma_dev *d = dev_get_drvdata(dev); u32 stat = 0; stat = zx_dma_get_chan_stat(d); if (stat) { dev_warn(d->slave.dev, "chan %d is running fail to suspend\n", stat); return -1; } clk_disable_unprepare(d->clk); return 0; } static int zx_dma_resume_dev(struct device *dev) { struct zx_dma_dev *d = dev_get_drvdata(dev); int ret = 0; ret = clk_prepare_enable(d->clk); if (ret < 0) { dev_err(d->slave.dev, "clk_prepare_enable failed: %d\n", ret); return ret; } zx_dma_init_state(d); return 0; } #endif static SIMPLE_DEV_PM_OPS(zx_dma_pmops, zx_dma_suspend_dev, zx_dma_resume_dev); static struct platform_driver zx_pdma_driver = { .driver = { .name = DRIVER_NAME, .pm = &zx_dma_pmops, .of_match_table = zx6702_dma_dt_ids, }, .probe = zx_dma_probe, .remove = zx_dma_remove, }; module_platform_driver(zx_pdma_driver); MODULE_DESCRIPTION("ZTE ZX296702 DMA Driver"); MODULE_AUTHOR("Jun Nie jun.nie@linaro.org"); MODULE_LICENSE("GPL v2");