// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom * Copyright (c) 2014 The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark */ /** * DOC: VC4 Falcon HDMI module * * The HDMI core has a state machine and a PHY. On BCM2835, most of * the unit operates off of the HSM clock from CPRMAN. It also * internally uses the PLLH_PIX clock for the PHY. * * HDMI infoframes are kept within a small packet ram, where each * packet can be individually enabled for including in a frame. * * HDMI audio is implemented entirely within the HDMI IP block. A * register in the HDMI encoder takes SPDIF frames from the DMA engine * and transfers them over an internal MAI (multi-channel audio * interconnect) bus to the encoder side for insertion into the video * blank regions. * * The driver's HDMI encoder does not yet support power management. * The HDMI encoder's power domain and the HSM/pixel clocks are kept * continuously running, and only the HDMI logic and packet ram are * powered off/on at disable/enable time. * * The driver does not yet support CEC control, though the HDMI * encoder block has CEC support. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "media/cec.h" #include "vc4_drv.h" #include "vc4_hdmi.h" #include "vc4_hdmi_regs.h" #include "vc4_regs.h" #define VC5_HDMI_HORZA_HFP_SHIFT 16 #define VC5_HDMI_HORZA_HFP_MASK VC4_MASK(28, 16) #define VC5_HDMI_HORZA_VPOS BIT(15) #define VC5_HDMI_HORZA_HPOS BIT(14) #define VC5_HDMI_HORZA_HAP_SHIFT 0 #define VC5_HDMI_HORZA_HAP_MASK VC4_MASK(13, 0) #define VC5_HDMI_HORZB_HBP_SHIFT 16 #define VC5_HDMI_HORZB_HBP_MASK VC4_MASK(26, 16) #define VC5_HDMI_HORZB_HSP_SHIFT 0 #define VC5_HDMI_HORZB_HSP_MASK VC4_MASK(10, 0) #define VC5_HDMI_VERTA_VSP_SHIFT 24 #define VC5_HDMI_VERTA_VSP_MASK VC4_MASK(28, 24) #define VC5_HDMI_VERTA_VFP_SHIFT 16 #define VC5_HDMI_VERTA_VFP_MASK VC4_MASK(22, 16) #define VC5_HDMI_VERTA_VAL_SHIFT 0 #define VC5_HDMI_VERTA_VAL_MASK VC4_MASK(12, 0) #define VC5_HDMI_VERTB_VSPO_SHIFT 16 #define VC5_HDMI_VERTB_VSPO_MASK VC4_MASK(29, 16) # define VC4_HD_M_SW_RST BIT(2) # define VC4_HD_M_ENABLE BIT(0) #define CEC_CLOCK_FREQ 40000 #define VC4_HSM_MID_CLOCK 149985000 static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct vc4_hdmi *vc4_hdmi = node->info_ent->data; struct drm_printer p = drm_seq_file_printer(m); drm_print_regset32(&p, &vc4_hdmi->hdmi_regset); drm_print_regset32(&p, &vc4_hdmi->hd_regset); return 0; } static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi) { HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST); udelay(1); HDMI_WRITE(HDMI_M_CTL, 0); HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE); HDMI_WRITE(HDMI_SW_RESET_CONTROL, VC4_HDMI_SW_RESET_HDMI | VC4_HDMI_SW_RESET_FORMAT_DETECT); HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0); } static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi) { reset_control_reset(vc4_hdmi->reset); HDMI_WRITE(HDMI_DVP_CTL, 0); HDMI_WRITE(HDMI_CLOCK_STOP, HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL); } static enum drm_connector_status vc4_hdmi_connector_detect(struct drm_connector *connector, bool force) { struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); if (vc4_hdmi->hpd_gpio) { if (gpio_get_value_cansleep(vc4_hdmi->hpd_gpio) ^ vc4_hdmi->hpd_active_low) return connector_status_connected; cec_phys_addr_invalidate(vc4_hdmi->cec_adap); return connector_status_disconnected; } if (drm_probe_ddc(vc4_hdmi->ddc)) return connector_status_connected; if (HDMI_READ(HDMI_HOTPLUG) & VC4_HDMI_HOTPLUG_CONNECTED) return connector_status_connected; cec_phys_addr_invalidate(vc4_hdmi->cec_adap); return connector_status_disconnected; } static void vc4_hdmi_connector_destroy(struct drm_connector *connector) { drm_connector_unregister(connector); drm_connector_cleanup(connector); } static int vc4_hdmi_connector_get_modes(struct drm_connector *connector) { struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector); struct vc4_hdmi_encoder *vc4_encoder = &vc4_hdmi->encoder; int ret = 0; struct edid *edid; edid = drm_get_edid(connector, vc4_hdmi->ddc); cec_s_phys_addr_from_edid(vc4_hdmi->cec_adap, edid); if (!edid) return -ENODEV; vc4_encoder->hdmi_monitor = drm_detect_hdmi_monitor(edid); drm_connector_update_edid_property(connector, edid); ret = drm_add_edid_modes(connector, edid); kfree(edid); return ret; } static void vc4_hdmi_connector_reset(struct drm_connector *connector) { drm_atomic_helper_connector_reset(connector); drm_atomic_helper_connector_tv_reset(connector); } static const struct drm_connector_funcs vc4_hdmi_connector_funcs = { .detect = vc4_hdmi_connector_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = vc4_hdmi_connector_destroy, .reset = vc4_hdmi_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = { .get_modes = vc4_hdmi_connector_get_modes, }; static int vc4_hdmi_connector_init(struct drm_device *dev, struct vc4_hdmi *vc4_hdmi) { struct drm_connector *connector = &vc4_hdmi->connector; struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base; int ret; drm_connector_init_with_ddc(dev, connector, &vc4_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA, vc4_hdmi->ddc); drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs); /* Create and attach TV margin props to this connector. */ ret = drm_mode_create_tv_margin_properties(dev); if (ret) return ret; drm_connector_attach_tv_margin_properties(connector); connector->polled = (DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT); connector->interlace_allowed = 1; connector->doublescan_allowed = 0; drm_connector_attach_encoder(connector, encoder); return 0; } static int vc4_hdmi_stop_packet(struct drm_encoder *encoder, enum hdmi_infoframe_type type) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); u32 packet_id = type - 0x80; HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id)); return wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) & BIT(packet_id)), 100); } static void vc4_hdmi_write_infoframe(struct drm_encoder *encoder, union hdmi_infoframe *frame) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); u32 packet_id = frame->any.type - 0x80; const struct vc4_hdmi_register *ram_packet_start = &vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START]; u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id; void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi, ram_packet_start->reg); uint8_t buffer[VC4_HDMI_PACKET_STRIDE]; ssize_t len, i; int ret; WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) & VC4_HDMI_RAM_PACKET_ENABLE), "Packet RAM has to be on to store the packet."); len = hdmi_infoframe_pack(frame, buffer, sizeof(buffer)); if (len < 0) return; ret = vc4_hdmi_stop_packet(encoder, frame->any.type); if (ret) { DRM_ERROR("Failed to wait for infoframe to go idle: %d\n", ret); return; } for (i = 0; i < len; i += 7) { writel(buffer[i + 0] << 0 | buffer[i + 1] << 8 | buffer[i + 2] << 16, base + packet_reg); packet_reg += 4; writel(buffer[i + 3] << 0 | buffer[i + 4] << 8 | buffer[i + 5] << 16 | buffer[i + 6] << 24, base + packet_reg); packet_reg += 4; } HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id)); ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) & BIT(packet_id)), 100); if (ret) DRM_ERROR("Failed to wait for infoframe to start: %d\n", ret); } static void vc4_hdmi_set_avi_infoframe(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder); struct drm_connector *connector = &vc4_hdmi->connector; struct drm_connector_state *cstate = connector->state; struct drm_crtc *crtc = encoder->crtc; const struct drm_display_mode *mode = &crtc->state->adjusted_mode; union hdmi_infoframe frame; int ret; ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, connector, mode); if (ret < 0) { DRM_ERROR("couldn't fill AVI infoframe\n"); return; } drm_hdmi_avi_infoframe_quant_range(&frame.avi, connector, mode, vc4_encoder->limited_rgb_range ? HDMI_QUANTIZATION_RANGE_LIMITED : HDMI_QUANTIZATION_RANGE_FULL); drm_hdmi_avi_infoframe_bars(&frame.avi, cstate); vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_spd_infoframe(struct drm_encoder *encoder) { union hdmi_infoframe frame; int ret; ret = hdmi_spd_infoframe_init(&frame.spd, "Broadcom", "Videocore"); if (ret < 0) { DRM_ERROR("couldn't fill SPD infoframe\n"); return; } frame.spd.sdi = HDMI_SPD_SDI_PC; vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_audio_infoframe(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); union hdmi_infoframe frame; int ret; ret = hdmi_audio_infoframe_init(&frame.audio); frame.audio.coding_type = HDMI_AUDIO_CODING_TYPE_STREAM; frame.audio.sample_frequency = HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM; frame.audio.sample_size = HDMI_AUDIO_SAMPLE_SIZE_STREAM; frame.audio.channels = vc4_hdmi->audio.channels; vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_infoframes(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); vc4_hdmi_set_avi_infoframe(encoder); vc4_hdmi_set_spd_infoframe(encoder); /* * If audio was streaming, then we need to reenabled the audio * infoframe here during encoder_enable. */ if (vc4_hdmi->audio.streaming) vc4_hdmi_set_audio_infoframe(encoder); } static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0); HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB | VC4_HD_VID_CTL_CLRSYNC); HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX); } static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); int ret; if (vc4_hdmi->variant->phy_disable) vc4_hdmi->variant->phy_disable(vc4_hdmi); HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE); clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock); clk_disable_unprepare(vc4_hdmi->hsm_clock); clk_disable_unprepare(vc4_hdmi->pixel_clock); ret = pm_runtime_put(&vc4_hdmi->pdev->dev); if (ret < 0) DRM_ERROR("Failed to release power domain: %d\n", ret); } static void vc4_hdmi_encoder_disable(struct drm_encoder *encoder) { } static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, bool enable) { u32 csc_ctl; csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR, VC4_HD_CSC_CTL_ORDER); if (enable) { /* CEA VICs other than #1 requre limited range RGB * output unless overridden by an AVI infoframe. * Apply a colorspace conversion to squash 0-255 down * to 16-235. The matrix here is: * * [ 0 0 0.8594 16] * [ 0 0.8594 0 16] * [ 0.8594 0 0 16] * [ 0 0 0 1] */ csc_ctl |= VC4_HD_CSC_CTL_ENABLE; csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC; csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM, VC4_HD_CSC_CTL_MODE); HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000); HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0); HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000); HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000); HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0); HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000); } /* The RGB order applies even when CSC is disabled. */ HDMI_WRITE(HDMI_CSC_CTL, csc_ctl); } static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi, bool enable) { u32 csc_ctl; csc_ctl = 0x07; /* RGB_CONVERT_MODE = custom matrix, || USE_RGB_TO_YCBCR */ if (enable) { /* CEA VICs other than #1 requre limited range RGB * output unless overridden by an AVI infoframe. * Apply a colorspace conversion to squash 0-255 down * to 16-235. The matrix here is: * * [ 0.8594 0 0 16] * [ 0 0.8594 0 16] * [ 0 0 0.8594 16] * [ 0 0 0 1] * Matrix is signed 2p13 fixed point, with signed 9p6 offsets */ HDMI_WRITE(HDMI_CSC_12_11, (0x0000 << 16) | 0x1b80); HDMI_WRITE(HDMI_CSC_14_13, (0x0400 << 16) | 0x0000); HDMI_WRITE(HDMI_CSC_22_21, (0x1b80 << 16) | 0x0000); HDMI_WRITE(HDMI_CSC_24_23, (0x0400 << 16) | 0x0000); HDMI_WRITE(HDMI_CSC_32_31, (0x0000 << 16) | 0x0000); HDMI_WRITE(HDMI_CSC_34_33, (0x0400 << 16) | 0x1b80); } else { /* Still use the matrix for full range, but make it unity. * Matrix is signed 2p13 fixed point, with signed 9p6 offsets */ HDMI_WRITE(HDMI_CSC_12_11, (0x0000 << 16) | 0x2000); HDMI_WRITE(HDMI_CSC_14_13, (0x0000 << 16) | 0x0000); HDMI_WRITE(HDMI_CSC_22_21, (0x2000 << 16) | 0x0000); HDMI_WRITE(HDMI_CSC_24_23, (0x0000 << 16) | 0x0000); HDMI_WRITE(HDMI_CSC_32_31, (0x0000 << 16) | 0x0000); HDMI_WRITE(HDMI_CSC_34_33, (0x0000 << 16) | 0x2000); } HDMI_WRITE(HDMI_CSC_CTL, csc_ctl); } static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi, struct drm_display_mode *mode) { bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, VC4_HDMI_VERTA_VSP) | VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, VC4_HDMI_VERTA_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL)); u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, VC4_HDMI_VERTB_VBP)); u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end - interlaced, VC4_HDMI_VERTB_VBP)); HDMI_WRITE(HDMI_HORZA, (vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) | (hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) | VC4_SET_FIELD(mode->hdisplay * pixel_rep, VC4_HDMI_HORZA_HAP)); HDMI_WRITE(HDMI_HORZB, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep, VC4_HDMI_HORZB_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep, VC4_HDMI_HORZB_HSP) | VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep, VC4_HDMI_HORZB_HFP)); HDMI_WRITE(HDMI_VERTA0, verta); HDMI_WRITE(HDMI_VERTA1, verta); HDMI_WRITE(HDMI_VERTB0, vertb_even); HDMI_WRITE(HDMI_VERTB1, vertb); } static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi, struct drm_display_mode *mode) { bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, VC5_HDMI_VERTA_VSP) | VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, VC5_HDMI_VERTA_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL)); u32 vertb = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, VC4_HDMI_VERTB_VBP)); u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end - interlaced, VC4_HDMI_VERTB_VBP)); HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, 0x354021); HDMI_WRITE(HDMI_HORZA, (vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) | (hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) | VC4_SET_FIELD(mode->hdisplay * pixel_rep, VC5_HDMI_HORZA_HAP) | VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep, VC5_HDMI_HORZA_HFP)); HDMI_WRITE(HDMI_HORZB, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep, VC5_HDMI_HORZB_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep, VC5_HDMI_HORZB_HSP)); HDMI_WRITE(HDMI_VERTA0, verta); HDMI_WRITE(HDMI_VERTA1, verta); HDMI_WRITE(HDMI_VERTB0, vertb_even); HDMI_WRITE(HDMI_VERTB1, vertb); HDMI_WRITE(HDMI_CLOCK_STOP, 0); } static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi) { u32 drift; int ret; drift = HDMI_READ(HDMI_FIFO_CTL); drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK; HDMI_WRITE(HDMI_FIFO_CTL, drift & ~VC4_HDMI_FIFO_CTL_RECENTER); HDMI_WRITE(HDMI_FIFO_CTL, drift | VC4_HDMI_FIFO_CTL_RECENTER); usleep_range(1000, 1100); HDMI_WRITE(HDMI_FIFO_CTL, drift & ~VC4_HDMI_FIFO_CTL_RECENTER); HDMI_WRITE(HDMI_FIFO_CTL, drift | VC4_HDMI_FIFO_CTL_RECENTER); ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) & VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1); WARN_ONCE(ret, "Timeout waiting for " "VC4_HDMI_FIFO_CTL_RECENTER_DONE"); } static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder) { struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); unsigned long pixel_rate, hsm_rate; int ret; ret = pm_runtime_get_sync(&vc4_hdmi->pdev->dev); if (ret < 0) { DRM_ERROR("Failed to retain power domain: %d\n", ret); return; } pixel_rate = mode->clock * 1000 * ((mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1); ret = clk_set_rate(vc4_hdmi->pixel_clock, pixel_rate); if (ret) { DRM_ERROR("Failed to set pixel clock rate: %d\n", ret); return; } ret = clk_prepare_enable(vc4_hdmi->pixel_clock); if (ret) { DRM_ERROR("Failed to turn on pixel clock: %d\n", ret); return; } /* * As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must * be faster than pixel clock, infinitesimally faster, tested in * simulation. Otherwise, exact value is unimportant for HDMI * operation." This conflicts with bcm2835's vc4 documentation, which * states HSM's clock has to be at least 108% of the pixel clock. * * Real life tests reveal that vc4's firmware statement holds up, and * users are able to use pixel clocks closer to HSM's, namely for * 1920x1200@60Hz. So it was decided to have leave a 1% margin between * both clocks. Which, for RPi0-3 implies a maximum pixel clock of * 162MHz. * * Additionally, the AXI clock needs to be at least 25% of * pixel clock, but HSM ends up being the limiting factor. */ hsm_rate = max_t(unsigned long, 120000000, (pixel_rate / 100) * 101); ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate); if (ret) { DRM_ERROR("Failed to set HSM clock rate: %d\n", ret); return; } ret = clk_prepare_enable(vc4_hdmi->hsm_clock); if (ret) { DRM_ERROR("Failed to turn on HSM clock: %d\n", ret); clk_disable_unprepare(vc4_hdmi->pixel_clock); return; } /* * FIXME: When the pixel freq is 594MHz (4k60), this needs to be setup * at 300MHz. */ ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, (hsm_rate > VC4_HSM_MID_CLOCK ? 150000000 : 75000000)); if (ret) { DRM_ERROR("Failed to set pixel bvb clock rate: %d\n", ret); clk_disable_unprepare(vc4_hdmi->hsm_clock); clk_disable_unprepare(vc4_hdmi->pixel_clock); return; } ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock); if (ret) { DRM_ERROR("Failed to turn on pixel bvb clock: %d\n", ret); clk_disable_unprepare(vc4_hdmi->hsm_clock); clk_disable_unprepare(vc4_hdmi->pixel_clock); return; } if (vc4_hdmi->variant->reset) vc4_hdmi->variant->reset(vc4_hdmi); if (vc4_hdmi->variant->phy_init) vc4_hdmi->variant->phy_init(vc4_hdmi, mode); HDMI_WRITE(HDMI_SCHEDULER_CONTROL, HDMI_READ(HDMI_SCHEDULER_CONTROL) | VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT | VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS); if (vc4_hdmi->variant->set_timings) vc4_hdmi->variant->set_timings(vc4_hdmi, mode); } static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder) { struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder); struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); if (vc4_encoder->hdmi_monitor && drm_default_rgb_quant_range(mode) == HDMI_QUANTIZATION_RANGE_LIMITED) { if (vc4_hdmi->variant->csc_setup) vc4_hdmi->variant->csc_setup(vc4_hdmi, true); vc4_encoder->limited_rgb_range = true; } else { if (vc4_hdmi->variant->csc_setup) vc4_hdmi->variant->csc_setup(vc4_hdmi, false); vc4_encoder->limited_rgb_range = false; } HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N); } static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder) { struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder); bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; int ret; HDMI_WRITE(HDMI_VID_CTL, VC4_HD_VID_CTL_ENABLE | VC4_HD_VID_CTL_UNDERFLOW_ENABLE | VC4_HD_VID_CTL_FRAME_COUNTER_RESET | (vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) | (hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW)); HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX); if (vc4_encoder->hdmi_monitor) { HDMI_WRITE(HDMI_SCHEDULER_CONTROL, HDMI_READ(HDMI_SCHEDULER_CONTROL) | VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000); WARN_ONCE(ret, "Timeout waiting for " "VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); } else { HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~(VC4_HDMI_RAM_PACKET_ENABLE)); HDMI_WRITE(HDMI_SCHEDULER_CONTROL, HDMI_READ(HDMI_SCHEDULER_CONTROL) & ~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000); WARN_ONCE(ret, "Timeout waiting for " "!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); } if (vc4_encoder->hdmi_monitor) { WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE)); HDMI_WRITE(HDMI_SCHEDULER_CONTROL, HDMI_READ(HDMI_SCHEDULER_CONTROL) | VC4_HDMI_SCHEDULER_CONTROL_VERT_ALWAYS_KEEPOUT); HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, VC4_HDMI_RAM_PACKET_ENABLE); vc4_hdmi_set_infoframes(encoder); } vc4_hdmi_recenter_fifo(vc4_hdmi); } static void vc4_hdmi_encoder_enable(struct drm_encoder *encoder) { } static enum drm_mode_status vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder, const struct drm_display_mode *mode) { struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder); if ((mode->clock * 1000) > vc4_hdmi->variant->max_pixel_clock) return MODE_CLOCK_HIGH; return MODE_OK; } static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = { .mode_valid = vc4_hdmi_encoder_mode_valid, .disable = vc4_hdmi_encoder_disable, .enable = vc4_hdmi_encoder_enable, }; static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask) { int i; u32 channel_map = 0; for (i = 0; i < 8; i++) { if (channel_mask & BIT(i)) channel_map |= i << (3 * i); } return channel_map; } static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask) { int i; u32 channel_map = 0; for (i = 0; i < 8; i++) { if (channel_mask & BIT(i)) channel_map |= i << (4 * i); } return channel_map; } /* HDMI audio codec callbacks */ static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi) { u32 hsm_clock = clk_get_rate(vc4_hdmi->audio_clock); unsigned long n, m; rational_best_approximation(hsm_clock, vc4_hdmi->audio.samplerate, VC4_HD_MAI_SMP_N_MASK >> VC4_HD_MAI_SMP_N_SHIFT, (VC4_HD_MAI_SMP_M_MASK >> VC4_HD_MAI_SMP_M_SHIFT) + 1, &n, &m); HDMI_WRITE(HDMI_MAI_SMP, VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) | VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M)); } static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi) { struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base; struct drm_crtc *crtc = encoder->crtc; const struct drm_display_mode *mode = &crtc->state->adjusted_mode; u32 samplerate = vc4_hdmi->audio.samplerate; u32 n, cts; u64 tmp; n = 128 * samplerate / 1000; tmp = (u64)(mode->clock * 1000) * n; do_div(tmp, 128 * samplerate); cts = tmp; HDMI_WRITE(HDMI_CRP_CFG, VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN | VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N)); /* * We could get slightly more accurate clocks in some cases by * providing a CTS_1 value. The two CTS values are alternated * between based on the period fields */ HDMI_WRITE(HDMI_CTS_0, cts); HDMI_WRITE(HDMI_CTS_1, cts); } static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai) { struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai); return snd_soc_card_get_drvdata(card); } static int vc4_hdmi_audio_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai); struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base; struct drm_connector *connector = &vc4_hdmi->connector; int ret; if (vc4_hdmi->audio.substream && vc4_hdmi->audio.substream != substream) return -EINVAL; vc4_hdmi->audio.substream = substream; /* * If the HDMI encoder hasn't probed, or the encoder is * currently in DVI mode, treat the codec dai as missing. */ if (!encoder->crtc || !(HDMI_READ(HDMI_RAM_PACKET_CONFIG) & VC4_HDMI_RAM_PACKET_ENABLE)) return -ENODEV; ret = snd_pcm_hw_constraint_eld(substream->runtime, connector->eld); if (ret) return ret; return 0; } static int vc4_hdmi_audio_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { return 0; } static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi) { struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base; struct device *dev = &vc4_hdmi->pdev->dev; int ret; vc4_hdmi->audio.streaming = false; ret = vc4_hdmi_stop_packet(encoder, HDMI_INFOFRAME_TYPE_AUDIO); if (ret) dev_err(dev, "Failed to stop audio infoframe: %d\n", ret); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH); } static void vc4_hdmi_audio_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai); if (substream != vc4_hdmi->audio.substream) return; vc4_hdmi_audio_reset(vc4_hdmi); vc4_hdmi->audio.substream = NULL; } /* HDMI audio codec callbacks */ static int vc4_hdmi_audio_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai); struct drm_encoder *encoder = &vc4_hdmi->encoder.base.base; struct device *dev = &vc4_hdmi->pdev->dev; u32 audio_packet_config, channel_mask; u32 channel_map; if (substream != vc4_hdmi->audio.substream) return -EINVAL; dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__, params_rate(params), params_width(params), params_channels(params)); vc4_hdmi->audio.channels = params_channels(params); vc4_hdmi->audio.samplerate = params_rate(params); HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET | VC4_HD_MAI_CTL_FLUSH | VC4_HD_MAI_CTL_DLATE | VC4_HD_MAI_CTL_ERRORE | VC4_HD_MAI_CTL_ERRORF); vc4_hdmi_audio_set_mai_clock(vc4_hdmi); /* The B frame identifier should match the value used by alsa-lib (8) */ audio_packet_config = VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT | VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS | VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER); channel_mask = GENMASK(vc4_hdmi->audio.channels - 1, 0); audio_packet_config |= VC4_SET_FIELD(channel_mask, VC4_HDMI_AUDIO_PACKET_CEA_MASK); /* Set the MAI threshold. This logic mimics the firmware's. */ if (vc4_hdmi->audio.samplerate > 96000) { HDMI_WRITE(HDMI_MAI_THR, VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQHIGH) | VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQLOW)); } else if (vc4_hdmi->audio.samplerate > 48000) { HDMI_WRITE(HDMI_MAI_THR, VC4_SET_FIELD(0x14, VC4_HD_MAI_THR_DREQHIGH) | VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQLOW)); } else { HDMI_WRITE(HDMI_MAI_THR, VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICHIGH) | VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICLOW) | VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQHIGH) | VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQLOW)); } HDMI_WRITE(HDMI_MAI_CONFIG, VC4_HDMI_MAI_CONFIG_BIT_REVERSE | VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK)); channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask); HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map); HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config); vc4_hdmi_set_n_cts(vc4_hdmi); vc4_hdmi_set_audio_infoframe(encoder); return 0; } static int vc4_hdmi_audio_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai); switch (cmd) { case SNDRV_PCM_TRIGGER_START: vc4_hdmi->audio.streaming = true; if (vc4_hdmi->variant->phy_rng_enable) vc4_hdmi->variant->phy_rng_enable(vc4_hdmi); HDMI_WRITE(HDMI_MAI_CTL, VC4_SET_FIELD(vc4_hdmi->audio.channels, VC4_HD_MAI_CTL_CHNUM) | VC4_HD_MAI_CTL_ENABLE); break; case SNDRV_PCM_TRIGGER_STOP: HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_DLATE | VC4_HD_MAI_CTL_ERRORE | VC4_HD_MAI_CTL_ERRORF); if (vc4_hdmi->variant->phy_rng_disable) vc4_hdmi->variant->phy_rng_disable(vc4_hdmi); vc4_hdmi->audio.streaming = false; break; default: break; } return 0; } static inline struct vc4_hdmi * snd_component_to_hdmi(struct snd_soc_component *component) { struct snd_soc_card *card = snd_soc_component_get_drvdata(component); return snd_soc_card_get_drvdata(card); } static int vc4_hdmi_audio_eld_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct vc4_hdmi *vc4_hdmi = snd_component_to_hdmi(component); struct drm_connector *connector = &vc4_hdmi->connector; uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = sizeof(connector->eld); return 0; } static int vc4_hdmi_audio_eld_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct vc4_hdmi *vc4_hdmi = snd_component_to_hdmi(component); struct drm_connector *connector = &vc4_hdmi->connector; memcpy(ucontrol->value.bytes.data, connector->eld, sizeof(connector->eld)); return 0; } static const struct snd_kcontrol_new vc4_hdmi_audio_controls[] = { { .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "ELD", .info = vc4_hdmi_audio_eld_ctl_info, .get = vc4_hdmi_audio_eld_ctl_get, }, }; static const struct snd_soc_dapm_widget vc4_hdmi_audio_widgets[] = { SND_SOC_DAPM_OUTPUT("TX"), }; static const struct snd_soc_dapm_route vc4_hdmi_audio_routes[] = { { "TX", NULL, "Playback" }, }; static const struct snd_soc_component_driver vc4_hdmi_audio_component_drv = { .controls = vc4_hdmi_audio_controls, .num_controls = ARRAY_SIZE(vc4_hdmi_audio_controls), .dapm_widgets = vc4_hdmi_audio_widgets, .num_dapm_widgets = ARRAY_SIZE(vc4_hdmi_audio_widgets), .dapm_routes = vc4_hdmi_audio_routes, .num_dapm_routes = ARRAY_SIZE(vc4_hdmi_audio_routes), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static const struct snd_soc_dai_ops vc4_hdmi_audio_dai_ops = { .startup = vc4_hdmi_audio_startup, .shutdown = vc4_hdmi_audio_shutdown, .hw_params = vc4_hdmi_audio_hw_params, .set_fmt = vc4_hdmi_audio_set_fmt, .trigger = vc4_hdmi_audio_trigger, }; static struct snd_soc_dai_driver vc4_hdmi_audio_codec_dai_drv = { .name = "vc4-hdmi-hifi", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 8, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, }, }; static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = { .name = "vc4-hdmi-cpu-dai-component", }; static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai) { struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai); snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL); return 0; } static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = { .name = "vc4-hdmi-cpu-dai", .probe = vc4_hdmi_audio_cpu_dai_probe, .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, }, .ops = &vc4_hdmi_audio_dai_ops, }; static const struct snd_dmaengine_pcm_config pcm_conf = { .chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx", .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, }; static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi) { const struct vc4_hdmi_register *mai_data = &vc4_hdmi->variant->registers[HDMI_MAI_DATA]; struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link; struct snd_soc_card *card = &vc4_hdmi->audio.card; struct device *dev = &vc4_hdmi->pdev->dev; const __be32 *addr; int index; int ret; if (!of_find_property(dev->of_node, "dmas", NULL)) { dev_warn(dev, "'dmas' DT property is missing, no HDMI audio\n"); return 0; } if (mai_data->reg != VC4_HD) { WARN_ONCE(true, "MAI isn't in the HD block\n"); return -EINVAL; } /* * Get the physical address of VC4_HD_MAI_DATA. We need to retrieve * the bus address specified in the DT, because the physical address * (the one returned by platform_get_resource()) is not appropriate * for DMA transfers. * This VC/MMU should probably be exposed to avoid this kind of hacks. */ index = of_property_match_string(dev->of_node, "reg-names", "hd"); /* Before BCM2711, we don't have a named register range */ if (index < 0) index = 1; addr = of_get_address(dev->of_node, index, NULL, NULL); vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset; vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; vc4_hdmi->audio.dma_data.maxburst = 2; ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0); if (ret) { dev_err(dev, "Could not register PCM component: %d\n", ret); return ret; } ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp, &vc4_hdmi_audio_cpu_dai_drv, 1); if (ret) { dev_err(dev, "Could not register CPU DAI: %d\n", ret); return ret; } /* register component and codec dai */ ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_component_drv, &vc4_hdmi_audio_codec_dai_drv, 1); if (ret) { dev_err(dev, "Could not register component: %d\n", ret); return ret; } dai_link->cpus = &vc4_hdmi->audio.cpu; dai_link->codecs = &vc4_hdmi->audio.codec; dai_link->platforms = &vc4_hdmi->audio.platform; dai_link->num_cpus = 1; dai_link->num_codecs = 1; dai_link->num_platforms = 1; dai_link->name = "MAI"; dai_link->stream_name = "MAI PCM"; dai_link->codecs->dai_name = vc4_hdmi_audio_codec_dai_drv.name; dai_link->cpus->dai_name = dev_name(dev); dai_link->codecs->name = dev_name(dev); dai_link->platforms->name = dev_name(dev); card->dai_link = dai_link; card->num_links = 1; card->name = vc4_hdmi->variant->card_name; card->dev = dev; card->owner = THIS_MODULE; /* * Be careful, snd_soc_register_card() calls dev_set_drvdata() and * stores a pointer to the snd card object in dev->driver_data. This * means we cannot use it for something else. The hdmi back-pointer is * now stored in card->drvdata and should be retrieved with * snd_soc_card_get_drvdata() if needed. */ snd_soc_card_set_drvdata(card, vc4_hdmi); ret = devm_snd_soc_register_card(dev, card); if (ret) dev_err(dev, "Could not register sound card: %d\n", ret); return ret; } #ifdef CONFIG_DRM_VC4_HDMI_CEC static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; if (vc4_hdmi->cec_irq_was_rx) { if (vc4_hdmi->cec_rx_msg.len) cec_received_msg(vc4_hdmi->cec_adap, &vc4_hdmi->cec_rx_msg); } else if (vc4_hdmi->cec_tx_ok) { cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); } else { /* * This CEC implementation makes 1 retry, so if we * get a NACK, then that means it made 2 attempts. */ cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK, 0, 2, 0, 0); } return IRQ_HANDLED; } static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1) { struct cec_msg *msg = &vc4_hdmi->cec_rx_msg; unsigned int i; msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >> VC4_HDMI_CEC_REC_WRD_CNT_SHIFT); for (i = 0; i < msg->len; i += 4) { u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + i); msg->msg[i] = val & 0xff; msg->msg[i + 1] = (val >> 8) & 0xff; msg->msg[i + 2] = (val >> 16) & 0xff; msg->msg[i + 3] = (val >> 24) & 0xff; } } static irqreturn_t vc4_cec_irq_handler(int irq, void *priv) { struct vc4_hdmi *vc4_hdmi = priv; u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS); u32 cntrl1, cntrl5; if (!(stat & VC4_HDMI_CPU_CEC)) return IRQ_NONE; vc4_hdmi->cec_rx_msg.len = 0; cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1); cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5); vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT; if (vc4_hdmi->cec_irq_was_rx) { vc4_cec_read_msg(vc4_hdmi, cntrl1); cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; } else { vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD; cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; } HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1); HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC); return IRQ_WAKE_THREAD; } static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable) { struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); /* clock period in microseconds */ const u32 usecs = 1000000 / CEC_CLOCK_FREQ; u32 val = HDMI_READ(HDMI_CEC_CNTRL_5); val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET | VC4_HDMI_CEC_CNT_TO_4700_US_MASK | VC4_HDMI_CEC_CNT_TO_4500_US_MASK); val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) | ((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT); if (enable) { HDMI_WRITE(HDMI_CEC_CNTRL_5, val | VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); HDMI_WRITE(HDMI_CEC_CNTRL_5, val); HDMI_WRITE(HDMI_CEC_CNTRL_2, ((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) | ((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) | ((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) | ((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) | ((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT)); HDMI_WRITE(HDMI_CEC_CNTRL_3, ((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) | ((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) | ((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) | ((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT)); HDMI_WRITE(HDMI_CEC_CNTRL_4, ((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) | ((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) | ((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) | ((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT)); HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC); } else { HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC); HDMI_WRITE(HDMI_CEC_CNTRL_5, val | VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); } return 0; } static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr) { struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); HDMI_WRITE(HDMI_CEC_CNTRL_1, (HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) | (log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT); return 0; } static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg) { struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap); u32 val; unsigned int i; for (i = 0; i < msg->len; i += 4) HDMI_WRITE(HDMI_CEC_TX_DATA_1 + i, (msg->msg[i]) | (msg->msg[i + 1] << 8) | (msg->msg[i + 2] << 16) | (msg->msg[i + 3] << 24)); val = HDMI_READ(HDMI_CEC_CNTRL_1); val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; HDMI_WRITE(HDMI_CEC_CNTRL_1, val); val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK; val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT; val |= VC4_HDMI_CEC_START_XMIT_BEGIN; HDMI_WRITE(HDMI_CEC_CNTRL_1, val); return 0; } static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = { .adap_enable = vc4_hdmi_cec_adap_enable, .adap_log_addr = vc4_hdmi_cec_adap_log_addr, .adap_transmit = vc4_hdmi_cec_adap_transmit, }; static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi) { struct cec_connector_info conn_info; struct platform_device *pdev = vc4_hdmi->pdev; u32 value; int ret; if (!vc4_hdmi->variant->cec_available) return 0; vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops, vc4_hdmi, "vc4", CEC_CAP_DEFAULTS | CEC_CAP_CONNECTOR_INFO, 1); ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap); if (ret < 0) return ret; cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector); cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info); HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff); value = HDMI_READ(HDMI_CEC_CNTRL_1); value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK; /* * Set the logical address to Unregistered and set the clock * divider: the hsm_clock rate and this divider setting will * give a 40 kHz CEC clock. */ value |= VC4_HDMI_CEC_ADDR_MASK | (4091 << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT); HDMI_WRITE(HDMI_CEC_CNTRL_1, value); ret = devm_request_threaded_irq(&pdev->dev, platform_get_irq(pdev, 0), vc4_cec_irq_handler, vc4_cec_irq_handler_thread, 0, "vc4 hdmi cec", vc4_hdmi); if (ret) goto err_delete_cec_adap; ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev); if (ret < 0) goto err_delete_cec_adap; return 0; err_delete_cec_adap: cec_delete_adapter(vc4_hdmi->cec_adap); return ret; } static void vc4_hdmi_cec_exit(struct vc4_hdmi *vc4_hdmi) { cec_unregister_adapter(vc4_hdmi->cec_adap); } #else static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi) { return 0; } static void vc4_hdmi_cec_exit(struct vc4_hdmi *vc4_hdmi) {}; #endif static int vc4_hdmi_build_regset(struct vc4_hdmi *vc4_hdmi, struct debugfs_regset32 *regset, enum vc4_hdmi_regs reg) { const struct vc4_hdmi_variant *variant = vc4_hdmi->variant; struct debugfs_reg32 *regs, *new_regs; unsigned int count = 0; unsigned int i; regs = kcalloc(variant->num_registers, sizeof(*regs), GFP_KERNEL); if (!regs) return -ENOMEM; for (i = 0; i < variant->num_registers; i++) { const struct vc4_hdmi_register *field = &variant->registers[i]; if (field->reg != reg) continue; regs[count].name = field->name; regs[count].offset = field->offset; count++; } new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL); if (!new_regs) return -ENOMEM; regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg); regset->regs = new_regs; regset->nregs = count; return 0; } static int vc4_hdmi_init_resources(struct vc4_hdmi *vc4_hdmi) { struct platform_device *pdev = vc4_hdmi->pdev; struct device *dev = &pdev->dev; int ret; vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(vc4_hdmi->hdmicore_regs)) return PTR_ERR(vc4_hdmi->hdmicore_regs); vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1); if (IS_ERR(vc4_hdmi->hd_regs)) return PTR_ERR(vc4_hdmi->hd_regs); ret = vc4_hdmi_build_regset(vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD); if (ret) return ret; ret = vc4_hdmi_build_regset(vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI); if (ret) return ret; vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel"); if (IS_ERR(vc4_hdmi->pixel_clock)) { ret = PTR_ERR(vc4_hdmi->pixel_clock); if (ret != -EPROBE_DEFER) DRM_ERROR("Failed to get pixel clock\n"); return ret; } vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); if (IS_ERR(vc4_hdmi->hsm_clock)) { DRM_ERROR("Failed to get HDMI state machine clock\n"); return PTR_ERR(vc4_hdmi->hsm_clock); } vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock; return 0; } static int vc5_hdmi_init_resources(struct vc4_hdmi *vc4_hdmi) { struct platform_device *pdev = vc4_hdmi->pdev; struct device *dev = &pdev->dev; struct resource *res; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi"); if (!res) return -ENODEV; vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->hdmicore_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd"); if (!res) return -ENODEV; vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->hd_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec"); if (!res) return -ENODEV; vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->cec_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc"); if (!res) return -ENODEV; vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->csc_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp"); if (!res) return -ENODEV; vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->dvp_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy"); if (!res) return -ENODEV; vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->phy_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet"); if (!res) return -ENODEV; vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->ram_regs) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm"); if (!res) return -ENODEV; vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!vc4_hdmi->rm_regs) return -ENOMEM; vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); if (IS_ERR(vc4_hdmi->hsm_clock)) { DRM_ERROR("Failed to get HDMI state machine clock\n"); return PTR_ERR(vc4_hdmi->hsm_clock); } vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb"); if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) { DRM_ERROR("Failed to get pixel bvb clock\n"); return PTR_ERR(vc4_hdmi->pixel_bvb_clock); } vc4_hdmi->audio_clock = devm_clk_get(dev, "audio"); if (IS_ERR(vc4_hdmi->audio_clock)) { DRM_ERROR("Failed to get audio clock\n"); return PTR_ERR(vc4_hdmi->audio_clock); } vc4_hdmi->reset = devm_reset_control_get(dev, NULL); if (IS_ERR(vc4_hdmi->reset)) { DRM_ERROR("Failed to get HDMI reset line\n"); return PTR_ERR(vc4_hdmi->reset); } return 0; } static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data) { const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev); struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_hdmi *vc4_hdmi; struct drm_encoder *encoder; struct device_node *ddc_node; u32 value; int ret; vc4_hdmi = devm_kzalloc(dev, sizeof(*vc4_hdmi), GFP_KERNEL); if (!vc4_hdmi) return -ENOMEM; dev_set_drvdata(dev, vc4_hdmi); encoder = &vc4_hdmi->encoder.base.base; vc4_hdmi->encoder.base.type = variant->encoder_type; vc4_hdmi->encoder.base.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure; vc4_hdmi->encoder.base.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable; vc4_hdmi->encoder.base.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable; vc4_hdmi->encoder.base.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable; vc4_hdmi->encoder.base.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown; vc4_hdmi->pdev = pdev; vc4_hdmi->variant = variant; ret = variant->init_resources(vc4_hdmi); if (ret) return ret; ddc_node = of_parse_phandle(dev->of_node, "ddc", 0); if (!ddc_node) { DRM_ERROR("Failed to find ddc node in device tree\n"); return -ENODEV; } vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node); of_node_put(ddc_node); if (!vc4_hdmi->ddc) { DRM_DEBUG("Failed to get ddc i2c adapter by node\n"); return -EPROBE_DEFER; } /* Only use the GPIO HPD pin if present in the DT, otherwise * we'll use the HDMI core's register. */ if (of_find_property(dev->of_node, "hpd-gpios", &value)) { enum of_gpio_flags hpd_gpio_flags; vc4_hdmi->hpd_gpio = of_get_named_gpio_flags(dev->of_node, "hpd-gpios", 0, &hpd_gpio_flags); if (vc4_hdmi->hpd_gpio < 0) { ret = vc4_hdmi->hpd_gpio; goto err_unprepare_hsm; } vc4_hdmi->hpd_active_low = hpd_gpio_flags & OF_GPIO_ACTIVE_LOW; } pm_runtime_enable(dev); drm_simple_encoder_init(drm, encoder, DRM_MODE_ENCODER_TMDS); drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs); ret = vc4_hdmi_connector_init(drm, vc4_hdmi); if (ret) goto err_destroy_encoder; ret = vc4_hdmi_cec_init(vc4_hdmi); if (ret) goto err_destroy_conn; ret = vc4_hdmi_audio_init(vc4_hdmi); if (ret) goto err_free_cec; vc4_debugfs_add_file(drm, variant->debugfs_name, vc4_hdmi_debugfs_regs, vc4_hdmi); return 0; err_free_cec: vc4_hdmi_cec_exit(vc4_hdmi); err_destroy_conn: vc4_hdmi_connector_destroy(&vc4_hdmi->connector); err_destroy_encoder: drm_encoder_cleanup(encoder); err_unprepare_hsm: pm_runtime_disable(dev); put_device(&vc4_hdmi->ddc->dev); return ret; } static void vc4_hdmi_unbind(struct device *dev, struct device *master, void *data) { struct vc4_hdmi *vc4_hdmi; /* * ASoC makes it a bit hard to retrieve a pointer to the * vc4_hdmi structure. Registering the card will overwrite our * device drvdata with a pointer to the snd_soc_card structure, * which can then be used to retrieve whatever drvdata we want * to associate. * * However, that doesn't fly in the case where we wouldn't * register an ASoC card (because of an old DT that is missing * the dmas properties for example), then the card isn't * registered and the device drvdata wouldn't be set. * * We can deal with both cases by making sure a snd_soc_card * pointer and a vc4_hdmi structure are pointing to the same * memory address, so we can treat them indistinctly without any * issue. */ BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0); BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0); vc4_hdmi = dev_get_drvdata(dev); kfree(vc4_hdmi->hdmi_regset.regs); kfree(vc4_hdmi->hd_regset.regs); vc4_hdmi_cec_exit(vc4_hdmi); vc4_hdmi_connector_destroy(&vc4_hdmi->connector); drm_encoder_cleanup(&vc4_hdmi->encoder.base.base); pm_runtime_disable(dev); put_device(&vc4_hdmi->ddc->dev); } static const struct component_ops vc4_hdmi_ops = { .bind = vc4_hdmi_bind, .unbind = vc4_hdmi_unbind, }; static int vc4_hdmi_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_hdmi_ops); } static int vc4_hdmi_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_hdmi_ops); return 0; } static const struct vc4_hdmi_variant bcm2835_variant = { .encoder_type = VC4_ENCODER_TYPE_HDMI0, .debugfs_name = "hdmi_regs", .card_name = "vc4-hdmi", .max_pixel_clock = 162000000, .cec_available = true, .registers = vc4_hdmi_fields, .num_registers = ARRAY_SIZE(vc4_hdmi_fields), .init_resources = vc4_hdmi_init_resources, .csc_setup = vc4_hdmi_csc_setup, .reset = vc4_hdmi_reset, .set_timings = vc4_hdmi_set_timings, .phy_init = vc4_hdmi_phy_init, .phy_disable = vc4_hdmi_phy_disable, .phy_rng_enable = vc4_hdmi_phy_rng_enable, .phy_rng_disable = vc4_hdmi_phy_rng_disable, .channel_map = vc4_hdmi_channel_map, }; static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = { .encoder_type = VC4_ENCODER_TYPE_HDMI0, .debugfs_name = "hdmi0_regs", .card_name = "vc4-hdmi-0", .max_pixel_clock = 297000000, .registers = vc5_hdmi_hdmi0_fields, .num_registers = ARRAY_SIZE(vc5_hdmi_hdmi0_fields), .phy_lane_mapping = { PHY_LANE_0, PHY_LANE_1, PHY_LANE_2, PHY_LANE_CK, }, .init_resources = vc5_hdmi_init_resources, .csc_setup = vc5_hdmi_csc_setup, .reset = vc5_hdmi_reset, .set_timings = vc5_hdmi_set_timings, .phy_init = vc5_hdmi_phy_init, .phy_disable = vc5_hdmi_phy_disable, .phy_rng_enable = vc5_hdmi_phy_rng_enable, .phy_rng_disable = vc5_hdmi_phy_rng_disable, .channel_map = vc5_hdmi_channel_map, }; static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = { .encoder_type = VC4_ENCODER_TYPE_HDMI1, .debugfs_name = "hdmi1_regs", .card_name = "vc4-hdmi-1", .max_pixel_clock = 297000000, .registers = vc5_hdmi_hdmi1_fields, .num_registers = ARRAY_SIZE(vc5_hdmi_hdmi1_fields), .phy_lane_mapping = { PHY_LANE_1, PHY_LANE_0, PHY_LANE_CK, PHY_LANE_2, }, .init_resources = vc5_hdmi_init_resources, .csc_setup = vc5_hdmi_csc_setup, .reset = vc5_hdmi_reset, .set_timings = vc5_hdmi_set_timings, .phy_init = vc5_hdmi_phy_init, .phy_disable = vc5_hdmi_phy_disable, .phy_rng_enable = vc5_hdmi_phy_rng_enable, .phy_rng_disable = vc5_hdmi_phy_rng_disable, .channel_map = vc5_hdmi_channel_map, }; static const struct of_device_id vc4_hdmi_dt_match[] = { { .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant }, { .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant }, { .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant }, {} }; struct platform_driver vc4_hdmi_driver = { .probe = vc4_hdmi_dev_probe, .remove = vc4_hdmi_dev_remove, .driver = { .name = "vc4_hdmi", .of_match_table = vc4_hdmi_dt_match, }, };