/* * Copyright (c) 2010 Sascha Hauer <s.hauer@pengutronix.de> * Copyright (C) 2005-2009 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include <linux/module.h> #include <linux/export.h> #include <linux/types.h> #include <linux/reset.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/list.h> #include <linux/irq.h> #include <linux/irqchip/chained_irq.h> #include <linux/irqdomain.h> #include <linux/of_device.h> #include <linux/of_graph.h> #include <drm/drm_fourcc.h> #include <video/imx-ipu-v3.h> #include "ipu-prv.h" static inline u32 ipu_cm_read(struct ipu_soc *ipu, unsigned offset) { return readl(ipu->cm_reg + offset); } static inline void ipu_cm_write(struct ipu_soc *ipu, u32 value, unsigned offset) { writel(value, ipu->cm_reg + offset); } int ipu_get_num(struct ipu_soc *ipu) { return ipu->id; } EXPORT_SYMBOL_GPL(ipu_get_num); void ipu_srm_dp_update(struct ipu_soc *ipu, bool sync) { u32 val; val = ipu_cm_read(ipu, IPU_SRM_PRI2); val &= ~DP_S_SRM_MODE_MASK; val |= sync ? DP_S_SRM_MODE_NEXT_FRAME : DP_S_SRM_MODE_NOW; ipu_cm_write(ipu, val, IPU_SRM_PRI2); } EXPORT_SYMBOL_GPL(ipu_srm_dp_update); enum ipu_color_space ipu_drm_fourcc_to_colorspace(u32 drm_fourcc) { switch (drm_fourcc) { case DRM_FORMAT_ARGB1555: case DRM_FORMAT_ABGR1555: case DRM_FORMAT_RGBA5551: case DRM_FORMAT_BGRA5551: case DRM_FORMAT_RGB565: case DRM_FORMAT_BGR565: case DRM_FORMAT_RGB888: case DRM_FORMAT_BGR888: case DRM_FORMAT_ARGB4444: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_RGBX8888: case DRM_FORMAT_BGRX8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_RGBA8888: case DRM_FORMAT_BGRA8888: case DRM_FORMAT_RGB565_A8: case DRM_FORMAT_BGR565_A8: case DRM_FORMAT_RGB888_A8: case DRM_FORMAT_BGR888_A8: case DRM_FORMAT_RGBX8888_A8: case DRM_FORMAT_BGRX8888_A8: return IPUV3_COLORSPACE_RGB; case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: case DRM_FORMAT_YUV420: case DRM_FORMAT_YVU420: case DRM_FORMAT_YUV422: case DRM_FORMAT_YVU422: case DRM_FORMAT_YUV444: case DRM_FORMAT_YVU444: case DRM_FORMAT_NV12: case DRM_FORMAT_NV21: case DRM_FORMAT_NV16: case DRM_FORMAT_NV61: return IPUV3_COLORSPACE_YUV; default: return IPUV3_COLORSPACE_UNKNOWN; } } EXPORT_SYMBOL_GPL(ipu_drm_fourcc_to_colorspace); enum ipu_color_space ipu_pixelformat_to_colorspace(u32 pixelformat) { switch (pixelformat) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: case V4L2_PIX_FMT_YUV422P: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_NV21: case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV61: return IPUV3_COLORSPACE_YUV; case V4L2_PIX_FMT_XRGB32: case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_BGR32: case V4L2_PIX_FMT_RGB24: case V4L2_PIX_FMT_BGR24: case V4L2_PIX_FMT_RGB565: return IPUV3_COLORSPACE_RGB; default: return IPUV3_COLORSPACE_UNKNOWN; } } EXPORT_SYMBOL_GPL(ipu_pixelformat_to_colorspace); bool ipu_pixelformat_is_planar(u32 pixelformat) { switch (pixelformat) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: case V4L2_PIX_FMT_YUV422P: case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_NV21: case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV61: return true; } return false; } EXPORT_SYMBOL_GPL(ipu_pixelformat_is_planar); enum ipu_color_space ipu_mbus_code_to_colorspace(u32 mbus_code) { switch (mbus_code & 0xf000) { case 0x1000: return IPUV3_COLORSPACE_RGB; case 0x2000: return IPUV3_COLORSPACE_YUV; default: return IPUV3_COLORSPACE_UNKNOWN; } } EXPORT_SYMBOL_GPL(ipu_mbus_code_to_colorspace); int ipu_stride_to_bytes(u32 pixel_stride, u32 pixelformat) { switch (pixelformat) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: case V4L2_PIX_FMT_YUV422P: case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_NV21: case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV61: /* * for the planar YUV formats, the stride passed to * cpmem must be the stride in bytes of the Y plane. * And all the planar YUV formats have an 8-bit * Y component. */ return (8 * pixel_stride) >> 3; case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_UYVY: return (16 * pixel_stride) >> 3; case V4L2_PIX_FMT_BGR24: case V4L2_PIX_FMT_RGB24: return (24 * pixel_stride) >> 3; case V4L2_PIX_FMT_BGR32: case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_XRGB32: return (32 * pixel_stride) >> 3; default: break; } return -EINVAL; } EXPORT_SYMBOL_GPL(ipu_stride_to_bytes); int ipu_degrees_to_rot_mode(enum ipu_rotate_mode *mode, int degrees, bool hflip, bool vflip) { u32 r90, vf, hf; switch (degrees) { case 0: vf = hf = r90 = 0; break; case 90: vf = hf = 0; r90 = 1; break; case 180: vf = hf = 1; r90 = 0; break; case 270: vf = hf = r90 = 1; break; default: return -EINVAL; } hf ^= (u32)hflip; vf ^= (u32)vflip; *mode = (enum ipu_rotate_mode)((r90 << 2) | (hf << 1) | vf); return 0; } EXPORT_SYMBOL_GPL(ipu_degrees_to_rot_mode); int ipu_rot_mode_to_degrees(int *degrees, enum ipu_rotate_mode mode, bool hflip, bool vflip) { u32 r90, vf, hf; r90 = ((u32)mode >> 2) & 0x1; hf = ((u32)mode >> 1) & 0x1; vf = ((u32)mode >> 0) & 0x1; hf ^= (u32)hflip; vf ^= (u32)vflip; switch ((enum ipu_rotate_mode)((r90 << 2) | (hf << 1) | vf)) { case IPU_ROTATE_NONE: *degrees = 0; break; case IPU_ROTATE_90_RIGHT: *degrees = 90; break; case IPU_ROTATE_180: *degrees = 180; break; case IPU_ROTATE_90_LEFT: *degrees = 270; break; default: return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(ipu_rot_mode_to_degrees); struct ipuv3_channel *ipu_idmac_get(struct ipu_soc *ipu, unsigned num) { struct ipuv3_channel *channel; dev_dbg(ipu->dev, "%s %d\n", __func__, num); if (num > 63) return ERR_PTR(-ENODEV); mutex_lock(&ipu->channel_lock); list_for_each_entry(channel, &ipu->channels, list) { if (channel->num == num) { channel = ERR_PTR(-EBUSY); goto out; } } channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) { channel = ERR_PTR(-ENOMEM); goto out; } channel->num = num; channel->ipu = ipu; list_add(&channel->list, &ipu->channels); out: mutex_unlock(&ipu->channel_lock); return channel; } EXPORT_SYMBOL_GPL(ipu_idmac_get); void ipu_idmac_put(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; dev_dbg(ipu->dev, "%s %d\n", __func__, channel->num); mutex_lock(&ipu->channel_lock); list_del(&channel->list); kfree(channel); mutex_unlock(&ipu->channel_lock); } EXPORT_SYMBOL_GPL(ipu_idmac_put); #define idma_mask(ch) (1 << ((ch) & 0x1f)) /* * This is an undocumented feature, a write one to a channel bit in * IPU_CHA_CUR_BUF and IPU_CHA_TRIPLE_CUR_BUF will reset the channel's * internal current buffer pointer so that transfers start from buffer * 0 on the next channel enable (that's the theory anyway, the imx6 TRM * only says these are read-only registers). This operation is required * for channel linking to work correctly, for instance video capture * pipelines that carry out image rotations will fail after the first * streaming unless this function is called for each channel before * re-enabling the channels. */ static void __ipu_idmac_reset_current_buffer(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; unsigned int chno = channel->num; ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_CUR_BUF(chno)); } void ipu_idmac_set_double_buffer(struct ipuv3_channel *channel, bool doublebuffer) { struct ipu_soc *ipu = channel->ipu; unsigned long flags; u32 reg; spin_lock_irqsave(&ipu->lock, flags); reg = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(channel->num)); if (doublebuffer) reg |= idma_mask(channel->num); else reg &= ~idma_mask(channel->num); ipu_cm_write(ipu, reg, IPU_CHA_DB_MODE_SEL(channel->num)); __ipu_idmac_reset_current_buffer(channel); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_idmac_set_double_buffer); static const struct { int chnum; u32 reg; int shift; } idmac_lock_en_info[] = { { .chnum = 5, .reg = IDMAC_CH_LOCK_EN_1, .shift = 0, }, { .chnum = 11, .reg = IDMAC_CH_LOCK_EN_1, .shift = 2, }, { .chnum = 12, .reg = IDMAC_CH_LOCK_EN_1, .shift = 4, }, { .chnum = 14, .reg = IDMAC_CH_LOCK_EN_1, .shift = 6, }, { .chnum = 15, .reg = IDMAC_CH_LOCK_EN_1, .shift = 8, }, { .chnum = 20, .reg = IDMAC_CH_LOCK_EN_1, .shift = 10, }, { .chnum = 21, .reg = IDMAC_CH_LOCK_EN_1, .shift = 12, }, { .chnum = 22, .reg = IDMAC_CH_LOCK_EN_1, .shift = 14, }, { .chnum = 23, .reg = IDMAC_CH_LOCK_EN_1, .shift = 16, }, { .chnum = 27, .reg = IDMAC_CH_LOCK_EN_1, .shift = 18, }, { .chnum = 28, .reg = IDMAC_CH_LOCK_EN_1, .shift = 20, }, { .chnum = 45, .reg = IDMAC_CH_LOCK_EN_2, .shift = 0, }, { .chnum = 46, .reg = IDMAC_CH_LOCK_EN_2, .shift = 2, }, { .chnum = 47, .reg = IDMAC_CH_LOCK_EN_2, .shift = 4, }, { .chnum = 48, .reg = IDMAC_CH_LOCK_EN_2, .shift = 6, }, { .chnum = 49, .reg = IDMAC_CH_LOCK_EN_2, .shift = 8, }, { .chnum = 50, .reg = IDMAC_CH_LOCK_EN_2, .shift = 10, }, }; int ipu_idmac_lock_enable(struct ipuv3_channel *channel, int num_bursts) { struct ipu_soc *ipu = channel->ipu; unsigned long flags; u32 bursts, regval; int i; switch (num_bursts) { case 0: case 1: bursts = 0x00; /* locking disabled */ break; case 2: bursts = 0x01; break; case 4: bursts = 0x02; break; case 8: bursts = 0x03; break; default: return -EINVAL; } /* * IPUv3EX / i.MX51 has a different register layout, and on IPUv3M / * i.MX53 channel arbitration locking doesn't seem to work properly. * Allow enabling the lock feature on IPUv3H / i.MX6 only. */ if (bursts && ipu->ipu_type != IPUV3H) return -EINVAL; for (i = 0; i < ARRAY_SIZE(idmac_lock_en_info); i++) { if (channel->num == idmac_lock_en_info[i].chnum) break; } if (i >= ARRAY_SIZE(idmac_lock_en_info)) return -EINVAL; spin_lock_irqsave(&ipu->lock, flags); regval = ipu_idmac_read(ipu, idmac_lock_en_info[i].reg); regval &= ~(0x03 << idmac_lock_en_info[i].shift); regval |= (bursts << idmac_lock_en_info[i].shift); ipu_idmac_write(ipu, regval, idmac_lock_en_info[i].reg); spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_idmac_lock_enable); int ipu_module_enable(struct ipu_soc *ipu, u32 mask) { unsigned long lock_flags; u32 val; spin_lock_irqsave(&ipu->lock, lock_flags); val = ipu_cm_read(ipu, IPU_DISP_GEN); if (mask & IPU_CONF_DI0_EN) val |= IPU_DI0_COUNTER_RELEASE; if (mask & IPU_CONF_DI1_EN) val |= IPU_DI1_COUNTER_RELEASE; ipu_cm_write(ipu, val, IPU_DISP_GEN); val = ipu_cm_read(ipu, IPU_CONF); val |= mask; ipu_cm_write(ipu, val, IPU_CONF); spin_unlock_irqrestore(&ipu->lock, lock_flags); return 0; } EXPORT_SYMBOL_GPL(ipu_module_enable); int ipu_module_disable(struct ipu_soc *ipu, u32 mask) { unsigned long lock_flags; u32 val; spin_lock_irqsave(&ipu->lock, lock_flags); val = ipu_cm_read(ipu, IPU_CONF); val &= ~mask; ipu_cm_write(ipu, val, IPU_CONF); val = ipu_cm_read(ipu, IPU_DISP_GEN); if (mask & IPU_CONF_DI0_EN) val &= ~IPU_DI0_COUNTER_RELEASE; if (mask & IPU_CONF_DI1_EN) val &= ~IPU_DI1_COUNTER_RELEASE; ipu_cm_write(ipu, val, IPU_DISP_GEN); spin_unlock_irqrestore(&ipu->lock, lock_flags); return 0; } EXPORT_SYMBOL_GPL(ipu_module_disable); int ipu_idmac_get_current_buffer(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; unsigned int chno = channel->num; return (ipu_cm_read(ipu, IPU_CHA_CUR_BUF(chno)) & idma_mask(chno)) ? 1 : 0; } EXPORT_SYMBOL_GPL(ipu_idmac_get_current_buffer); bool ipu_idmac_buffer_is_ready(struct ipuv3_channel *channel, u32 buf_num) { struct ipu_soc *ipu = channel->ipu; unsigned long flags; u32 reg = 0; spin_lock_irqsave(&ipu->lock, flags); switch (buf_num) { case 0: reg = ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(channel->num)); break; case 1: reg = ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(channel->num)); break; case 2: reg = ipu_cm_read(ipu, IPU_CHA_BUF2_RDY(channel->num)); break; } spin_unlock_irqrestore(&ipu->lock, flags); return ((reg & idma_mask(channel->num)) != 0); } EXPORT_SYMBOL_GPL(ipu_idmac_buffer_is_ready); void ipu_idmac_select_buffer(struct ipuv3_channel *channel, u32 buf_num) { struct ipu_soc *ipu = channel->ipu; unsigned int chno = channel->num; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); /* Mark buffer as ready. */ if (buf_num == 0) ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF0_RDY(chno)); else ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF1_RDY(chno)); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_idmac_select_buffer); void ipu_idmac_clear_buffer(struct ipuv3_channel *channel, u32 buf_num) { struct ipu_soc *ipu = channel->ipu; unsigned int chno = channel->num; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); ipu_cm_write(ipu, 0xF0300000, IPU_GPR); /* write one to clear */ switch (buf_num) { case 0: ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF0_RDY(chno)); break; case 1: ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF1_RDY(chno)); break; case 2: ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF2_RDY(chno)); break; default: break; } ipu_cm_write(ipu, 0x0, IPU_GPR); /* write one to set */ spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_idmac_clear_buffer); int ipu_idmac_enable_channel(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; u32 val; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); val = ipu_idmac_read(ipu, IDMAC_CHA_EN(channel->num)); val |= idma_mask(channel->num); ipu_idmac_write(ipu, val, IDMAC_CHA_EN(channel->num)); spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_idmac_enable_channel); bool ipu_idmac_channel_busy(struct ipu_soc *ipu, unsigned int chno) { return (ipu_idmac_read(ipu, IDMAC_CHA_BUSY(chno)) & idma_mask(chno)); } EXPORT_SYMBOL_GPL(ipu_idmac_channel_busy); int ipu_idmac_wait_busy(struct ipuv3_channel *channel, int ms) { struct ipu_soc *ipu = channel->ipu; unsigned long timeout; timeout = jiffies + msecs_to_jiffies(ms); while (ipu_idmac_read(ipu, IDMAC_CHA_BUSY(channel->num)) & idma_mask(channel->num)) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; cpu_relax(); } return 0; } EXPORT_SYMBOL_GPL(ipu_idmac_wait_busy); int ipu_idmac_disable_channel(struct ipuv3_channel *channel) { struct ipu_soc *ipu = channel->ipu; u32 val; unsigned long flags; spin_lock_irqsave(&ipu->lock, flags); /* Disable DMA channel(s) */ val = ipu_idmac_read(ipu, IDMAC_CHA_EN(channel->num)); val &= ~idma_mask(channel->num); ipu_idmac_write(ipu, val, IDMAC_CHA_EN(channel->num)); __ipu_idmac_reset_current_buffer(channel); /* Set channel buffers NOT to be ready */ ipu_cm_write(ipu, 0xf0000000, IPU_GPR); /* write one to clear */ if (ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(channel->num)) & idma_mask(channel->num)) { ipu_cm_write(ipu, idma_mask(channel->num), IPU_CHA_BUF0_RDY(channel->num)); } if (ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(channel->num)) & idma_mask(channel->num)) { ipu_cm_write(ipu, idma_mask(channel->num), IPU_CHA_BUF1_RDY(channel->num)); } ipu_cm_write(ipu, 0x0, IPU_GPR); /* write one to set */ /* Reset the double buffer */ val = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(channel->num)); val &= ~idma_mask(channel->num); ipu_cm_write(ipu, val, IPU_CHA_DB_MODE_SEL(channel->num)); spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_idmac_disable_channel); /* * The imx6 rev. D TRM says that enabling the WM feature will increase * a channel's priority. Refer to Table 36-8 Calculated priority value. * The sub-module that is the sink or source for the channel must enable * watermark signal for this to take effect (SMFC_WM for instance). */ void ipu_idmac_enable_watermark(struct ipuv3_channel *channel, bool enable) { struct ipu_soc *ipu = channel->ipu; unsigned long flags; u32 val; spin_lock_irqsave(&ipu->lock, flags); val = ipu_idmac_read(ipu, IDMAC_WM_EN(channel->num)); if (enable) val |= 1 << (channel->num % 32); else val &= ~(1 << (channel->num % 32)); ipu_idmac_write(ipu, val, IDMAC_WM_EN(channel->num)); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_idmac_enable_watermark); static int ipu_memory_reset(struct ipu_soc *ipu) { unsigned long timeout; ipu_cm_write(ipu, 0x807FFFFF, IPU_MEM_RST); timeout = jiffies + msecs_to_jiffies(1000); while (ipu_cm_read(ipu, IPU_MEM_RST) & 0x80000000) { if (time_after(jiffies, timeout)) return -ETIME; cpu_relax(); } return 0; } /* * Set the source mux for the given CSI. Selects either parallel or * MIPI CSI2 sources. */ void ipu_set_csi_src_mux(struct ipu_soc *ipu, int csi_id, bool mipi_csi2) { unsigned long flags; u32 val, mask; mask = (csi_id == 1) ? IPU_CONF_CSI1_DATA_SOURCE : IPU_CONF_CSI0_DATA_SOURCE; spin_lock_irqsave(&ipu->lock, flags); val = ipu_cm_read(ipu, IPU_CONF); if (mipi_csi2) val |= mask; else val &= ~mask; ipu_cm_write(ipu, val, IPU_CONF); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_set_csi_src_mux); /* * Set the source mux for the IC. Selects either CSI[01] or the VDI. */ void ipu_set_ic_src_mux(struct ipu_soc *ipu, int csi_id, bool vdi) { unsigned long flags; u32 val; spin_lock_irqsave(&ipu->lock, flags); val = ipu_cm_read(ipu, IPU_CONF); if (vdi) val |= IPU_CONF_IC_INPUT; else val &= ~IPU_CONF_IC_INPUT; if (csi_id == 1) val |= IPU_CONF_CSI_SEL; else val &= ~IPU_CONF_CSI_SEL; ipu_cm_write(ipu, val, IPU_CONF); spin_unlock_irqrestore(&ipu->lock, flags); } EXPORT_SYMBOL_GPL(ipu_set_ic_src_mux); /* Frame Synchronization Unit Channel Linking */ struct fsu_link_reg_info { int chno; u32 reg; u32 mask; u32 val; }; struct fsu_link_info { struct fsu_link_reg_info src; struct fsu_link_reg_info sink; }; static const struct fsu_link_info fsu_link_info[] = { { .src = { IPUV3_CHANNEL_IC_PRP_ENC_MEM, IPU_FS_PROC_FLOW2, FS_PRP_ENC_DEST_SEL_MASK, FS_PRP_ENC_DEST_SEL_IRT_ENC }, .sink = { IPUV3_CHANNEL_MEM_ROT_ENC, IPU_FS_PROC_FLOW1, FS_PRPENC_ROT_SRC_SEL_MASK, FS_PRPENC_ROT_SRC_SEL_ENC }, }, { .src = { IPUV3_CHANNEL_IC_PRP_VF_MEM, IPU_FS_PROC_FLOW2, FS_PRPVF_DEST_SEL_MASK, FS_PRPVF_DEST_SEL_IRT_VF }, .sink = { IPUV3_CHANNEL_MEM_ROT_VF, IPU_FS_PROC_FLOW1, FS_PRPVF_ROT_SRC_SEL_MASK, FS_PRPVF_ROT_SRC_SEL_VF }, }, { .src = { IPUV3_CHANNEL_IC_PP_MEM, IPU_FS_PROC_FLOW2, FS_PP_DEST_SEL_MASK, FS_PP_DEST_SEL_IRT_PP }, .sink = { IPUV3_CHANNEL_MEM_ROT_PP, IPU_FS_PROC_FLOW1, FS_PP_ROT_SRC_SEL_MASK, FS_PP_ROT_SRC_SEL_PP }, }, { .src = { IPUV3_CHANNEL_CSI_DIRECT, 0 }, .sink = { IPUV3_CHANNEL_CSI_VDI_PREV, IPU_FS_PROC_FLOW1, FS_VDI_SRC_SEL_MASK, FS_VDI_SRC_SEL_CSI_DIRECT }, }, }; static const struct fsu_link_info *find_fsu_link_info(int src, int sink) { int i; for (i = 0; i < ARRAY_SIZE(fsu_link_info); i++) { if (src == fsu_link_info[i].src.chno && sink == fsu_link_info[i].sink.chno) return &fsu_link_info[i]; } return NULL; } /* * Links a source channel to a sink channel in the FSU. */ int ipu_fsu_link(struct ipu_soc *ipu, int src_ch, int sink_ch) { const struct fsu_link_info *link; u32 src_reg, sink_reg; unsigned long flags; link = find_fsu_link_info(src_ch, sink_ch); if (!link) return -EINVAL; spin_lock_irqsave(&ipu->lock, flags); if (link->src.mask) { src_reg = ipu_cm_read(ipu, link->src.reg); src_reg &= ~link->src.mask; src_reg |= link->src.val; ipu_cm_write(ipu, src_reg, link->src.reg); } if (link->sink.mask) { sink_reg = ipu_cm_read(ipu, link->sink.reg); sink_reg &= ~link->sink.mask; sink_reg |= link->sink.val; ipu_cm_write(ipu, sink_reg, link->sink.reg); } spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_fsu_link); /* * Unlinks source and sink channels in the FSU. */ int ipu_fsu_unlink(struct ipu_soc *ipu, int src_ch, int sink_ch) { const struct fsu_link_info *link; u32 src_reg, sink_reg; unsigned long flags; link = find_fsu_link_info(src_ch, sink_ch); if (!link) return -EINVAL; spin_lock_irqsave(&ipu->lock, flags); if (link->src.mask) { src_reg = ipu_cm_read(ipu, link->src.reg); src_reg &= ~link->src.mask; ipu_cm_write(ipu, src_reg, link->src.reg); } if (link->sink.mask) { sink_reg = ipu_cm_read(ipu, link->sink.reg); sink_reg &= ~link->sink.mask; ipu_cm_write(ipu, sink_reg, link->sink.reg); } spin_unlock_irqrestore(&ipu->lock, flags); return 0; } EXPORT_SYMBOL_GPL(ipu_fsu_unlink); /* Link IDMAC channels in the FSU */ int ipu_idmac_link(struct ipuv3_channel *src, struct ipuv3_channel *sink) { return ipu_fsu_link(src->ipu, src->num, sink->num); } EXPORT_SYMBOL_GPL(ipu_idmac_link); /* Unlink IDMAC channels in the FSU */ int ipu_idmac_unlink(struct ipuv3_channel *src, struct ipuv3_channel *sink) { return ipu_fsu_unlink(src->ipu, src->num, sink->num); } EXPORT_SYMBOL_GPL(ipu_idmac_unlink); struct ipu_devtype { const char *name; unsigned long cm_ofs; unsigned long cpmem_ofs; unsigned long srm_ofs; unsigned long tpm_ofs; unsigned long csi0_ofs; unsigned long csi1_ofs; unsigned long ic_ofs; unsigned long disp0_ofs; unsigned long disp1_ofs; unsigned long dc_tmpl_ofs; unsigned long vdi_ofs; enum ipuv3_type type; }; static struct ipu_devtype ipu_type_imx51 = { .name = "IPUv3EX", .cm_ofs = 0x1e000000, .cpmem_ofs = 0x1f000000, .srm_ofs = 0x1f040000, .tpm_ofs = 0x1f060000, .csi0_ofs = 0x1e030000, .csi1_ofs = 0x1e038000, .ic_ofs = 0x1e020000, .disp0_ofs = 0x1e040000, .disp1_ofs = 0x1e048000, .dc_tmpl_ofs = 0x1f080000, .vdi_ofs = 0x1e068000, .type = IPUV3EX, }; static struct ipu_devtype ipu_type_imx53 = { .name = "IPUv3M", .cm_ofs = 0x06000000, .cpmem_ofs = 0x07000000, .srm_ofs = 0x07040000, .tpm_ofs = 0x07060000, .csi0_ofs = 0x06030000, .csi1_ofs = 0x06038000, .ic_ofs = 0x06020000, .disp0_ofs = 0x06040000, .disp1_ofs = 0x06048000, .dc_tmpl_ofs = 0x07080000, .vdi_ofs = 0x06068000, .type = IPUV3M, }; static struct ipu_devtype ipu_type_imx6q = { .name = "IPUv3H", .cm_ofs = 0x00200000, .cpmem_ofs = 0x00300000, .srm_ofs = 0x00340000, .tpm_ofs = 0x00360000, .csi0_ofs = 0x00230000, .csi1_ofs = 0x00238000, .ic_ofs = 0x00220000, .disp0_ofs = 0x00240000, .disp1_ofs = 0x00248000, .dc_tmpl_ofs = 0x00380000, .vdi_ofs = 0x00268000, .type = IPUV3H, }; static const struct of_device_id imx_ipu_dt_ids[] = { { .compatible = "fsl,imx51-ipu", .data = &ipu_type_imx51, }, { .compatible = "fsl,imx53-ipu", .data = &ipu_type_imx53, }, { .compatible = "fsl,imx6q-ipu", .data = &ipu_type_imx6q, }, { .compatible = "fsl,imx6qp-ipu", .data = &ipu_type_imx6q, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx_ipu_dt_ids); static int ipu_submodules_init(struct ipu_soc *ipu, struct platform_device *pdev, unsigned long ipu_base, struct clk *ipu_clk) { char *unit; int ret; struct device *dev = &pdev->dev; const struct ipu_devtype *devtype = ipu->devtype; ret = ipu_cpmem_init(ipu, dev, ipu_base + devtype->cpmem_ofs); if (ret) { unit = "cpmem"; goto err_cpmem; } ret = ipu_csi_init(ipu, dev, 0, ipu_base + devtype->csi0_ofs, IPU_CONF_CSI0_EN, ipu_clk); if (ret) { unit = "csi0"; goto err_csi_0; } ret = ipu_csi_init(ipu, dev, 1, ipu_base + devtype->csi1_ofs, IPU_CONF_CSI1_EN, ipu_clk); if (ret) { unit = "csi1"; goto err_csi_1; } ret = ipu_ic_init(ipu, dev, ipu_base + devtype->ic_ofs, ipu_base + devtype->tpm_ofs); if (ret) { unit = "ic"; goto err_ic; } ret = ipu_vdi_init(ipu, dev, ipu_base + devtype->vdi_ofs, IPU_CONF_VDI_EN | IPU_CONF_ISP_EN | IPU_CONF_IC_INPUT); if (ret) { unit = "vdi"; goto err_vdi; } ret = ipu_image_convert_init(ipu, dev); if (ret) { unit = "image_convert"; goto err_image_convert; } ret = ipu_di_init(ipu, dev, 0, ipu_base + devtype->disp0_ofs, IPU_CONF_DI0_EN, ipu_clk); if (ret) { unit = "di0"; goto err_di_0; } ret = ipu_di_init(ipu, dev, 1, ipu_base + devtype->disp1_ofs, IPU_CONF_DI1_EN, ipu_clk); if (ret) { unit = "di1"; goto err_di_1; } ret = ipu_dc_init(ipu, dev, ipu_base + devtype->cm_ofs + IPU_CM_DC_REG_OFS, ipu_base + devtype->dc_tmpl_ofs); if (ret) { unit = "dc_template"; goto err_dc; } ret = ipu_dmfc_init(ipu, dev, ipu_base + devtype->cm_ofs + IPU_CM_DMFC_REG_OFS, ipu_clk); if (ret) { unit = "dmfc"; goto err_dmfc; } ret = ipu_dp_init(ipu, dev, ipu_base + devtype->srm_ofs); if (ret) { unit = "dp"; goto err_dp; } ret = ipu_smfc_init(ipu, dev, ipu_base + devtype->cm_ofs + IPU_CM_SMFC_REG_OFS); if (ret) { unit = "smfc"; goto err_smfc; } return 0; err_smfc: ipu_dp_exit(ipu); err_dp: ipu_dmfc_exit(ipu); err_dmfc: ipu_dc_exit(ipu); err_dc: ipu_di_exit(ipu, 1); err_di_1: ipu_di_exit(ipu, 0); err_di_0: ipu_image_convert_exit(ipu); err_image_convert: ipu_vdi_exit(ipu); err_vdi: ipu_ic_exit(ipu); err_ic: ipu_csi_exit(ipu, 1); err_csi_1: ipu_csi_exit(ipu, 0); err_csi_0: ipu_cpmem_exit(ipu); err_cpmem: dev_err(&pdev->dev, "init %s failed with %d\n", unit, ret); return ret; } static void ipu_irq_handle(struct ipu_soc *ipu, const int *regs, int num_regs) { unsigned long status; int i, bit, irq; for (i = 0; i < num_regs; i++) { status = ipu_cm_read(ipu, IPU_INT_STAT(regs[i])); status &= ipu_cm_read(ipu, IPU_INT_CTRL(regs[i])); for_each_set_bit(bit, &status, 32) { irq = irq_linear_revmap(ipu->domain, regs[i] * 32 + bit); if (irq) generic_handle_irq(irq); } } } static void ipu_irq_handler(struct irq_desc *desc) { struct ipu_soc *ipu = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); static const int int_reg[] = { 0, 1, 2, 3, 10, 11, 12, 13, 14}; chained_irq_enter(chip, desc); ipu_irq_handle(ipu, int_reg, ARRAY_SIZE(int_reg)); chained_irq_exit(chip, desc); } static void ipu_err_irq_handler(struct irq_desc *desc) { struct ipu_soc *ipu = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); static const int int_reg[] = { 4, 5, 8, 9}; chained_irq_enter(chip, desc); ipu_irq_handle(ipu, int_reg, ARRAY_SIZE(int_reg)); chained_irq_exit(chip, desc); } int ipu_map_irq(struct ipu_soc *ipu, int irq) { int virq; virq = irq_linear_revmap(ipu->domain, irq); if (!virq) virq = irq_create_mapping(ipu->domain, irq); return virq; } EXPORT_SYMBOL_GPL(ipu_map_irq); int ipu_idmac_channel_irq(struct ipu_soc *ipu, struct ipuv3_channel *channel, enum ipu_channel_irq irq_type) { return ipu_map_irq(ipu, irq_type + channel->num); } EXPORT_SYMBOL_GPL(ipu_idmac_channel_irq); static void ipu_submodules_exit(struct ipu_soc *ipu) { ipu_smfc_exit(ipu); ipu_dp_exit(ipu); ipu_dmfc_exit(ipu); ipu_dc_exit(ipu); ipu_di_exit(ipu, 1); ipu_di_exit(ipu, 0); ipu_image_convert_exit(ipu); ipu_vdi_exit(ipu); ipu_ic_exit(ipu); ipu_csi_exit(ipu, 1); ipu_csi_exit(ipu, 0); ipu_cpmem_exit(ipu); } static int platform_remove_devices_fn(struct device *dev, void *unused) { struct platform_device *pdev = to_platform_device(dev); platform_device_unregister(pdev); return 0; } static void platform_device_unregister_children(struct platform_device *pdev) { device_for_each_child(&pdev->dev, NULL, platform_remove_devices_fn); } struct ipu_platform_reg { struct ipu_client_platformdata pdata; const char *name; }; /* These must be in the order of the corresponding device tree port nodes */ static struct ipu_platform_reg client_reg[] = { { .pdata = { .csi = 0, .dma[0] = IPUV3_CHANNEL_CSI0, .dma[1] = -EINVAL, }, .name = "imx-ipuv3-csi", }, { .pdata = { .csi = 1, .dma[0] = IPUV3_CHANNEL_CSI1, .dma[1] = -EINVAL, }, .name = "imx-ipuv3-csi", }, { .pdata = { .di = 0, .dc = 5, .dp = IPU_DP_FLOW_SYNC_BG, .dma[0] = IPUV3_CHANNEL_MEM_BG_SYNC, .dma[1] = IPUV3_CHANNEL_MEM_FG_SYNC, }, .name = "imx-ipuv3-crtc", }, { .pdata = { .di = 1, .dc = 1, .dp = -EINVAL, .dma[0] = IPUV3_CHANNEL_MEM_DC_SYNC, .dma[1] = -EINVAL, }, .name = "imx-ipuv3-crtc", }, }; static DEFINE_MUTEX(ipu_client_id_mutex); static int ipu_client_id; static int ipu_add_client_devices(struct ipu_soc *ipu, unsigned long ipu_base) { struct device *dev = ipu->dev; unsigned i; int id, ret; mutex_lock(&ipu_client_id_mutex); id = ipu_client_id; ipu_client_id += ARRAY_SIZE(client_reg); mutex_unlock(&ipu_client_id_mutex); for (i = 0; i < ARRAY_SIZE(client_reg); i++) { struct ipu_platform_reg *reg = &client_reg[i]; struct platform_device *pdev; struct device_node *of_node; /* Associate subdevice with the corresponding port node */ of_node = of_graph_get_port_by_id(dev->of_node, i); if (!of_node) { dev_info(dev, "no port@%d node in %pOF, not using %s%d\n", i, dev->of_node, (i / 2) ? "DI" : "CSI", i % 2); continue; } pdev = platform_device_alloc(reg->name, id++); if (!pdev) { ret = -ENOMEM; goto err_register; } pdev->dev.parent = dev; reg->pdata.of_node = of_node; ret = platform_device_add_data(pdev, ®->pdata, sizeof(reg->pdata)); if (!ret) ret = platform_device_add(pdev); if (ret) { platform_device_put(pdev); goto err_register; } } return 0; err_register: platform_device_unregister_children(to_platform_device(dev)); return ret; } static int ipu_irq_init(struct ipu_soc *ipu) { struct irq_chip_generic *gc; struct irq_chip_type *ct; unsigned long unused[IPU_NUM_IRQS / 32] = { 0x400100d0, 0xffe000fd, 0x400100d0, 0xffe000fd, 0x400100d0, 0xffe000fd, 0x4077ffff, 0xffe7e1fd, 0x23fffffe, 0x8880fff0, 0xf98fe7d0, 0xfff81fff, 0x400100d0, 0xffe000fd, 0x00000000, }; int ret, i; ipu->domain = irq_domain_add_linear(ipu->dev->of_node, IPU_NUM_IRQS, &irq_generic_chip_ops, ipu); if (!ipu->domain) { dev_err(ipu->dev, "failed to add irq domain\n"); return -ENODEV; } ret = irq_alloc_domain_generic_chips(ipu->domain, 32, 1, "IPU", handle_level_irq, 0, 0, 0); if (ret < 0) { dev_err(ipu->dev, "failed to alloc generic irq chips\n"); irq_domain_remove(ipu->domain); return ret; } /* Mask and clear all interrupts */ for (i = 0; i < IPU_NUM_IRQS; i += 32) { ipu_cm_write(ipu, 0, IPU_INT_CTRL(i / 32)); ipu_cm_write(ipu, ~unused[i / 32], IPU_INT_STAT(i / 32)); } for (i = 0; i < IPU_NUM_IRQS; i += 32) { gc = irq_get_domain_generic_chip(ipu->domain, i); gc->reg_base = ipu->cm_reg; gc->unused = unused[i / 32]; ct = gc->chip_types; ct->chip.irq_ack = irq_gc_ack_set_bit; ct->chip.irq_mask = irq_gc_mask_clr_bit; ct->chip.irq_unmask = irq_gc_mask_set_bit; ct->regs.ack = IPU_INT_STAT(i / 32); ct->regs.mask = IPU_INT_CTRL(i / 32); } irq_set_chained_handler_and_data(ipu->irq_sync, ipu_irq_handler, ipu); irq_set_chained_handler_and_data(ipu->irq_err, ipu_err_irq_handler, ipu); return 0; } static void ipu_irq_exit(struct ipu_soc *ipu) { int i, irq; irq_set_chained_handler_and_data(ipu->irq_err, NULL, NULL); irq_set_chained_handler_and_data(ipu->irq_sync, NULL, NULL); /* TODO: remove irq_domain_generic_chips */ for (i = 0; i < IPU_NUM_IRQS; i++) { irq = irq_linear_revmap(ipu->domain, i); if (irq) irq_dispose_mapping(irq); } irq_domain_remove(ipu->domain); } void ipu_dump(struct ipu_soc *ipu) { int i; dev_dbg(ipu->dev, "IPU_CONF = \t0x%08X\n", ipu_cm_read(ipu, IPU_CONF)); dev_dbg(ipu->dev, "IDMAC_CONF = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CONF)); dev_dbg(ipu->dev, "IDMAC_CHA_EN1 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CHA_EN(0))); dev_dbg(ipu->dev, "IDMAC_CHA_EN2 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CHA_EN(32))); dev_dbg(ipu->dev, "IDMAC_CHA_PRI1 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CHA_PRI(0))); dev_dbg(ipu->dev, "IDMAC_CHA_PRI2 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CHA_PRI(32))); dev_dbg(ipu->dev, "IDMAC_BAND_EN1 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_BAND_EN(0))); dev_dbg(ipu->dev, "IDMAC_BAND_EN2 = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_BAND_EN(32))); dev_dbg(ipu->dev, "IPU_CHA_DB_MODE_SEL0 = \t0x%08X\n", ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(0))); dev_dbg(ipu->dev, "IPU_CHA_DB_MODE_SEL1 = \t0x%08X\n", ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(32))); dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW1 = \t0x%08X\n", ipu_cm_read(ipu, IPU_FS_PROC_FLOW1)); dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW2 = \t0x%08X\n", ipu_cm_read(ipu, IPU_FS_PROC_FLOW2)); dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW3 = \t0x%08X\n", ipu_cm_read(ipu, IPU_FS_PROC_FLOW3)); dev_dbg(ipu->dev, "IPU_FS_DISP_FLOW1 = \t0x%08X\n", ipu_cm_read(ipu, IPU_FS_DISP_FLOW1)); for (i = 0; i < 15; i++) dev_dbg(ipu->dev, "IPU_INT_CTRL(%d) = \t%08X\n", i, ipu_cm_read(ipu, IPU_INT_CTRL(i))); } EXPORT_SYMBOL_GPL(ipu_dump); static int ipu_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct ipu_soc *ipu; struct resource *res; unsigned long ipu_base; int ret, irq_sync, irq_err; const struct ipu_devtype *devtype; devtype = of_device_get_match_data(&pdev->dev); if (!devtype) return -EINVAL; irq_sync = platform_get_irq(pdev, 0); irq_err = platform_get_irq(pdev, 1); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dev_dbg(&pdev->dev, "irq_sync: %d irq_err: %d\n", irq_sync, irq_err); if (!res || irq_sync < 0 || irq_err < 0) return -ENODEV; ipu_base = res->start; ipu = devm_kzalloc(&pdev->dev, sizeof(*ipu), GFP_KERNEL); if (!ipu) return -ENODEV; ipu->id = of_alias_get_id(np, "ipu"); if (ipu->id < 0) ipu->id = 0; if (of_device_is_compatible(np, "fsl,imx6qp-ipu") && IS_ENABLED(CONFIG_DRM)) { ipu->prg_priv = ipu_prg_lookup_by_phandle(&pdev->dev, "fsl,prg", ipu->id); if (!ipu->prg_priv) return -EPROBE_DEFER; } ipu->devtype = devtype; ipu->ipu_type = devtype->type; spin_lock_init(&ipu->lock); mutex_init(&ipu->channel_lock); INIT_LIST_HEAD(&ipu->channels); dev_dbg(&pdev->dev, "cm_reg: 0x%08lx\n", ipu_base + devtype->cm_ofs); dev_dbg(&pdev->dev, "idmac: 0x%08lx\n", ipu_base + devtype->cm_ofs + IPU_CM_IDMAC_REG_OFS); dev_dbg(&pdev->dev, "cpmem: 0x%08lx\n", ipu_base + devtype->cpmem_ofs); dev_dbg(&pdev->dev, "csi0: 0x%08lx\n", ipu_base + devtype->csi0_ofs); dev_dbg(&pdev->dev, "csi1: 0x%08lx\n", ipu_base + devtype->csi1_ofs); dev_dbg(&pdev->dev, "ic: 0x%08lx\n", ipu_base + devtype->ic_ofs); dev_dbg(&pdev->dev, "disp0: 0x%08lx\n", ipu_base + devtype->disp0_ofs); dev_dbg(&pdev->dev, "disp1: 0x%08lx\n", ipu_base + devtype->disp1_ofs); dev_dbg(&pdev->dev, "srm: 0x%08lx\n", ipu_base + devtype->srm_ofs); dev_dbg(&pdev->dev, "tpm: 0x%08lx\n", ipu_base + devtype->tpm_ofs); dev_dbg(&pdev->dev, "dc: 0x%08lx\n", ipu_base + devtype->cm_ofs + IPU_CM_DC_REG_OFS); dev_dbg(&pdev->dev, "ic: 0x%08lx\n", ipu_base + devtype->cm_ofs + IPU_CM_IC_REG_OFS); dev_dbg(&pdev->dev, "dmfc: 0x%08lx\n", ipu_base + devtype->cm_ofs + IPU_CM_DMFC_REG_OFS); dev_dbg(&pdev->dev, "vdi: 0x%08lx\n", ipu_base + devtype->vdi_ofs); ipu->cm_reg = devm_ioremap(&pdev->dev, ipu_base + devtype->cm_ofs, PAGE_SIZE); ipu->idmac_reg = devm_ioremap(&pdev->dev, ipu_base + devtype->cm_ofs + IPU_CM_IDMAC_REG_OFS, PAGE_SIZE); if (!ipu->cm_reg || !ipu->idmac_reg) return -ENOMEM; ipu->clk = devm_clk_get(&pdev->dev, "bus"); if (IS_ERR(ipu->clk)) { ret = PTR_ERR(ipu->clk); dev_err(&pdev->dev, "clk_get failed with %d", ret); return ret; } platform_set_drvdata(pdev, ipu); ret = clk_prepare_enable(ipu->clk); if (ret) { dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret); return ret; } ipu->dev = &pdev->dev; ipu->irq_sync = irq_sync; ipu->irq_err = irq_err; ret = device_reset(&pdev->dev); if (ret) { dev_err(&pdev->dev, "failed to reset: %d\n", ret); goto out_failed_reset; } ret = ipu_memory_reset(ipu); if (ret) goto out_failed_reset; ret = ipu_irq_init(ipu); if (ret) goto out_failed_irq; /* Set MCU_T to divide MCU access window into 2 */ ipu_cm_write(ipu, 0x00400000L | (IPU_MCU_T_DEFAULT << 18), IPU_DISP_GEN); ret = ipu_submodules_init(ipu, pdev, ipu_base, ipu->clk); if (ret) goto failed_submodules_init; ret = ipu_add_client_devices(ipu, ipu_base); if (ret) { dev_err(&pdev->dev, "adding client devices failed with %d\n", ret); goto failed_add_clients; } dev_info(&pdev->dev, "%s probed\n", devtype->name); return 0; failed_add_clients: ipu_submodules_exit(ipu); failed_submodules_init: ipu_irq_exit(ipu); out_failed_irq: out_failed_reset: clk_disable_unprepare(ipu->clk); return ret; } static int ipu_remove(struct platform_device *pdev) { struct ipu_soc *ipu = platform_get_drvdata(pdev); platform_device_unregister_children(pdev); ipu_submodules_exit(ipu); ipu_irq_exit(ipu); clk_disable_unprepare(ipu->clk); return 0; } static struct platform_driver imx_ipu_driver = { .driver = { .name = "imx-ipuv3", .of_match_table = imx_ipu_dt_ids, }, .probe = ipu_probe, .remove = ipu_remove, }; static struct platform_driver * const drivers[] = { #if IS_ENABLED(CONFIG_DRM) &ipu_pre_drv, &ipu_prg_drv, #endif &imx_ipu_driver, }; static int __init imx_ipu_init(void) { return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); } module_init(imx_ipu_init); static void __exit imx_ipu_exit(void) { platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); } module_exit(imx_ipu_exit); MODULE_ALIAS("platform:imx-ipuv3"); MODULE_DESCRIPTION("i.MX IPU v3 driver"); MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>"); MODULE_LICENSE("GPL");