/* $Id: hfc_sx.c,v 1.12.2.5 2004/02/11 13:21:33 keil Exp $ * * level driver for Cologne Chip Designs hfc-s+/sp based cards * * Author Werner Cornelius * based on existing driver for CCD HFC PCI cards * Copyright by Werner Cornelius * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * */ #include #include "hisax.h" #include "hfc_sx.h" #include "isdnl1.h" #include #include #include static const char *hfcsx_revision = "$Revision: 1.12.2.5 $"; /***************************************/ /* IRQ-table for CCDs demo board */ /* IRQs 6,5,10,11,12,15 are supported */ /***************************************/ /* Teles 16.3c Vendor Id TAG2620, Version 1.0, Vendor version 2.1 * * Thanks to Uwe Wisniewski * * ISA-SLOT Signal PIN * B25 IRQ3 92 IRQ_G * B23 IRQ5 94 IRQ_A * B4 IRQ2/9 95 IRQ_B * D3 IRQ10 96 IRQ_C * D4 IRQ11 97 IRQ_D * D5 IRQ12 98 IRQ_E * D6 IRQ15 99 IRQ_F */ #undef CCD_DEMO_BOARD #ifdef CCD_DEMO_BOARD static u_char ccd_sp_irqtab[16] = { 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 3, 4, 5, 0, 0, 6 }; #else /* Teles 16.3c */ static u_char ccd_sp_irqtab[16] = { 0, 0, 0, 7, 0, 1, 0, 0, 0, 2, 3, 4, 5, 0, 0, 6 }; #endif #define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */ #define byteout(addr, val) outb(val, addr) #define bytein(addr) inb(addr) /******************************/ /* In/Out access to registers */ /******************************/ static inline void Write_hfc(struct IsdnCardState *cs, u_char regnum, u_char val) { byteout(cs->hw.hfcsx.base + 1, regnum); byteout(cs->hw.hfcsx.base, val); } static inline u_char Read_hfc(struct IsdnCardState *cs, u_char regnum) { u_char ret; byteout(cs->hw.hfcsx.base + 1, regnum); ret = bytein(cs->hw.hfcsx.base); return (ret); } /**************************************************/ /* select a fifo and remember which one for reuse */ /**************************************************/ static void fifo_select(struct IsdnCardState *cs, u_char fifo) { if (fifo == cs->hw.hfcsx.last_fifo) return; /* still valid */ byteout(cs->hw.hfcsx.base + 1, HFCSX_FIF_SEL); byteout(cs->hw.hfcsx.base, fifo); while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */ udelay(4); byteout(cs->hw.hfcsx.base, fifo); while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */ } /******************************************/ /* reset the specified fifo to defaults. */ /* If its a send fifo init needed markers */ /******************************************/ static void reset_fifo(struct IsdnCardState *cs, u_char fifo) { fifo_select(cs, fifo); /* first select the fifo */ byteout(cs->hw.hfcsx.base + 1, HFCSX_CIRM); byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.cirm | 0x80); /* reset cmd */ udelay(1); while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */ } /*************************************************************/ /* write_fifo writes the skb contents to the desired fifo */ /* if no space is available or an error occurs 0 is returned */ /* the skb is not released in any way. */ /*************************************************************/ static int write_fifo(struct IsdnCardState *cs, struct sk_buff *skb, u_char fifo, int trans_max) { unsigned short *msp; int fifo_size, count, z1, z2; u_char f_msk, f1, f2, *src; if (skb->len <= 0) return (0); if (fifo & 1) return (0); /* no write fifo */ fifo_select(cs, fifo); if (fifo & 4) { fifo_size = D_FIFO_SIZE; /* D-channel */ f_msk = MAX_D_FRAMES; if (trans_max) return (0); /* only HDLC */ } else { fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */ f_msk = MAX_B_FRAMES; } z1 = Read_hfc(cs, HFCSX_FIF_Z1H); z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L)); /* Check for transparent mode */ if (trans_max) { z2 = Read_hfc(cs, HFCSX_FIF_Z2H); z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L)); count = z2 - z1; if (count <= 0) count += fifo_size; /* free bytes */ if (count < skb->len + 1) return (0); /* no room */ count = fifo_size - count; /* bytes still not send */ if (count > 2 * trans_max) return (0); /* delay to long */ count = skb->len; src = skb->data; while (count--) Write_hfc(cs, HFCSX_FIF_DWR, *src++); return (1); /* success */ } msp = ((struct hfcsx_extra *)(cs->hw.hfcsx.extra))->marker; msp += (((fifo >> 1) & 3) * (MAX_B_FRAMES + 1)); f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk; f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk; count = f1 - f2; /* frame count actually buffered */ if (count < 0) count += (f_msk + 1); /* if wrap around */ if (count > f_msk - 1) { if (cs->debug & L1_DEB_ISAC_FIFO) debugl1(cs, "hfcsx_write_fifo %d more as %d frames", fifo, f_msk - 1); return (0); } *(msp + f1) = z1; /* remember marker */ if (cs->debug & L1_DEB_ISAC_FIFO) debugl1(cs, "hfcsx_write_fifo %d f1(%x) f2(%x) z1(f1)(%x)", fifo, f1, f2, z1); /* now determine free bytes in FIFO buffer */ count = *(msp + f2) - z1; if (count <= 0) count += fifo_size; /* count now contains available bytes */ if (cs->debug & L1_DEB_ISAC_FIFO) debugl1(cs, "hfcsx_write_fifo %d count(%u/%d)", fifo, skb->len, count); if (count < skb->len) { if (cs->debug & L1_DEB_ISAC_FIFO) debugl1(cs, "hfcsx_write_fifo %d no fifo mem", fifo); return (0); } count = skb->len; /* get frame len */ src = skb->data; /* source pointer */ while (count--) Write_hfc(cs, HFCSX_FIF_DWR, *src++); Read_hfc(cs, HFCSX_FIF_INCF1); /* increment F1 */ udelay(1); while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */ return (1); } /***************************************************************/ /* read_fifo reads data to an skb from the desired fifo */ /* if no data is available or an error occurs NULL is returned */ /* the skb is not released in any way. */ /***************************************************************/ static struct sk_buff * read_fifo(struct IsdnCardState *cs, u_char fifo, int trans_max) { int fifo_size, count, z1, z2; u_char f_msk, f1, f2, *dst; struct sk_buff *skb; if (!(fifo & 1)) return (NULL); /* no read fifo */ fifo_select(cs, fifo); if (fifo & 4) { fifo_size = D_FIFO_SIZE; /* D-channel */ f_msk = MAX_D_FRAMES; if (trans_max) return (NULL); /* only hdlc */ } else { fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */ f_msk = MAX_B_FRAMES; } /* transparent mode */ if (trans_max) { z1 = Read_hfc(cs, HFCSX_FIF_Z1H); z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L)); z2 = Read_hfc(cs, HFCSX_FIF_Z2H); z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L)); /* now determine bytes in actual FIFO buffer */ count = z1 - z2; if (count <= 0) count += fifo_size; /* count now contains buffered bytes */ count++; if (count > trans_max) count = trans_max; /* limit length */ skb = dev_alloc_skb(count); if (skb) { dst = skb_put(skb, count); while (count--) *dst++ = Read_hfc(cs, HFCSX_FIF_DRD); return skb; } else return NULL; /* no memory */ } do { f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk; f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk; if (f1 == f2) return (NULL); /* no frame available */ z1 = Read_hfc(cs, HFCSX_FIF_Z1H); z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L)); z2 = Read_hfc(cs, HFCSX_FIF_Z2H); z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L)); if (cs->debug & L1_DEB_ISAC_FIFO) debugl1(cs, "hfcsx_read_fifo %d f1(%x) f2(%x) z1(f2)(%x) z2(f2)(%x)", fifo, f1, f2, z1, z2); /* now determine bytes in actual FIFO buffer */ count = z1 - z2; if (count <= 0) count += fifo_size; /* count now contains buffered bytes */ count++; if (cs->debug & L1_DEB_ISAC_FIFO) debugl1(cs, "hfcsx_read_fifo %d count %u)", fifo, count); if ((count > fifo_size) || (count < 4)) { if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfcsx_read_fifo %d packet inv. len %d ", fifo , count); while (count) { count--; /* empty fifo */ Read_hfc(cs, HFCSX_FIF_DRD); } skb = NULL; } else if ((skb = dev_alloc_skb(count - 3))) { count -= 3; dst = skb_put(skb, count); while (count--) *dst++ = Read_hfc(cs, HFCSX_FIF_DRD); Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 1 */ Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 2 */ if (Read_hfc(cs, HFCSX_FIF_DRD)) { dev_kfree_skb_irq(skb); if (cs->debug & L1_DEB_ISAC_FIFO) debugl1(cs, "hfcsx_read_fifo %d crc error", fifo); skb = NULL; } } else { printk(KERN_WARNING "HFC-SX: receive out of memory\n"); return (NULL); } Read_hfc(cs, HFCSX_FIF_INCF2); /* increment F2 */ udelay(1); while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */ udelay(1); } while (!skb); /* retry in case of crc error */ return (skb); } /******************************************/ /* free hardware resources used by driver */ /******************************************/ static void release_io_hfcsx(struct IsdnCardState *cs) { cs->hw.hfcsx.int_m2 = 0; /* interrupt output off ! */ Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2); Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET); /* Reset On */ msleep(30); /* Timeout 30ms */ Write_hfc(cs, HFCSX_CIRM, 0); /* Reset Off */ del_timer(&cs->hw.hfcsx.timer); release_region(cs->hw.hfcsx.base, 2); /* release IO-Block */ kfree(cs->hw.hfcsx.extra); cs->hw.hfcsx.extra = NULL; } /**********************************************************/ /* set_fifo_size determines the size of the RAM and FIFOs */ /* returning 0 -> need to reset the chip again. */ /**********************************************************/ static int set_fifo_size(struct IsdnCardState *cs) { if (cs->hw.hfcsx.b_fifo_size) return (1); /* already determined */ if ((cs->hw.hfcsx.chip >> 4) == 9) { cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_32K; return (1); } cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_8K; cs->hw.hfcsx.cirm |= 0x10; /* only 8K of ram */ return (0); } /********************************************************************************/ /* function called to reset the HFC SX chip. A complete software reset of chip */ /* and fifos is done. */ /********************************************************************************/ static void reset_hfcsx(struct IsdnCardState *cs) { cs->hw.hfcsx.int_m2 = 0; /* interrupt output off ! */ Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2); printk(KERN_INFO "HFC_SX: resetting card\n"); while (1) { Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET | cs->hw.hfcsx.cirm); /* Reset */ mdelay(30); Write_hfc(cs, HFCSX_CIRM, cs->hw.hfcsx.cirm); /* Reset Off */ mdelay(20); if (Read_hfc(cs, HFCSX_STATUS) & 2) printk(KERN_WARNING "HFC-SX init bit busy\n"); cs->hw.hfcsx.last_fifo = 0xff; /* invalidate */ if (!set_fifo_size(cs)) continue; break; } cs->hw.hfcsx.trm = 0 + HFCSX_BTRANS_THRESMASK; /* no echo connect , threshold */ Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm); Write_hfc(cs, HFCSX_CLKDEL, 0x0e); /* ST-Bit delay for TE-Mode */ cs->hw.hfcsx.sctrl_e = HFCSX_AUTO_AWAKE; Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e); /* S/T Auto awake */ cs->hw.hfcsx.bswapped = 0; /* no exchange */ cs->hw.hfcsx.nt_mode = 0; /* we are in TE mode */ cs->hw.hfcsx.ctmt = HFCSX_TIM3_125 | HFCSX_AUTO_TIMER; Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt); cs->hw.hfcsx.int_m1 = HFCSX_INTS_DTRANS | HFCSX_INTS_DREC | HFCSX_INTS_L1STATE | HFCSX_INTS_TIMER; Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1); /* Clear already pending ints */ Read_hfc(cs, HFCSX_INT_S1); Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 2); /* HFC ST 2 */ udelay(10); Write_hfc(cs, HFCSX_STATES, 2); /* HFC ST 2 */ cs->hw.hfcsx.mst_m = HFCSX_MASTER; /* HFC Master Mode */ Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m); cs->hw.hfcsx.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */ Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl); cs->hw.hfcsx.sctrl_r = 0; Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r); /* Init GCI/IOM2 in master mode */ /* Slots 0 and 1 are set for B-chan 1 and 2 */ /* D- and monitor/CI channel are not enabled */ /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */ /* STIO2 is used as data input, B1+B2 from IOM->ST */ /* ST B-channel send disabled -> continuous 1s */ /* The IOM slots are always enabled */ cs->hw.hfcsx.conn = 0x36; /* set data flow directions */ Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn); Write_hfc(cs, HFCSX_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */ Write_hfc(cs, HFCSX_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */ Write_hfc(cs, HFCSX_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */ Write_hfc(cs, HFCSX_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */ /* Finally enable IRQ output */ cs->hw.hfcsx.int_m2 = HFCSX_IRQ_ENABLE; Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2); Read_hfc(cs, HFCSX_INT_S2); } /***************************************************/ /* Timer function called when kernel timer expires */ /***************************************************/ static void hfcsx_Timer(struct timer_list *t) { struct IsdnCardState *cs = from_timer(cs, t, hw.hfcsx.timer); cs->hw.hfcsx.timer.expires = jiffies + 75; /* WD RESET */ /* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcsx.ctmt | 0x80); add_timer(&cs->hw.hfcsx.timer); */ } /************************************************/ /* select a b-channel entry matching and active */ /************************************************/ static struct BCState * Sel_BCS(struct IsdnCardState *cs, int channel) { if (cs->bcs[0].mode && (cs->bcs[0].channel == channel)) return (&cs->bcs[0]); else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel)) return (&cs->bcs[1]); else return (NULL); } /*******************************/ /* D-channel receive procedure */ /*******************************/ static int receive_dmsg(struct IsdnCardState *cs) { struct sk_buff *skb; int count = 5; if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { debugl1(cs, "rec_dmsg blocked"); return (1); } do { skb = read_fifo(cs, HFCSX_SEL_D_RX, 0); if (skb) { skb_queue_tail(&cs->rq, skb); schedule_event(cs, D_RCVBUFREADY); } } while (--count && skb); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); return (1); } /**********************************/ /* B-channel main receive routine */ /**********************************/ static void main_rec_hfcsx(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; int count = 5; struct sk_buff *skb; Begin: count--; if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { debugl1(cs, "rec_data %d blocked", bcs->channel); return; } skb = read_fifo(cs, ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ? HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX, (bcs->mode == L1_MODE_TRANS) ? HFCSX_BTRANS_THRESHOLD : 0); if (skb) { skb_queue_tail(&bcs->rqueue, skb); schedule_event(bcs, B_RCVBUFREADY); } test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); if (count && skb) goto Begin; return; } /**************************/ /* D-channel send routine */ /**************************/ static void hfcsx_fill_dfifo(struct IsdnCardState *cs) { if (!cs->tx_skb) return; if (cs->tx_skb->len <= 0) return; if (write_fifo(cs, cs->tx_skb, HFCSX_SEL_D_TX, 0)) { dev_kfree_skb_any(cs->tx_skb); cs->tx_skb = NULL; } return; } /**************************/ /* B-channel send routine */ /**************************/ static void hfcsx_fill_fifo(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; if (!bcs->tx_skb) return; if (bcs->tx_skb->len <= 0) return; if (write_fifo(cs, bcs->tx_skb, ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ? HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX, (bcs->mode == L1_MODE_TRANS) ? HFCSX_BTRANS_THRESHOLD : 0)) { bcs->tx_cnt -= bcs->tx_skb->len; if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) && (PACKET_NOACK != bcs->tx_skb->pkt_type)) { u_long flags; spin_lock_irqsave(&bcs->aclock, flags); bcs->ackcnt += bcs->tx_skb->len; spin_unlock_irqrestore(&bcs->aclock, flags); schedule_event(bcs, B_ACKPENDING); } dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); } } /**********************************************/ /* D-channel l1 state call for leased NT-mode */ /**********************************************/ static void dch_nt_l2l1(struct PStack *st, int pr, void *arg) { struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware; switch (pr) { case (PH_DATA | REQUEST): case (PH_PULL | REQUEST): case (PH_PULL | INDICATION): st->l1.l1hw(st, pr, arg); break; case (PH_ACTIVATE | REQUEST): st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL); break; case (PH_TESTLOOP | REQUEST): if (1 & (long) arg) debugl1(cs, "PH_TEST_LOOP B1"); if (2 & (long) arg) debugl1(cs, "PH_TEST_LOOP B2"); if (!(3 & (long) arg)) debugl1(cs, "PH_TEST_LOOP DISABLED"); st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg); break; default: if (cs->debug) debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr); break; } } /***********************/ /* set/reset echo mode */ /***********************/ static int hfcsx_auxcmd(struct IsdnCardState *cs, isdn_ctrl *ic) { unsigned long flags; int i = *(unsigned int *) ic->parm.num; if ((ic->arg == 98) && (!(cs->hw.hfcsx.int_m1 & (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC + HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC)))) { spin_lock_irqsave(&cs->lock, flags); Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 0); /* HFC ST G0 */ udelay(10); cs->hw.hfcsx.sctrl |= SCTRL_MODE_NT; Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl); /* set NT-mode */ udelay(10); Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 1); /* HFC ST G1 */ udelay(10); Write_hfc(cs, HFCSX_STATES, 1 | HFCSX_ACTIVATE | HFCSX_DO_ACTION); cs->dc.hfcsx.ph_state = 1; cs->hw.hfcsx.nt_mode = 1; cs->hw.hfcsx.nt_timer = 0; spin_unlock_irqrestore(&cs->lock, flags); cs->stlist->l2.l2l1 = dch_nt_l2l1; debugl1(cs, "NT mode activated"); return (0); } if ((cs->chanlimit > 1) || (cs->hw.hfcsx.bswapped) || (cs->hw.hfcsx.nt_mode) || (ic->arg != 12)) return (-EINVAL); if (i) { cs->logecho = 1; cs->hw.hfcsx.trm |= 0x20; /* enable echo chan */ cs->hw.hfcsx.int_m1 |= HFCSX_INTS_B2REC; /* reset Channel !!!!! */ } else { cs->logecho = 0; cs->hw.hfcsx.trm &= ~0x20; /* disable echo chan */ cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_B2REC; } cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA; cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA; cs->hw.hfcsx.conn |= 0x10; /* B2-IOM -> B2-ST */ cs->hw.hfcsx.ctmt &= ~2; spin_lock_irqsave(&cs->lock, flags); Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt); Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r); Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl); Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn); Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm); Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1); spin_unlock_irqrestore(&cs->lock, flags); return (0); } /* hfcsx_auxcmd */ /*****************************/ /* E-channel receive routine */ /*****************************/ static void receive_emsg(struct IsdnCardState *cs) { int count = 5; u_char *ptr; struct sk_buff *skb; if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { debugl1(cs, "echo_rec_data blocked"); return; } do { skb = read_fifo(cs, HFCSX_SEL_B2_RX, 0); if (skb) { if (cs->debug & DEB_DLOG_HEX) { ptr = cs->dlog; if ((skb->len) < MAX_DLOG_SPACE / 3 - 10) { *ptr++ = 'E'; *ptr++ = 'C'; *ptr++ = 'H'; *ptr++ = 'O'; *ptr++ = ':'; ptr += QuickHex(ptr, skb->data, skb->len); ptr--; *ptr++ = '\n'; *ptr = 0; HiSax_putstatus(cs, NULL, cs->dlog); } else HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", skb->len); } dev_kfree_skb_any(skb); } } while (--count && skb); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); return; } /* receive_emsg */ /*********************/ /* Interrupt handler */ /*********************/ static irqreturn_t hfcsx_interrupt(int intno, void *dev_id) { struct IsdnCardState *cs = dev_id; u_char exval; struct BCState *bcs; int count = 15; u_long flags; u_char val, stat; if (!(cs->hw.hfcsx.int_m2 & 0x08)) return IRQ_NONE; /* not initialised */ spin_lock_irqsave(&cs->lock, flags); if (HFCSX_ANYINT & (stat = Read_hfc(cs, HFCSX_STATUS))) { val = Read_hfc(cs, HFCSX_INT_S1); if (cs->debug & L1_DEB_ISAC) debugl1(cs, "HFC-SX: stat(%02x) s1(%02x)", stat, val); } else { spin_unlock_irqrestore(&cs->lock, flags); return IRQ_NONE; } if (cs->debug & L1_DEB_ISAC) debugl1(cs, "HFC-SX irq %x %s", val, test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ? "locked" : "unlocked"); val &= cs->hw.hfcsx.int_m1; if (val & 0x40) { /* state machine irq */ exval = Read_hfc(cs, HFCSX_STATES) & 0xf; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcsx.ph_state, exval); cs->dc.hfcsx.ph_state = exval; schedule_event(cs, D_L1STATECHANGE); val &= ~0x40; } if (val & 0x80) { /* timer irq */ if (cs->hw.hfcsx.nt_mode) { if ((--cs->hw.hfcsx.nt_timer) < 0) schedule_event(cs, D_L1STATECHANGE); } val &= ~0x80; Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER); } while (val) { if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { cs->hw.hfcsx.int_s1 |= val; spin_unlock_irqrestore(&cs->lock, flags); return IRQ_HANDLED; } if (cs->hw.hfcsx.int_s1 & 0x18) { exval = val; val = cs->hw.hfcsx.int_s1; cs->hw.hfcsx.int_s1 = exval; } if (val & 0x08) { if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) { if (cs->debug) debugl1(cs, "hfcsx spurious 0x08 IRQ"); } else main_rec_hfcsx(bcs); } if (val & 0x10) { if (cs->logecho) receive_emsg(cs); else if (!(bcs = Sel_BCS(cs, 1))) { if (cs->debug) debugl1(cs, "hfcsx spurious 0x10 IRQ"); } else main_rec_hfcsx(bcs); } if (val & 0x01) { if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) { if (cs->debug) debugl1(cs, "hfcsx spurious 0x01 IRQ"); } else { if (bcs->tx_skb) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "fill_data %d blocked", bcs->channel); } else { if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "fill_data %d blocked", bcs->channel); } else { schedule_event(bcs, B_XMTBUFREADY); } } } } if (val & 0x02) { if (!(bcs = Sel_BCS(cs, 1))) { if (cs->debug) debugl1(cs, "hfcsx spurious 0x02 IRQ"); } else { if (bcs->tx_skb) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "fill_data %d blocked", bcs->channel); } else { if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "fill_data %d blocked", bcs->channel); } else { schedule_event(bcs, B_XMTBUFREADY); } } } } if (val & 0x20) { /* receive dframe */ receive_dmsg(cs); } if (val & 0x04) { /* dframe transmitted */ if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) del_timer(&cs->dbusytimer); if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags)) schedule_event(cs, D_CLEARBUSY); if (cs->tx_skb) { if (cs->tx_skb->len) { if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_dfifo(cs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else { debugl1(cs, "hfcsx_fill_dfifo irq blocked"); } goto afterXPR; } else { dev_kfree_skb_irq(cs->tx_skb); cs->tx_cnt = 0; cs->tx_skb = NULL; } } if ((cs->tx_skb = skb_dequeue(&cs->sq))) { cs->tx_cnt = 0; if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_dfifo(cs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else { debugl1(cs, "hfcsx_fill_dfifo irq blocked"); } } else schedule_event(cs, D_XMTBUFREADY); } afterXPR: if (cs->hw.hfcsx.int_s1 && count--) { val = cs->hw.hfcsx.int_s1; cs->hw.hfcsx.int_s1 = 0; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "HFC-SX irq %x loop %d", val, 15 - count); } else val = 0; } spin_unlock_irqrestore(&cs->lock, flags); return IRQ_HANDLED; } /********************************************************************/ /* timer callback for D-chan busy resolution. Currently no function */ /********************************************************************/ static void hfcsx_dbusy_timer(struct timer_list *t) { } /*************************************/ /* Layer 1 D-channel hardware access */ /*************************************/ static void HFCSX_l1hw(struct PStack *st, int pr, void *arg) { struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware; struct sk_buff *skb = arg; u_long flags; switch (pr) { case (PH_DATA | REQUEST): if (cs->debug & DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len); if (cs->debug & DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0); spin_lock_irqsave(&cs->lock, flags); if (cs->tx_skb) { skb_queue_tail(&cs->sq, skb); #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA Queued", 0); #endif } else { cs->tx_skb = skb; cs->tx_cnt = 0; #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA", 0); #endif if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_dfifo(cs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "hfcsx_fill_dfifo blocked"); } spin_unlock_irqrestore(&cs->lock, flags); break; case (PH_PULL | INDICATION): spin_lock_irqsave(&cs->lock, flags); if (cs->tx_skb) { if (cs->debug & L1_DEB_WARN) debugl1(cs, " l2l1 tx_skb exist this shouldn't happen"); skb_queue_tail(&cs->sq, skb); spin_unlock_irqrestore(&cs->lock, flags); break; } if (cs->debug & DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len); if (cs->debug & DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0); cs->tx_skb = skb; cs->tx_cnt = 0; #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA_PULLED", 0); #endif if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_dfifo(cs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "hfcsx_fill_dfifo blocked"); spin_unlock_irqrestore(&cs->lock, flags); break; case (PH_PULL | REQUEST): #ifdef L2FRAME_DEBUG /* psa */ if (cs->debug & L1_DEB_LAPD) debugl1(cs, "-> PH_REQUEST_PULL"); #endif if (!cs->tx_skb) { test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL | CONFIRM, NULL); } else test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; case (HW_RESET | REQUEST): spin_lock_irqsave(&cs->lock, flags); Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 3); /* HFC ST 3 */ udelay(6); Write_hfc(cs, HFCSX_STATES, 3); /* HFC ST 2 */ cs->hw.hfcsx.mst_m |= HFCSX_MASTER; Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m); Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION); spin_unlock_irqrestore(&cs->lock, flags); l1_msg(cs, HW_POWERUP | CONFIRM, NULL); break; case (HW_ENABLE | REQUEST): spin_lock_irqsave(&cs->lock, flags); Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION); spin_unlock_irqrestore(&cs->lock, flags); break; case (HW_DEACTIVATE | REQUEST): spin_lock_irqsave(&cs->lock, flags); cs->hw.hfcsx.mst_m &= ~HFCSX_MASTER; Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m); spin_unlock_irqrestore(&cs->lock, flags); break; case (HW_INFO3 | REQUEST): spin_lock_irqsave(&cs->lock, flags); cs->hw.hfcsx.mst_m |= HFCSX_MASTER; Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m); spin_unlock_irqrestore(&cs->lock, flags); break; case (HW_TESTLOOP | REQUEST): spin_lock_irqsave(&cs->lock, flags); switch ((long) arg) { case (1): Write_hfc(cs, HFCSX_B1_SSL, 0x80); /* tx slot */ Write_hfc(cs, HFCSX_B1_RSL, 0x80); /* rx slot */ cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~7) | 1; Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn); break; case (2): Write_hfc(cs, HFCSX_B2_SSL, 0x81); /* tx slot */ Write_hfc(cs, HFCSX_B2_RSL, 0x81); /* rx slot */ cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~0x38) | 0x08; Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn); break; default: spin_unlock_irqrestore(&cs->lock, flags); if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfcsx_l1hw loop invalid %4lx", (unsigned long)arg); return; } cs->hw.hfcsx.trm |= 0x80; /* enable IOM-loop */ Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm); spin_unlock_irqrestore(&cs->lock, flags); break; default: if (cs->debug & L1_DEB_WARN) debugl1(cs, "hfcsx_l1hw unknown pr %4x", pr); break; } } /***********************************************/ /* called during init setting l1 stack pointer */ /***********************************************/ static void setstack_hfcsx(struct PStack *st, struct IsdnCardState *cs) { st->l1.l1hw = HFCSX_l1hw; } /**************************************/ /* send B-channel data if not blocked */ /**************************************/ static void hfcsx_send_data(struct BCState *bcs) { struct IsdnCardState *cs = bcs->cs; if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) { hfcsx_fill_fifo(bcs); test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags); } else debugl1(cs, "send_data %d blocked", bcs->channel); } /***************************************************************/ /* activate/deactivate hardware for selected channels and mode */ /***************************************************************/ static void mode_hfcsx(struct BCState *bcs, int mode, int bc) { struct IsdnCardState *cs = bcs->cs; int fifo2; if (cs->debug & L1_DEB_HSCX) debugl1(cs, "HFCSX bchannel mode %d bchan %d/%d", mode, bc, bcs->channel); bcs->mode = mode; bcs->channel = bc; fifo2 = bc; if (cs->chanlimit > 1) { cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */ cs->hw.hfcsx.sctrl_e &= ~0x80; } else { if (bc) { if (mode != L1_MODE_NULL) { cs->hw.hfcsx.bswapped = 1; /* B1 and B2 exchanged */ cs->hw.hfcsx.sctrl_e |= 0x80; } else { cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */ cs->hw.hfcsx.sctrl_e &= ~0x80; } fifo2 = 0; } else { cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */ cs->hw.hfcsx.sctrl_e &= ~0x80; } } switch (mode) { case (L1_MODE_NULL): if (bc) { cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA; cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA; } else { cs->hw.hfcsx.sctrl &= ~SCTRL_B1_ENA; cs->hw.hfcsx.sctrl_r &= ~SCTRL_B1_ENA; } if (fifo2) { cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC); } else { cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC); } break; case (L1_MODE_TRANS): if (bc) { cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA; cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA; } else { cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA; cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA; } if (fifo2) { cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC); cs->hw.hfcsx.ctmt |= 2; cs->hw.hfcsx.conn &= ~0x18; } else { cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC); cs->hw.hfcsx.ctmt |= 1; cs->hw.hfcsx.conn &= ~0x03; } break; case (L1_MODE_HDLC): if (bc) { cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA; cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA; } else { cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA; cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA; } if (fifo2) { cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC); cs->hw.hfcsx.ctmt &= ~2; cs->hw.hfcsx.conn &= ~0x18; } else { cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC); cs->hw.hfcsx.ctmt &= ~1; cs->hw.hfcsx.conn &= ~0x03; } break; case (L1_MODE_EXTRN): if (bc) { cs->hw.hfcsx.conn |= 0x10; cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA; cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA; cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC); } else { cs->hw.hfcsx.conn |= 0x02; cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA; cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA; cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC); } break; } Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e); Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1); Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl); Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r); Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt); Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn); if (mode != L1_MODE_EXTRN) { reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX); reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX); } } /******************************/ /* Layer2 -> Layer 1 Transfer */ /******************************/ static void hfcsx_l2l1(struct PStack *st, int pr, void *arg) { struct BCState *bcs = st->l1.bcs; struct sk_buff *skb = arg; u_long flags; switch (pr) { case (PH_DATA | REQUEST): spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { skb_queue_tail(&bcs->squeue, skb); } else { bcs->tx_skb = skb; // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->cs->BC_Send_Data(bcs); } spin_unlock_irqrestore(&bcs->cs->lock, flags); break; case (PH_PULL | INDICATION): spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { printk(KERN_WARNING "%s: this shouldn't happen\n", __func__); } else { // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->tx_skb = skb; bcs->cs->BC_Send_Data(bcs); } spin_unlock_irqrestore(&bcs->cs->lock, flags); break; case (PH_PULL | REQUEST): if (!bcs->tx_skb) { test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL | CONFIRM, NULL); } else test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; case (PH_ACTIVATE | REQUEST): spin_lock_irqsave(&bcs->cs->lock, flags); test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag); mode_hfcsx(bcs, st->l1.mode, st->l1.bc); spin_unlock_irqrestore(&bcs->cs->lock, flags); l1_msg_b(st, pr, arg); break; case (PH_DEACTIVATE | REQUEST): l1_msg_b(st, pr, arg); break; case (PH_DEACTIVATE | CONFIRM): spin_lock_irqsave(&bcs->cs->lock, flags); test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag); test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); mode_hfcsx(bcs, 0, st->l1.bc); spin_unlock_irqrestore(&bcs->cs->lock, flags); st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL); break; } } /******************************************/ /* deactivate B-channel access and queues */ /******************************************/ static void close_hfcsx(struct BCState *bcs) { mode_hfcsx(bcs, 0, bcs->channel); if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) { skb_queue_purge(&bcs->rqueue); skb_queue_purge(&bcs->squeue); if (bcs->tx_skb) { dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); } } } /*************************************/ /* init B-channel queues and control */ /*************************************/ static int open_hfcsxstate(struct IsdnCardState *cs, struct BCState *bcs) { if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) { skb_queue_head_init(&bcs->rqueue); skb_queue_head_init(&bcs->squeue); } bcs->tx_skb = NULL; test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag); bcs->event = 0; bcs->tx_cnt = 0; return (0); } /*********************************/ /* inits the stack for B-channel */ /*********************************/ static int setstack_2b(struct PStack *st, struct BCState *bcs) { bcs->channel = st->l1.bc; if (open_hfcsxstate(st->l1.hardware, bcs)) return (-1); st->l1.bcs = bcs; st->l2.l2l1 = hfcsx_l2l1; setstack_manager(st); bcs->st = st; setstack_l1_B(st); return (0); } /***************************/ /* handle L1 state changes */ /***************************/ static void hfcsx_bh(struct work_struct *work) { struct IsdnCardState *cs = container_of(work, struct IsdnCardState, tqueue); u_long flags; if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) { if (!cs->hw.hfcsx.nt_mode) switch (cs->dc.hfcsx.ph_state) { case (0): l1_msg(cs, HW_RESET | INDICATION, NULL); break; case (3): l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL); break; case (8): l1_msg(cs, HW_RSYNC | INDICATION, NULL); break; case (6): l1_msg(cs, HW_INFO2 | INDICATION, NULL); break; case (7): l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL); break; default: break; } else { switch (cs->dc.hfcsx.ph_state) { case (2): spin_lock_irqsave(&cs->lock, flags); if (cs->hw.hfcsx.nt_timer < 0) { cs->hw.hfcsx.nt_timer = 0; cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER; Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1); /* Clear already pending ints */ Read_hfc(cs, HFCSX_INT_S1); Write_hfc(cs, HFCSX_STATES, 4 | HFCSX_LOAD_STATE); udelay(10); Write_hfc(cs, HFCSX_STATES, 4); cs->dc.hfcsx.ph_state = 4; } else { cs->hw.hfcsx.int_m1 |= HFCSX_INTS_TIMER; Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1); cs->hw.hfcsx.ctmt &= ~HFCSX_AUTO_TIMER; cs->hw.hfcsx.ctmt |= HFCSX_TIM3_125; Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER); Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER); cs->hw.hfcsx.nt_timer = NT_T1_COUNT; Write_hfc(cs, HFCSX_STATES, 2 | HFCSX_NT_G2_G3); /* allow G2 -> G3 transition */ } spin_unlock_irqrestore(&cs->lock, flags); break; case (1): case (3): case (4): spin_lock_irqsave(&cs->lock, flags); cs->hw.hfcsx.nt_timer = 0; cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER; Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1); spin_unlock_irqrestore(&cs->lock, flags); break; default: break; } } } if (test_and_clear_bit(D_RCVBUFREADY, &cs->event)) DChannel_proc_rcv(cs); if (test_and_clear_bit(D_XMTBUFREADY, &cs->event)) DChannel_proc_xmt(cs); } /********************************/ /* called for card init message */ /********************************/ static void inithfcsx(struct IsdnCardState *cs) { cs->setstack_d = setstack_hfcsx; cs->BC_Send_Data = &hfcsx_send_data; cs->bcs[0].BC_SetStack = setstack_2b; cs->bcs[1].BC_SetStack = setstack_2b; cs->bcs[0].BC_Close = close_hfcsx; cs->bcs[1].BC_Close = close_hfcsx; mode_hfcsx(cs->bcs, 0, 0); mode_hfcsx(cs->bcs + 1, 0, 1); } /*******************************************/ /* handle card messages from control layer */ /*******************************************/ static int hfcsx_card_msg(struct IsdnCardState *cs, int mt, void *arg) { u_long flags; if (cs->debug & L1_DEB_ISAC) debugl1(cs, "HFCSX: card_msg %x", mt); switch (mt) { case CARD_RESET: spin_lock_irqsave(&cs->lock, flags); reset_hfcsx(cs); spin_unlock_irqrestore(&cs->lock, flags); return (0); case CARD_RELEASE: release_io_hfcsx(cs); return (0); case CARD_INIT: spin_lock_irqsave(&cs->lock, flags); inithfcsx(cs); spin_unlock_irqrestore(&cs->lock, flags); msleep(80); /* Timeout 80ms */ /* now switch timer interrupt off */ spin_lock_irqsave(&cs->lock, flags); cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER; Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1); /* reinit mode reg */ Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m); spin_unlock_irqrestore(&cs->lock, flags); return (0); case CARD_TEST: return (0); } return (0); } #ifdef __ISAPNP__ static struct isapnp_device_id hfc_ids[] = { { ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620), ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620), (unsigned long) "Teles 16.3c2" }, { 0, } }; static struct isapnp_device_id *ipid = &hfc_ids[0]; static struct pnp_card *pnp_c = NULL; #endif int setup_hfcsx(struct IsdnCard *card) { struct IsdnCardState *cs = card->cs; char tmp[64]; strcpy(tmp, hfcsx_revision); printk(KERN_INFO "HiSax: HFC-SX driver Rev. %s\n", HiSax_getrev(tmp)); #ifdef __ISAPNP__ if (!card->para[1] && isapnp_present()) { struct pnp_dev *pnp_d; while (ipid->card_vendor) { if ((pnp_c = pnp_find_card(ipid->card_vendor, ipid->card_device, pnp_c))) { pnp_d = NULL; if ((pnp_d = pnp_find_dev(pnp_c, ipid->vendor, ipid->function, pnp_d))) { int err; printk(KERN_INFO "HiSax: %s detected\n", (char *)ipid->driver_data); pnp_disable_dev(pnp_d); err = pnp_activate_dev(pnp_d); if (err < 0) { printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n", __func__, err); return (0); } card->para[1] = pnp_port_start(pnp_d, 0); card->para[0] = pnp_irq(pnp_d, 0); if (card->para[0] == -1 || !card->para[1]) { printk(KERN_ERR "HFC PnP:some resources are missing %ld/%lx\n", card->para[0], card->para[1]); pnp_disable_dev(pnp_d); return (0); } break; } else { printk(KERN_ERR "HFC PnP: PnP error card found, no device\n"); } } ipid++; pnp_c = NULL; } if (!ipid->card_vendor) { printk(KERN_INFO "HFC PnP: no ISAPnP card found\n"); return (0); } } #endif cs->hw.hfcsx.base = card->para[1] & 0xfffe; cs->irq = card->para[0]; cs->hw.hfcsx.int_s1 = 0; cs->dc.hfcsx.ph_state = 0; cs->hw.hfcsx.fifo = 255; if ((cs->typ == ISDN_CTYPE_HFC_SX) || (cs->typ == ISDN_CTYPE_HFC_SP_PCMCIA)) { if ((!cs->hw.hfcsx.base) || !request_region(cs->hw.hfcsx.base, 2, "HFCSX isdn")) { printk(KERN_WARNING "HiSax: HFC-SX io-base %#lx already in use\n", cs->hw.hfcsx.base); return (0); } byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.base & 0xFF); byteout(cs->hw.hfcsx.base + 1, ((cs->hw.hfcsx.base >> 8) & 3) | 0x54); udelay(10); cs->hw.hfcsx.chip = Read_hfc(cs, HFCSX_CHIP_ID); switch (cs->hw.hfcsx.chip >> 4) { case 1: tmp[0] = '+'; break; case 9: tmp[0] = 'P'; break; default: printk(KERN_WARNING "HFC-SX: invalid chip id 0x%x\n", cs->hw.hfcsx.chip >> 4); release_region(cs->hw.hfcsx.base, 2); return (0); } if (!ccd_sp_irqtab[cs->irq & 0xF]) { printk(KERN_WARNING "HFC_SX: invalid irq %d specified\n", cs->irq & 0xF); release_region(cs->hw.hfcsx.base, 2); return (0); } if (!(cs->hw.hfcsx.extra = kmalloc(sizeof(struct hfcsx_extra), GFP_ATOMIC))) { release_region(cs->hw.hfcsx.base, 2); printk(KERN_WARNING "HFC-SX: unable to allocate memory\n"); return (0); } printk(KERN_INFO "HFC-S%c chip detected at base 0x%x IRQ %d HZ %d\n", tmp[0], (u_int) cs->hw.hfcsx.base, cs->irq, HZ); cs->hw.hfcsx.int_m2 = 0; /* disable alle interrupts */ cs->hw.hfcsx.int_m1 = 0; Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1); Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2); } else return (0); /* no valid card type */ timer_setup(&cs->dbusytimer, hfcsx_dbusy_timer, 0); INIT_WORK(&cs->tqueue, hfcsx_bh); cs->readisac = NULL; cs->writeisac = NULL; cs->readisacfifo = NULL; cs->writeisacfifo = NULL; cs->BC_Read_Reg = NULL; cs->BC_Write_Reg = NULL; cs->irq_func = &hfcsx_interrupt; cs->hw.hfcsx.b_fifo_size = 0; /* fifo size still unknown */ cs->hw.hfcsx.cirm = ccd_sp_irqtab[cs->irq & 0xF]; /* RAM not evaluated */ timer_setup(&cs->hw.hfcsx.timer, hfcsx_Timer, 0); reset_hfcsx(cs); cs->cardmsg = &hfcsx_card_msg; cs->auxcmd = &hfcsx_auxcmd; return (1); }