/* * Elonics E4000 silicon tuner driver * * Copyright (C) 2012 Antti Palosaari * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "e4000_priv.h" /* Max transfer size done by I2C transfer functions */ #define MAX_XFER_SIZE 64 /* write multiple registers */ static int e4000_wr_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len) { int ret; u8 buf[MAX_XFER_SIZE]; struct i2c_msg msg[1] = { { .addr = priv->cfg->i2c_addr, .flags = 0, .len = 1 + len, .buf = buf, } }; if (1 + len > sizeof(buf)) { dev_warn(&priv->i2c->dev, "%s: i2c wr reg=%04x: len=%d is too big!\n", KBUILD_MODNAME, reg, len); return -EINVAL; } buf[0] = reg; memcpy(&buf[1], val, len); ret = i2c_transfer(priv->i2c, msg, 1); if (ret == 1) { ret = 0; } else { dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%02x len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* read multiple registers */ static int e4000_rd_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len) { int ret; u8 buf[MAX_XFER_SIZE]; struct i2c_msg msg[2] = { { .addr = priv->cfg->i2c_addr, .flags = 0, .len = 1, .buf = ®, }, { .addr = priv->cfg->i2c_addr, .flags = I2C_M_RD, .len = len, .buf = buf, } }; if (len > sizeof(buf)) { dev_warn(&priv->i2c->dev, "%s: i2c rd reg=%04x: len=%d is too big!\n", KBUILD_MODNAME, reg, len); return -EINVAL; } ret = i2c_transfer(priv->i2c, msg, 2); if (ret == 2) { memcpy(val, buf, len); ret = 0; } else { dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%02x len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* write single register */ static int e4000_wr_reg(struct e4000_priv *priv, u8 reg, u8 val) { return e4000_wr_regs(priv, reg, &val, 1); } /* read single register */ static int e4000_rd_reg(struct e4000_priv *priv, u8 reg, u8 *val) { return e4000_rd_regs(priv, reg, val, 1); } static int e4000_init(struct dvb_frontend *fe) { struct e4000_priv *priv = fe->tuner_priv; int ret; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* dummy I2C to ensure I2C wakes up */ ret = e4000_wr_reg(priv, 0x02, 0x40); /* reset */ ret = e4000_wr_reg(priv, 0x00, 0x01); if (ret < 0) goto err; /* disable output clock */ ret = e4000_wr_reg(priv, 0x06, 0x00); if (ret < 0) goto err; ret = e4000_wr_reg(priv, 0x7a, 0x96); if (ret < 0) goto err; /* configure gains */ ret = e4000_wr_regs(priv, 0x7e, "\x01\xfe", 2); if (ret < 0) goto err; ret = e4000_wr_reg(priv, 0x82, 0x00); if (ret < 0) goto err; ret = e4000_wr_reg(priv, 0x24, 0x05); if (ret < 0) goto err; ret = e4000_wr_regs(priv, 0x87, "\x20\x01", 2); if (ret < 0) goto err; ret = e4000_wr_regs(priv, 0x9f, "\x7f\x07", 2); if (ret < 0) goto err; /* DC offset control */ ret = e4000_wr_reg(priv, 0x2d, 0x1f); if (ret < 0) goto err; ret = e4000_wr_regs(priv, 0x70, "\x01\x01", 2); if (ret < 0) goto err; /* gain control */ ret = e4000_wr_reg(priv, 0x1a, 0x17); if (ret < 0) goto err; ret = e4000_wr_reg(priv, 0x1f, 0x1a); if (ret < 0) goto err; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int e4000_sleep(struct dvb_frontend *fe) { struct e4000_priv *priv = fe->tuner_priv; int ret; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = e4000_wr_reg(priv, 0x00, 0x00); if (ret < 0) goto err; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int e4000_set_params(struct dvb_frontend *fe) { struct e4000_priv *priv = fe->tuner_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, i, sigma_delta; unsigned int f_vco; u8 buf[5], i_data[4], q_data[4]; dev_dbg(&priv->i2c->dev, "%s: delivery_system=%d frequency=%d bandwidth_hz=%d\n", __func__, c->delivery_system, c->frequency, c->bandwidth_hz); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* gain control manual */ ret = e4000_wr_reg(priv, 0x1a, 0x00); if (ret < 0) goto err; /* PLL */ for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) { if (c->frequency <= e4000_pll_lut[i].freq) break; } if (i == ARRAY_SIZE(e4000_pll_lut)) goto err; /* * Note: Currently f_vco overflows when c->frequency is 1 073 741 824 Hz * or more. */ f_vco = c->frequency * e4000_pll_lut[i].mul; sigma_delta = 0x10000UL * (f_vco % priv->cfg->clock) / priv->cfg->clock; buf[0] = f_vco / priv->cfg->clock; buf[1] = (sigma_delta >> 0) & 0xff; buf[2] = (sigma_delta >> 8) & 0xff; buf[3] = 0x00; buf[4] = e4000_pll_lut[i].div; dev_dbg(&priv->i2c->dev, "%s: f_vco=%u pll div=%d sigma_delta=%04x\n", __func__, f_vco, buf[0], sigma_delta); ret = e4000_wr_regs(priv, 0x09, buf, 5); if (ret < 0) goto err; /* LNA filter (RF filter) */ for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) { if (c->frequency <= e400_lna_filter_lut[i].freq) break; } if (i == ARRAY_SIZE(e400_lna_filter_lut)) goto err; ret = e4000_wr_reg(priv, 0x10, e400_lna_filter_lut[i].val); if (ret < 0) goto err; /* IF filters */ for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) { if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq) break; } if (i == ARRAY_SIZE(e4000_if_filter_lut)) goto err; buf[0] = e4000_if_filter_lut[i].reg11_val; buf[1] = e4000_if_filter_lut[i].reg12_val; ret = e4000_wr_regs(priv, 0x11, buf, 2); if (ret < 0) goto err; /* frequency band */ for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) { if (c->frequency <= e4000_band_lut[i].freq) break; } if (i == ARRAY_SIZE(e4000_band_lut)) goto err; ret = e4000_wr_reg(priv, 0x07, e4000_band_lut[i].reg07_val); if (ret < 0) goto err; ret = e4000_wr_reg(priv, 0x78, e4000_band_lut[i].reg78_val); if (ret < 0) goto err; /* DC offset */ for (i = 0; i < 4; i++) { if (i == 0) ret = e4000_wr_regs(priv, 0x15, "\x00\x7e\x24", 3); else if (i == 1) ret = e4000_wr_regs(priv, 0x15, "\x00\x7f", 2); else if (i == 2) ret = e4000_wr_regs(priv, 0x15, "\x01", 1); else ret = e4000_wr_regs(priv, 0x16, "\x7e", 1); if (ret < 0) goto err; ret = e4000_wr_reg(priv, 0x29, 0x01); if (ret < 0) goto err; ret = e4000_rd_regs(priv, 0x2a, buf, 3); if (ret < 0) goto err; i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f); q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f); } swap(q_data[2], q_data[3]); swap(i_data[2], i_data[3]); ret = e4000_wr_regs(priv, 0x50, q_data, 4); if (ret < 0) goto err; ret = e4000_wr_regs(priv, 0x60, i_data, 4); if (ret < 0) goto err; /* gain control auto */ ret = e4000_wr_reg(priv, 0x1a, 0x17); if (ret < 0) goto err; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { struct e4000_priv *priv = fe->tuner_priv; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); *frequency = 0; /* Zero-IF */ return 0; } static int e4000_release(struct dvb_frontend *fe) { struct e4000_priv *priv = fe->tuner_priv; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); kfree(fe->tuner_priv); return 0; } static const struct dvb_tuner_ops e4000_tuner_ops = { .info = { .name = "Elonics E4000", .frequency_min = 174000000, .frequency_max = 862000000, }, .release = e4000_release, .init = e4000_init, .sleep = e4000_sleep, .set_params = e4000_set_params, .get_if_frequency = e4000_get_if_frequency, }; struct dvb_frontend *e4000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct e4000_config *cfg) { struct e4000_priv *priv; int ret; u8 chip_id; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); priv = kzalloc(sizeof(struct e4000_priv), GFP_KERNEL); if (!priv) { ret = -ENOMEM; dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME); goto err; } priv->cfg = cfg; priv->i2c = i2c; /* check if the tuner is there */ ret = e4000_rd_reg(priv, 0x02, &chip_id); if (ret < 0) goto err; dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id); if (chip_id != 0x40) goto err; /* put sleep as chip seems to be in normal mode by default */ ret = e4000_wr_reg(priv, 0x00, 0x00); if (ret < 0) goto err; dev_info(&priv->i2c->dev, "%s: Elonics E4000 successfully identified\n", KBUILD_MODNAME); fe->tuner_priv = priv; memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops, sizeof(struct dvb_tuner_ops)); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return fe; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret); kfree(priv); return NULL; } EXPORT_SYMBOL(e4000_attach); MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver"); MODULE_AUTHOR("Antti Palosaari "); MODULE_LICENSE("GPL");