/* * Front panel driver for Linux * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad) * connected to a parallel printer port. * * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit * serial module compatible with Samsung's KS0074. The pins may be connected in * any combination, everything is programmable. * * The keypad consists in a matrix of push buttons connecting input pins to * data output pins or to the ground. The combinations have to be hard-coded * in the driver, though several profiles exist and adding new ones is easy. * * Several profiles are provided for commonly found LCD+keypad modules on the * market, such as those found in Nexcom's appliances. * * FIXME: * - the initialization/deinitialization process is very dirty and should * be rewritten. It may even be buggy. * * TODO: * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs) * - make the LCD a part of a virtual screen of Vx*Vy * - make the inputs list smp-safe * - change the keyboard to a double mapping : signals -> key_id -> values * so that applications can change values without knowing signals * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/miscdevice.h> #include <linux/slab.h> #include <linux/ioport.h> #include <linux/fcntl.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/ctype.h> #include <linux/parport.h> #include <linux/list.h> #include <linux/notifier.h> #include <linux/reboot.h> #include <linux/workqueue.h> #include <generated/utsrelease.h> #include <linux/io.h> #include <linux/uaccess.h> #define LCD_MINOR 156 #define KEYPAD_MINOR 185 #define LCD_MAXBYTES 256 /* max burst write */ #define KEYPAD_BUFFER 64 /* poll the keyboard this every second */ #define INPUT_POLL_TIME (HZ / 50) /* a key starts to repeat after this times INPUT_POLL_TIME */ #define KEYPAD_REP_START (10) /* a key repeats this times INPUT_POLL_TIME */ #define KEYPAD_REP_DELAY (2) /* keep the light on this many seconds for each flash */ #define FLASH_LIGHT_TEMPO (4) /* converts an r_str() input to an active high, bits string : 000BAOSE */ #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3) #define PNL_PBUSY 0x80 /* inverted input, active low */ #define PNL_PACK 0x40 /* direct input, active low */ #define PNL_POUTPA 0x20 /* direct input, active high */ #define PNL_PSELECD 0x10 /* direct input, active high */ #define PNL_PERRORP 0x08 /* direct input, active low */ #define PNL_PBIDIR 0x20 /* bi-directional ports */ /* high to read data in or-ed with data out */ #define PNL_PINTEN 0x10 #define PNL_PSELECP 0x08 /* inverted output, active low */ #define PNL_PINITP 0x04 /* direct output, active low */ #define PNL_PAUTOLF 0x02 /* inverted output, active low */ #define PNL_PSTROBE 0x01 /* inverted output */ #define PNL_PD0 0x01 #define PNL_PD1 0x02 #define PNL_PD2 0x04 #define PNL_PD3 0x08 #define PNL_PD4 0x10 #define PNL_PD5 0x20 #define PNL_PD6 0x40 #define PNL_PD7 0x80 #define PIN_NONE 0 #define PIN_STROBE 1 #define PIN_D0 2 #define PIN_D1 3 #define PIN_D2 4 #define PIN_D3 5 #define PIN_D4 6 #define PIN_D5 7 #define PIN_D6 8 #define PIN_D7 9 #define PIN_AUTOLF 14 #define PIN_INITP 16 #define PIN_SELECP 17 #define PIN_NOT_SET 127 #define LCD_FLAG_B 0x0004 /* blink on */ #define LCD_FLAG_C 0x0008 /* cursor on */ #define LCD_FLAG_D 0x0010 /* display on */ #define LCD_FLAG_F 0x0020 /* large font mode */ #define LCD_FLAG_N 0x0040 /* 2-rows mode */ #define LCD_FLAG_L 0x0080 /* backlight enabled */ /* LCD commands */ #define LCD_CMD_DISPLAY_CLEAR 0x01 /* Clear entire display */ #define LCD_CMD_ENTRY_MODE 0x04 /* Set entry mode */ #define LCD_CMD_CURSOR_INC 0x02 /* Increment cursor */ #define LCD_CMD_DISPLAY_CTRL 0x08 /* Display control */ #define LCD_CMD_DISPLAY_ON 0x04 /* Set display on */ #define LCD_CMD_CURSOR_ON 0x02 /* Set cursor on */ #define LCD_CMD_BLINK_ON 0x01 /* Set blink on */ #define LCD_CMD_SHIFT 0x10 /* Shift cursor/display */ #define LCD_CMD_DISPLAY_SHIFT 0x08 /* Shift display instead of cursor */ #define LCD_CMD_SHIFT_RIGHT 0x04 /* Shift display/cursor to the right */ #define LCD_CMD_FUNCTION_SET 0x20 /* Set function */ #define LCD_CMD_DATA_LEN_8BITS 0x10 /* Set data length to 8 bits */ #define LCD_CMD_TWO_LINES 0x08 /* Set to two display lines */ #define LCD_CMD_FONT_5X10_DOTS 0x04 /* Set char font to 5x10 dots */ #define LCD_CMD_SET_CGRAM_ADDR 0x40 /* Set char generator RAM address */ #define LCD_CMD_SET_DDRAM_ADDR 0x80 /* Set display data RAM address */ #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */ #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */ #define NOT_SET -1 /* macros to simplify use of the parallel port */ #define r_ctr(x) (parport_read_control((x)->port)) #define r_dtr(x) (parport_read_data((x)->port)) #define r_str(x) (parport_read_status((x)->port)) #define w_ctr(x, y) (parport_write_control((x)->port, (y))) #define w_dtr(x, y) (parport_write_data((x)->port, (y))) /* this defines which bits are to be used and which ones to be ignored */ /* logical or of the output bits involved in the scan matrix */ static __u8 scan_mask_o; /* logical or of the input bits involved in the scan matrix */ static __u8 scan_mask_i; enum input_type { INPUT_TYPE_STD, INPUT_TYPE_KBD, }; enum input_state { INPUT_ST_LOW, INPUT_ST_RISING, INPUT_ST_HIGH, INPUT_ST_FALLING, }; struct logical_input { struct list_head list; __u64 mask; __u64 value; enum input_type type; enum input_state state; __u8 rise_time, fall_time; __u8 rise_timer, fall_timer, high_timer; union { struct { /* valid when type == INPUT_TYPE_STD */ void (*press_fct)(int); void (*release_fct)(int); int press_data; int release_data; } std; struct { /* valid when type == INPUT_TYPE_KBD */ /* strings can be non null-terminated */ char press_str[sizeof(void *) + sizeof(int)]; char repeat_str[sizeof(void *) + sizeof(int)]; char release_str[sizeof(void *) + sizeof(int)]; } kbd; } u; }; static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */ /* physical contacts history * Physical contacts are a 45 bits string of 9 groups of 5 bits each. * The 8 lower groups correspond to output bits 0 to 7, and the 9th group * corresponds to the ground. * Within each group, bits are stored in the same order as read on the port : * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0). * So, each __u64 is represented like this : * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00> */ /* what has just been read from the I/O ports */ static __u64 phys_read; /* previous phys_read */ static __u64 phys_read_prev; /* stabilized phys_read (phys_read|phys_read_prev) */ static __u64 phys_curr; /* previous phys_curr */ static __u64 phys_prev; /* 0 means that at least one logical signal needs be computed */ static char inputs_stable; /* these variables are specific to the keypad */ static struct { bool enabled; } keypad; static char keypad_buffer[KEYPAD_BUFFER]; static int keypad_buflen; static int keypad_start; static char keypressed; static wait_queue_head_t keypad_read_wait; /* lcd-specific variables */ static struct { bool enabled; bool initialized; bool must_clear; int height; int width; int bwidth; int hwidth; int charset; int proto; struct delayed_work bl_work; struct mutex bl_tempo_lock; /* Protects access to bl_tempo */ bool bl_tempo; /* TODO: use union here? */ struct { int e; int rs; int rw; int cl; int da; int bl; } pins; /* contains the LCD config state */ unsigned long int flags; /* Contains the LCD X and Y offset */ struct { unsigned long int x; unsigned long int y; } addr; /* Current escape sequence and it's length or -1 if outside */ struct { char buf[LCD_ESCAPE_LEN + 1]; int len; } esc_seq; } lcd; /* Needed only for init */ static int selected_lcd_type = NOT_SET; /* * Bit masks to convert LCD signals to parallel port outputs. * _d_ are values for data port, _c_ are for control port. * [0] = signal OFF, [1] = signal ON, [2] = mask */ #define BIT_CLR 0 #define BIT_SET 1 #define BIT_MSK 2 #define BIT_STATES 3 /* * one entry for each bit on the LCD */ #define LCD_BIT_E 0 #define LCD_BIT_RS 1 #define LCD_BIT_RW 2 #define LCD_BIT_BL 3 #define LCD_BIT_CL 4 #define LCD_BIT_DA 5 #define LCD_BITS 6 /* * each bit can be either connected to a DATA or CTRL port */ #define LCD_PORT_C 0 #define LCD_PORT_D 1 #define LCD_PORTS 2 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES]; /* * LCD protocols */ #define LCD_PROTO_PARALLEL 0 #define LCD_PROTO_SERIAL 1 #define LCD_PROTO_TI_DA8XX_LCD 2 /* * LCD character sets */ #define LCD_CHARSET_NORMAL 0 #define LCD_CHARSET_KS0074 1 /* * LCD types */ #define LCD_TYPE_NONE 0 #define LCD_TYPE_CUSTOM 1 #define LCD_TYPE_OLD 2 #define LCD_TYPE_KS0074 3 #define LCD_TYPE_HANTRONIX 4 #define LCD_TYPE_NEXCOM 5 /* * keypad types */ #define KEYPAD_TYPE_NONE 0 #define KEYPAD_TYPE_OLD 1 #define KEYPAD_TYPE_NEW 2 #define KEYPAD_TYPE_NEXCOM 3 /* * panel profiles */ #define PANEL_PROFILE_CUSTOM 0 #define PANEL_PROFILE_OLD 1 #define PANEL_PROFILE_NEW 2 #define PANEL_PROFILE_HANTRONIX 3 #define PANEL_PROFILE_NEXCOM 4 #define PANEL_PROFILE_LARGE 5 /* * Construct custom config from the kernel's configuration */ #define DEFAULT_PARPORT 0 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD #define DEFAULT_LCD_TYPE LCD_TYPE_OLD #define DEFAULT_LCD_HEIGHT 2 #define DEFAULT_LCD_WIDTH 40 #define DEFAULT_LCD_BWIDTH 40 #define DEFAULT_LCD_HWIDTH 64 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL #define DEFAULT_LCD_PIN_E PIN_AUTOLF #define DEFAULT_LCD_PIN_RS PIN_SELECP #define DEFAULT_LCD_PIN_RW PIN_INITP #define DEFAULT_LCD_PIN_SCL PIN_STROBE #define DEFAULT_LCD_PIN_SDA PIN_D0 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET #ifdef CONFIG_PANEL_PARPORT #undef DEFAULT_PARPORT #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT #endif #ifdef CONFIG_PANEL_PROFILE #undef DEFAULT_PROFILE #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE #endif #if DEFAULT_PROFILE == 0 /* custom */ #ifdef CONFIG_PANEL_KEYPAD #undef DEFAULT_KEYPAD_TYPE #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD #endif #ifdef CONFIG_PANEL_LCD #undef DEFAULT_LCD_TYPE #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD #endif #ifdef CONFIG_PANEL_LCD_HEIGHT #undef DEFAULT_LCD_HEIGHT #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT #endif #ifdef CONFIG_PANEL_LCD_WIDTH #undef DEFAULT_LCD_WIDTH #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH #endif #ifdef CONFIG_PANEL_LCD_BWIDTH #undef DEFAULT_LCD_BWIDTH #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH #endif #ifdef CONFIG_PANEL_LCD_HWIDTH #undef DEFAULT_LCD_HWIDTH #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH #endif #ifdef CONFIG_PANEL_LCD_CHARSET #undef DEFAULT_LCD_CHARSET #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET #endif #ifdef CONFIG_PANEL_LCD_PROTO #undef DEFAULT_LCD_PROTO #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO #endif #ifdef CONFIG_PANEL_LCD_PIN_E #undef DEFAULT_LCD_PIN_E #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E #endif #ifdef CONFIG_PANEL_LCD_PIN_RS #undef DEFAULT_LCD_PIN_RS #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS #endif #ifdef CONFIG_PANEL_LCD_PIN_RW #undef DEFAULT_LCD_PIN_RW #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW #endif #ifdef CONFIG_PANEL_LCD_PIN_SCL #undef DEFAULT_LCD_PIN_SCL #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL #endif #ifdef CONFIG_PANEL_LCD_PIN_SDA #undef DEFAULT_LCD_PIN_SDA #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA #endif #ifdef CONFIG_PANEL_LCD_PIN_BL #undef DEFAULT_LCD_PIN_BL #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL #endif #endif /* DEFAULT_PROFILE == 0 */ /* global variables */ /* Device single-open policy control */ static atomic_t lcd_available = ATOMIC_INIT(1); static atomic_t keypad_available = ATOMIC_INIT(1); static struct pardevice *pprt; static int keypad_initialized; static void (*lcd_write_cmd)(int); static void (*lcd_write_data)(int); static void (*lcd_clear_fast)(void); static DEFINE_SPINLOCK(pprt_lock); static struct timer_list scan_timer; MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver"); static int parport = DEFAULT_PARPORT; module_param(parport, int, 0000); MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)"); static int profile = DEFAULT_PROFILE; module_param(profile, int, 0000); MODULE_PARM_DESC(profile, "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; " "4=16x2 nexcom; default=40x2, old kp"); static int keypad_type = NOT_SET; module_param(keypad_type, int, 0000); MODULE_PARM_DESC(keypad_type, "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys"); static int lcd_type = NOT_SET; module_param(lcd_type, int, 0000); MODULE_PARM_DESC(lcd_type, "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom"); static int lcd_height = NOT_SET; module_param(lcd_height, int, 0000); MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD"); static int lcd_width = NOT_SET; module_param(lcd_width, int, 0000); MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD"); static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */ module_param(lcd_bwidth, int, 0000); MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)"); static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */ module_param(lcd_hwidth, int, 0000); MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)"); static int lcd_charset = NOT_SET; module_param(lcd_charset, int, 0000); MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074"); static int lcd_proto = NOT_SET; module_param(lcd_proto, int, 0000); MODULE_PARM_DESC(lcd_proto, "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface"); /* * These are the parallel port pins the LCD control signals are connected to. * Set this to 0 if the signal is not used. Set it to its opposite value * (negative) if the signal is negated. -MAXINT is used to indicate that the * pin has not been explicitly specified. * * WARNING! no check will be performed about collisions with keypad ! */ static int lcd_e_pin = PIN_NOT_SET; module_param(lcd_e_pin, int, 0000); MODULE_PARM_DESC(lcd_e_pin, "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)"); static int lcd_rs_pin = PIN_NOT_SET; module_param(lcd_rs_pin, int, 0000); MODULE_PARM_DESC(lcd_rs_pin, "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)"); static int lcd_rw_pin = PIN_NOT_SET; module_param(lcd_rw_pin, int, 0000); MODULE_PARM_DESC(lcd_rw_pin, "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)"); static int lcd_cl_pin = PIN_NOT_SET; module_param(lcd_cl_pin, int, 0000); MODULE_PARM_DESC(lcd_cl_pin, "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)"); static int lcd_da_pin = PIN_NOT_SET; module_param(lcd_da_pin, int, 0000); MODULE_PARM_DESC(lcd_da_pin, "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)"); static int lcd_bl_pin = PIN_NOT_SET; module_param(lcd_bl_pin, int, 0000); MODULE_PARM_DESC(lcd_bl_pin, "# of the // port pin connected to LCD backlight, with polarity (-17..17)"); /* Deprecated module parameters - consider not using them anymore */ static int lcd_enabled = NOT_SET; module_param(lcd_enabled, int, 0000); MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead"); static int keypad_enabled = NOT_SET; module_param(keypad_enabled, int, 0000); MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead"); static const unsigned char *lcd_char_conv; /* for some LCD drivers (ks0074) we need a charset conversion table. */ static const unsigned char lcd_char_conv_ks0074[256] = { /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */ /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27, /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4, /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20, /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f, /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96, /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd, /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60, /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9, /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3, /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78, /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe, /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8, /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69, /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25, /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79, }; static const char old_keypad_profile[][4][9] = { {"S0", "Left\n", "Left\n", ""}, {"S1", "Down\n", "Down\n", ""}, {"S2", "Up\n", "Up\n", ""}, {"S3", "Right\n", "Right\n", ""}, {"S4", "Esc\n", "Esc\n", ""}, {"S5", "Ret\n", "Ret\n", ""}, {"", "", "", ""} }; /* signals, press, repeat, release */ static const char new_keypad_profile[][4][9] = { {"S0", "Left\n", "Left\n", ""}, {"S1", "Down\n", "Down\n", ""}, {"S2", "Up\n", "Up\n", ""}, {"S3", "Right\n", "Right\n", ""}, {"S4s5", "", "Esc\n", "Esc\n"}, {"s4S5", "", "Ret\n", "Ret\n"}, {"S4S5", "Help\n", "", ""}, /* add new signals above this line */ {"", "", "", ""} }; /* signals, press, repeat, release */ static const char nexcom_keypad_profile[][4][9] = { {"a-p-e-", "Down\n", "Down\n", ""}, {"a-p-E-", "Ret\n", "Ret\n", ""}, {"a-P-E-", "Esc\n", "Esc\n", ""}, {"a-P-e-", "Up\n", "Up\n", ""}, /* add new signals above this line */ {"", "", "", ""} }; static const char (*keypad_profile)[4][9] = old_keypad_profile; static DECLARE_BITMAP(bits, LCD_BITS); static void lcd_get_bits(unsigned int port, int *val) { unsigned int bit, state; for (bit = 0; bit < LCD_BITS; bit++) { state = test_bit(bit, bits) ? BIT_SET : BIT_CLR; *val &= lcd_bits[port][bit][BIT_MSK]; *val |= lcd_bits[port][bit][state]; } } /* sets data port bits according to current signals values */ static int set_data_bits(void) { int val; val = r_dtr(pprt); lcd_get_bits(LCD_PORT_D, &val); w_dtr(pprt, val); return val; } /* sets ctrl port bits according to current signals values */ static int set_ctrl_bits(void) { int val; val = r_ctr(pprt); lcd_get_bits(LCD_PORT_C, &val); w_ctr(pprt, val); return val; } /* sets ctrl & data port bits according to current signals values */ static void panel_set_bits(void) { set_data_bits(); set_ctrl_bits(); } /* * Converts a parallel port pin (from -25 to 25) to data and control ports * masks, and data and control port bits. The signal will be considered * unconnected if it's on pin 0 or an invalid pin (<-25 or >25). * * Result will be used this way : * out(dport, in(dport) & d_val[2] | d_val[signal_state]) * out(cport, in(cport) & c_val[2] | c_val[signal_state]) */ static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val) { int d_bit, c_bit, inv; d_val[0] = 0; c_val[0] = 0; d_val[1] = 0; c_val[1] = 0; d_val[2] = 0xFF; c_val[2] = 0xFF; if (pin == 0) return; inv = (pin < 0); if (inv) pin = -pin; d_bit = 0; c_bit = 0; switch (pin) { case PIN_STROBE: /* strobe, inverted */ c_bit = PNL_PSTROBE; inv = !inv; break; case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */ d_bit = 1 << (pin - 2); break; case PIN_AUTOLF: /* autofeed, inverted */ c_bit = PNL_PAUTOLF; inv = !inv; break; case PIN_INITP: /* init, direct */ c_bit = PNL_PINITP; break; case PIN_SELECP: /* select_in, inverted */ c_bit = PNL_PSELECP; inv = !inv; break; default: /* unknown pin, ignore */ break; } if (c_bit) { c_val[2] &= ~c_bit; c_val[!inv] = c_bit; } else if (d_bit) { d_val[2] &= ~d_bit; d_val[!inv] = d_bit; } } /* sleeps that many milliseconds with a reschedule */ static void long_sleep(int ms) { if (in_interrupt()) mdelay(ms); else schedule_timeout_interruptible(msecs_to_jiffies(ms)); } /* * send a serial byte to the LCD panel. The caller is responsible for locking * if needed. */ static void lcd_send_serial(int byte) { int bit; /* * the data bit is set on D0, and the clock on STROBE. * LCD reads D0 on STROBE's rising edge. */ for (bit = 0; bit < 8; bit++) { clear_bit(LCD_BIT_CL, bits); /* CLK low */ panel_set_bits(); if (byte & 1) { set_bit(LCD_BIT_DA, bits); } else { clear_bit(LCD_BIT_DA, bits); } panel_set_bits(); udelay(2); /* maintain the data during 2 us before CLK up */ set_bit(LCD_BIT_CL, bits); /* CLK high */ panel_set_bits(); udelay(1); /* maintain the strobe during 1 us */ byte >>= 1; } } /* turn the backlight on or off */ static void __lcd_backlight(int on) { /* The backlight is activated by setting the AUTOFEED line to +5V */ spin_lock_irq(&pprt_lock); if (on) set_bit(LCD_BIT_BL, bits); else clear_bit(LCD_BIT_BL, bits); panel_set_bits(); spin_unlock_irq(&pprt_lock); } static void lcd_backlight(int on) { if (lcd.pins.bl == PIN_NONE) return; mutex_lock(&lcd.bl_tempo_lock); if (!lcd.bl_tempo) __lcd_backlight(on); mutex_unlock(&lcd.bl_tempo_lock); } static void lcd_bl_off(struct work_struct *work) { mutex_lock(&lcd.bl_tempo_lock); if (lcd.bl_tempo) { lcd.bl_tempo = false; if (!(lcd.flags & LCD_FLAG_L)) __lcd_backlight(0); } mutex_unlock(&lcd.bl_tempo_lock); } /* turn the backlight on for a little while */ static void lcd_poke(void) { if (lcd.pins.bl == PIN_NONE) return; cancel_delayed_work_sync(&lcd.bl_work); mutex_lock(&lcd.bl_tempo_lock); if (!lcd.bl_tempo && !(lcd.flags & LCD_FLAG_L)) __lcd_backlight(1); lcd.bl_tempo = true; schedule_delayed_work(&lcd.bl_work, FLASH_LIGHT_TEMPO * HZ); mutex_unlock(&lcd.bl_tempo_lock); } /* send a command to the LCD panel in serial mode */ static void lcd_write_cmd_s(int cmd) { spin_lock_irq(&pprt_lock); lcd_send_serial(0x1F); /* R/W=W, RS=0 */ lcd_send_serial(cmd & 0x0F); lcd_send_serial((cmd >> 4) & 0x0F); udelay(40); /* the shortest command takes at least 40 us */ spin_unlock_irq(&pprt_lock); } /* send data to the LCD panel in serial mode */ static void lcd_write_data_s(int data) { spin_lock_irq(&pprt_lock); lcd_send_serial(0x5F); /* R/W=W, RS=1 */ lcd_send_serial(data & 0x0F); lcd_send_serial((data >> 4) & 0x0F); udelay(40); /* the shortest data takes at least 40 us */ spin_unlock_irq(&pprt_lock); } /* send a command to the LCD panel in 8 bits parallel mode */ static void lcd_write_cmd_p8(int cmd) { spin_lock_irq(&pprt_lock); /* present the data to the data port */ w_dtr(pprt, cmd); udelay(20); /* maintain the data during 20 us before the strobe */ set_bit(LCD_BIT_E, bits); clear_bit(LCD_BIT_RS, bits); clear_bit(LCD_BIT_RW, bits); set_ctrl_bits(); udelay(40); /* maintain the strobe during 40 us */ clear_bit(LCD_BIT_E, bits); set_ctrl_bits(); udelay(120); /* the shortest command takes at least 120 us */ spin_unlock_irq(&pprt_lock); } /* send data to the LCD panel in 8 bits parallel mode */ static void lcd_write_data_p8(int data) { spin_lock_irq(&pprt_lock); /* present the data to the data port */ w_dtr(pprt, data); udelay(20); /* maintain the data during 20 us before the strobe */ set_bit(LCD_BIT_E, bits); set_bit(LCD_BIT_RS, bits); clear_bit(LCD_BIT_RW, bits); set_ctrl_bits(); udelay(40); /* maintain the strobe during 40 us */ clear_bit(LCD_BIT_E, bits); set_ctrl_bits(); udelay(45); /* the shortest data takes at least 45 us */ spin_unlock_irq(&pprt_lock); } /* send a command to the TI LCD panel */ static void lcd_write_cmd_tilcd(int cmd) { spin_lock_irq(&pprt_lock); /* present the data to the control port */ w_ctr(pprt, cmd); udelay(60); spin_unlock_irq(&pprt_lock); } /* send data to the TI LCD panel */ static void lcd_write_data_tilcd(int data) { spin_lock_irq(&pprt_lock); /* present the data to the data port */ w_dtr(pprt, data); udelay(60); spin_unlock_irq(&pprt_lock); } static void lcd_gotoxy(void) { lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR | (lcd.addr.y ? lcd.hwidth : 0) /* * we force the cursor to stay at the end of the * line if it wants to go farther */ | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x & (lcd.hwidth - 1) : lcd.bwidth - 1)); } static void lcd_home(void) { lcd.addr.x = 0; lcd.addr.y = 0; lcd_gotoxy(); } static void lcd_print(char c) { if (lcd.addr.x < lcd.bwidth) { if (lcd_char_conv) c = lcd_char_conv[(unsigned char)c]; lcd_write_data(c); lcd.addr.x++; } /* prevents the cursor from wrapping onto the next line */ if (lcd.addr.x == lcd.bwidth) lcd_gotoxy(); } /* fills the display with spaces and resets X/Y */ static void lcd_clear_fast_s(void) { int pos; lcd_home(); spin_lock_irq(&pprt_lock); for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) { lcd_send_serial(0x5F); /* R/W=W, RS=1 */ lcd_send_serial(' ' & 0x0F); lcd_send_serial((' ' >> 4) & 0x0F); /* the shortest data takes at least 40 us */ udelay(40); } spin_unlock_irq(&pprt_lock); lcd_home(); } /* fills the display with spaces and resets X/Y */ static void lcd_clear_fast_p8(void) { int pos; lcd_home(); spin_lock_irq(&pprt_lock); for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) { /* present the data to the data port */ w_dtr(pprt, ' '); /* maintain the data during 20 us before the strobe */ udelay(20); set_bit(LCD_BIT_E, bits); set_bit(LCD_BIT_RS, bits); clear_bit(LCD_BIT_RW, bits); set_ctrl_bits(); /* maintain the strobe during 40 us */ udelay(40); clear_bit(LCD_BIT_E, bits); set_ctrl_bits(); /* the shortest data takes at least 45 us */ udelay(45); } spin_unlock_irq(&pprt_lock); lcd_home(); } /* fills the display with spaces and resets X/Y */ static void lcd_clear_fast_tilcd(void) { int pos; lcd_home(); spin_lock_irq(&pprt_lock); for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) { /* present the data to the data port */ w_dtr(pprt, ' '); udelay(60); } spin_unlock_irq(&pprt_lock); lcd_home(); } /* clears the display and resets X/Y */ static void lcd_clear_display(void) { lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR); lcd.addr.x = 0; lcd.addr.y = 0; /* we must wait a few milliseconds (15) */ long_sleep(15); } static void lcd_init_display(void) { lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0) | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B; long_sleep(20); /* wait 20 ms after power-up for the paranoid */ /* 8bits, 1 line, small fonts; let's do it 3 times */ lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS); long_sleep(10); lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS); long_sleep(10); lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS); long_sleep(10); /* set font height and lines number */ lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0) | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0) ); long_sleep(10); /* display off, cursor off, blink off */ lcd_write_cmd(LCD_CMD_DISPLAY_CTRL); long_sleep(10); lcd_write_cmd(LCD_CMD_DISPLAY_CTRL /* set display mode */ | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0) | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0) | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0) ); lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0); long_sleep(10); /* entry mode set : increment, cursor shifting */ lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC); lcd_clear_display(); } /* * These are the file operation function for user access to /dev/lcd * This function can also be called from inside the kernel, by * setting file and ppos to NULL. * */ static inline int handle_lcd_special_code(void) { /* LCD special codes */ int processed = 0; char *esc = lcd.esc_seq.buf + 2; int oldflags = lcd.flags; /* check for display mode flags */ switch (*esc) { case 'D': /* Display ON */ lcd.flags |= LCD_FLAG_D; processed = 1; break; case 'd': /* Display OFF */ lcd.flags &= ~LCD_FLAG_D; processed = 1; break; case 'C': /* Cursor ON */ lcd.flags |= LCD_FLAG_C; processed = 1; break; case 'c': /* Cursor OFF */ lcd.flags &= ~LCD_FLAG_C; processed = 1; break; case 'B': /* Blink ON */ lcd.flags |= LCD_FLAG_B; processed = 1; break; case 'b': /* Blink OFF */ lcd.flags &= ~LCD_FLAG_B; processed = 1; break; case '+': /* Back light ON */ lcd.flags |= LCD_FLAG_L; processed = 1; break; case '-': /* Back light OFF */ lcd.flags &= ~LCD_FLAG_L; processed = 1; break; case '*': /* flash back light */ lcd_poke(); processed = 1; break; case 'f': /* Small Font */ lcd.flags &= ~LCD_FLAG_F; processed = 1; break; case 'F': /* Large Font */ lcd.flags |= LCD_FLAG_F; processed = 1; break; case 'n': /* One Line */ lcd.flags &= ~LCD_FLAG_N; processed = 1; break; case 'N': /* Two Lines */ lcd.flags |= LCD_FLAG_N; break; case 'l': /* Shift Cursor Left */ if (lcd.addr.x > 0) { /* back one char if not at end of line */ if (lcd.addr.x < lcd.bwidth) lcd_write_cmd(LCD_CMD_SHIFT); lcd.addr.x--; } processed = 1; break; case 'r': /* shift cursor right */ if (lcd.addr.x < lcd.width) { /* allow the cursor to pass the end of the line */ if (lcd.addr.x < (lcd.bwidth - 1)) lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_SHIFT_RIGHT); lcd.addr.x++; } processed = 1; break; case 'L': /* shift display left */ lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT); processed = 1; break; case 'R': /* shift display right */ lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT | LCD_CMD_SHIFT_RIGHT); processed = 1; break; case 'k': { /* kill end of line */ int x; for (x = lcd.addr.x; x < lcd.bwidth; x++) lcd_write_data(' '); /* restore cursor position */ lcd_gotoxy(); processed = 1; break; } case 'I': /* reinitialize display */ lcd_init_display(); processed = 1; break; case 'G': { /* Generator : LGcxxxxx...xx; must have <c> between '0' * and '7', representing the numerical ASCII code of the * redefined character, and <xx...xx> a sequence of 16 * hex digits representing 8 bytes for each character. * Most LCDs will only use 5 lower bits of the 7 first * bytes. */ unsigned char cgbytes[8]; unsigned char cgaddr; int cgoffset; int shift; char value; int addr; if (!strchr(esc, ';')) break; esc++; cgaddr = *(esc++) - '0'; if (cgaddr > 7) { processed = 1; break; } cgoffset = 0; shift = 0; value = 0; while (*esc && cgoffset < 8) { shift ^= 4; if (*esc >= '0' && *esc <= '9') { value |= (*esc - '0') << shift; } else if (*esc >= 'A' && *esc <= 'Z') { value |= (*esc - 'A' + 10) << shift; } else if (*esc >= 'a' && *esc <= 'z') { value |= (*esc - 'a' + 10) << shift; } else { esc++; continue; } if (shift == 0) { cgbytes[cgoffset++] = value; value = 0; } esc++; } lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8)); for (addr = 0; addr < cgoffset; addr++) lcd_write_data(cgbytes[addr]); /* ensures that we stop writing to CGRAM */ lcd_gotoxy(); processed = 1; break; } case 'x': /* gotoxy : LxXXX[yYYY]; */ case 'y': /* gotoxy : LyYYY[xXXX]; */ if (!strchr(esc, ';')) break; while (*esc) { if (*esc == 'x') { esc++; if (kstrtoul(esc, 10, &lcd.addr.x) < 0) break; } else if (*esc == 'y') { esc++; if (kstrtoul(esc, 10, &lcd.addr.y) < 0) break; } else { break; } } lcd_gotoxy(); processed = 1; break; } /* TODO: This indent party here got ugly, clean it! */ /* Check whether one flag was changed */ if (oldflags != lcd.flags) { /* check whether one of B,C,D flags were changed */ if ((oldflags ^ lcd.flags) & (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D)) /* set display mode */ lcd_write_cmd(LCD_CMD_DISPLAY_CTRL | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0) | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0) | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)); /* check whether one of F,N flags was changed */ else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N)) lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0) | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)); /* check whether L flag was changed */ else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) lcd_backlight(!!(lcd.flags & LCD_FLAG_L)); } return processed; } static void lcd_write_char(char c) { /* first, we'll test if we're in escape mode */ if ((c != '\n') && lcd.esc_seq.len >= 0) { /* yes, let's add this char to the buffer */ lcd.esc_seq.buf[lcd.esc_seq.len++] = c; lcd.esc_seq.buf[lcd.esc_seq.len] = 0; } else { /* aborts any previous escape sequence */ lcd.esc_seq.len = -1; switch (c) { case LCD_ESCAPE_CHAR: /* start of an escape sequence */ lcd.esc_seq.len = 0; lcd.esc_seq.buf[lcd.esc_seq.len] = 0; break; case '\b': /* go back one char and clear it */ if (lcd.addr.x > 0) { /* * check if we're not at the * end of the line */ if (lcd.addr.x < lcd.bwidth) /* back one char */ lcd_write_cmd(LCD_CMD_SHIFT); lcd.addr.x--; } /* replace with a space */ lcd_write_data(' '); /* back one char again */ lcd_write_cmd(LCD_CMD_SHIFT); break; case '\014': /* quickly clear the display */ lcd_clear_fast(); break; case '\n': /* * flush the remainder of the current line and * go to the beginning of the next line */ for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++) lcd_write_data(' '); lcd.addr.x = 0; lcd.addr.y = (lcd.addr.y + 1) % lcd.height; lcd_gotoxy(); break; case '\r': /* go to the beginning of the same line */ lcd.addr.x = 0; lcd_gotoxy(); break; case '\t': /* print a space instead of the tab */ lcd_print(' '); break; default: /* simply print this char */ lcd_print(c); break; } } /* * now we'll see if we're in an escape mode and if the current * escape sequence can be understood. */ if (lcd.esc_seq.len >= 2) { int processed = 0; if (!strcmp(lcd.esc_seq.buf, "[2J")) { /* clear the display */ lcd_clear_fast(); processed = 1; } else if (!strcmp(lcd.esc_seq.buf, "[H")) { /* cursor to home */ lcd_home(); processed = 1; } /* codes starting with ^[[L */ else if ((lcd.esc_seq.len >= 3) && (lcd.esc_seq.buf[0] == '[') && (lcd.esc_seq.buf[1] == 'L')) { processed = handle_lcd_special_code(); } /* LCD special escape codes */ /* * flush the escape sequence if it's been processed * or if it is getting too long. */ if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN)) lcd.esc_seq.len = -1; } /* escape codes */ } static ssize_t lcd_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { const char __user *tmp = buf; char c; for (; count-- > 0; (*ppos)++, tmp++) { if (!in_interrupt() && (((count + 1) & 0x1f) == 0)) /* * let's be a little nice with other processes * that need some CPU */ schedule(); if (get_user(c, tmp)) return -EFAULT; lcd_write_char(c); } return tmp - buf; } static int lcd_open(struct inode *inode, struct file *file) { if (!atomic_dec_and_test(&lcd_available)) return -EBUSY; /* open only once at a time */ if (file->f_mode & FMODE_READ) /* device is write-only */ return -EPERM; if (lcd.must_clear) { lcd_clear_display(); lcd.must_clear = false; } return nonseekable_open(inode, file); } static int lcd_release(struct inode *inode, struct file *file) { atomic_inc(&lcd_available); return 0; } static const struct file_operations lcd_fops = { .write = lcd_write, .open = lcd_open, .release = lcd_release, .llseek = no_llseek, }; static struct miscdevice lcd_dev = { .minor = LCD_MINOR, .name = "lcd", .fops = &lcd_fops, }; /* public function usable from the kernel for any purpose */ static void panel_lcd_print(const char *s) { const char *tmp = s; int count = strlen(s); if (lcd.enabled && lcd.initialized) { for (; count-- > 0; tmp++) { if (!in_interrupt() && (((count + 1) & 0x1f) == 0)) /* * let's be a little nice with other processes * that need some CPU */ schedule(); lcd_write_char(*tmp); } } } /* initialize the LCD driver */ static void lcd_init(void) { switch (selected_lcd_type) { case LCD_TYPE_OLD: /* parallel mode, 8 bits */ lcd.proto = LCD_PROTO_PARALLEL; lcd.charset = LCD_CHARSET_NORMAL; lcd.pins.e = PIN_STROBE; lcd.pins.rs = PIN_AUTOLF; lcd.width = 40; lcd.bwidth = 40; lcd.hwidth = 64; lcd.height = 2; break; case LCD_TYPE_KS0074: /* serial mode, ks0074 */ lcd.proto = LCD_PROTO_SERIAL; lcd.charset = LCD_CHARSET_KS0074; lcd.pins.bl = PIN_AUTOLF; lcd.pins.cl = PIN_STROBE; lcd.pins.da = PIN_D0; lcd.width = 16; lcd.bwidth = 40; lcd.hwidth = 16; lcd.height = 2; break; case LCD_TYPE_NEXCOM: /* parallel mode, 8 bits, generic */ lcd.proto = LCD_PROTO_PARALLEL; lcd.charset = LCD_CHARSET_NORMAL; lcd.pins.e = PIN_AUTOLF; lcd.pins.rs = PIN_SELECP; lcd.pins.rw = PIN_INITP; lcd.width = 16; lcd.bwidth = 40; lcd.hwidth = 64; lcd.height = 2; break; case LCD_TYPE_CUSTOM: /* customer-defined */ lcd.proto = DEFAULT_LCD_PROTO; lcd.charset = DEFAULT_LCD_CHARSET; /* default geometry will be set later */ break; case LCD_TYPE_HANTRONIX: /* parallel mode, 8 bits, hantronix-like */ default: lcd.proto = LCD_PROTO_PARALLEL; lcd.charset = LCD_CHARSET_NORMAL; lcd.pins.e = PIN_STROBE; lcd.pins.rs = PIN_SELECP; lcd.width = 16; lcd.bwidth = 40; lcd.hwidth = 64; lcd.height = 2; break; } /* Overwrite with module params set on loading */ if (lcd_height != NOT_SET) lcd.height = lcd_height; if (lcd_width != NOT_SET) lcd.width = lcd_width; if (lcd_bwidth != NOT_SET) lcd.bwidth = lcd_bwidth; if (lcd_hwidth != NOT_SET) lcd.hwidth = lcd_hwidth; if (lcd_charset != NOT_SET) lcd.charset = lcd_charset; if (lcd_proto != NOT_SET) lcd.proto = lcd_proto; if (lcd_e_pin != PIN_NOT_SET) lcd.pins.e = lcd_e_pin; if (lcd_rs_pin != PIN_NOT_SET) lcd.pins.rs = lcd_rs_pin; if (lcd_rw_pin != PIN_NOT_SET) lcd.pins.rw = lcd_rw_pin; if (lcd_cl_pin != PIN_NOT_SET) lcd.pins.cl = lcd_cl_pin; if (lcd_da_pin != PIN_NOT_SET) lcd.pins.da = lcd_da_pin; if (lcd_bl_pin != PIN_NOT_SET) lcd.pins.bl = lcd_bl_pin; /* this is used to catch wrong and default values */ if (lcd.width <= 0) lcd.width = DEFAULT_LCD_WIDTH; if (lcd.bwidth <= 0) lcd.bwidth = DEFAULT_LCD_BWIDTH; if (lcd.hwidth <= 0) lcd.hwidth = DEFAULT_LCD_HWIDTH; if (lcd.height <= 0) lcd.height = DEFAULT_LCD_HEIGHT; if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */ lcd_write_cmd = lcd_write_cmd_s; lcd_write_data = lcd_write_data_s; lcd_clear_fast = lcd_clear_fast_s; if (lcd.pins.cl == PIN_NOT_SET) lcd.pins.cl = DEFAULT_LCD_PIN_SCL; if (lcd.pins.da == PIN_NOT_SET) lcd.pins.da = DEFAULT_LCD_PIN_SDA; } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */ lcd_write_cmd = lcd_write_cmd_p8; lcd_write_data = lcd_write_data_p8; lcd_clear_fast = lcd_clear_fast_p8; if (lcd.pins.e == PIN_NOT_SET) lcd.pins.e = DEFAULT_LCD_PIN_E; if (lcd.pins.rs == PIN_NOT_SET) lcd.pins.rs = DEFAULT_LCD_PIN_RS; if (lcd.pins.rw == PIN_NOT_SET) lcd.pins.rw = DEFAULT_LCD_PIN_RW; } else { lcd_write_cmd = lcd_write_cmd_tilcd; lcd_write_data = lcd_write_data_tilcd; lcd_clear_fast = lcd_clear_fast_tilcd; } if (lcd.pins.bl == PIN_NOT_SET) lcd.pins.bl = DEFAULT_LCD_PIN_BL; if (lcd.pins.e == PIN_NOT_SET) lcd.pins.e = PIN_NONE; if (lcd.pins.rs == PIN_NOT_SET) lcd.pins.rs = PIN_NONE; if (lcd.pins.rw == PIN_NOT_SET) lcd.pins.rw = PIN_NONE; if (lcd.pins.bl == PIN_NOT_SET) lcd.pins.bl = PIN_NONE; if (lcd.pins.cl == PIN_NOT_SET) lcd.pins.cl = PIN_NONE; if (lcd.pins.da == PIN_NOT_SET) lcd.pins.da = PIN_NONE; if (lcd.charset == NOT_SET) lcd.charset = DEFAULT_LCD_CHARSET; if (lcd.charset == LCD_CHARSET_KS0074) lcd_char_conv = lcd_char_conv_ks0074; else lcd_char_conv = NULL; if (lcd.pins.bl != PIN_NONE) { mutex_init(&lcd.bl_tempo_lock); INIT_DELAYED_WORK(&lcd.bl_work, lcd_bl_off); } pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E], lcd_bits[LCD_PORT_C][LCD_BIT_E]); pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS], lcd_bits[LCD_PORT_C][LCD_BIT_RS]); pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW], lcd_bits[LCD_PORT_C][LCD_BIT_RW]); pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL], lcd_bits[LCD_PORT_C][LCD_BIT_BL]); pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL], lcd_bits[LCD_PORT_C][LCD_BIT_CL]); pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA], lcd_bits[LCD_PORT_C][LCD_BIT_DA]); /* * before this line, we must NOT send anything to the display. * Since lcd_init_display() needs to write data, we have to * enable mark the LCD initialized just before. */ lcd.initialized = true; lcd_init_display(); /* display a short message */ #ifdef CONFIG_PANEL_CHANGE_MESSAGE #ifdef CONFIG_PANEL_BOOT_MESSAGE panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE); #endif #else panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE); #endif /* clear the display on the next device opening */ lcd.must_clear = true; lcd_home(); } /* * These are the file operation function for user access to /dev/keypad */ static ssize_t keypad_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { unsigned i = *ppos; char __user *tmp = buf; if (keypad_buflen == 0) { if (file->f_flags & O_NONBLOCK) return -EAGAIN; if (wait_event_interruptible(keypad_read_wait, keypad_buflen != 0)) return -EINTR; } for (; count-- > 0 && (keypad_buflen > 0); ++i, ++tmp, --keypad_buflen) { put_user(keypad_buffer[keypad_start], tmp); keypad_start = (keypad_start + 1) % KEYPAD_BUFFER; } *ppos = i; return tmp - buf; } static int keypad_open(struct inode *inode, struct file *file) { if (!atomic_dec_and_test(&keypad_available)) return -EBUSY; /* open only once at a time */ if (file->f_mode & FMODE_WRITE) /* device is read-only */ return -EPERM; keypad_buflen = 0; /* flush the buffer on opening */ return 0; } static int keypad_release(struct inode *inode, struct file *file) { atomic_inc(&keypad_available); return 0; } static const struct file_operations keypad_fops = { .read = keypad_read, /* read */ .open = keypad_open, /* open */ .release = keypad_release, /* close */ .llseek = default_llseek, }; static struct miscdevice keypad_dev = { .minor = KEYPAD_MINOR, .name = "keypad", .fops = &keypad_fops, }; static void keypad_send_key(const char *string, int max_len) { /* send the key to the device only if a process is attached to it. */ if (!atomic_read(&keypad_available)) { while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) { keypad_buffer[(keypad_start + keypad_buflen++) % KEYPAD_BUFFER] = *string++; } wake_up_interruptible(&keypad_read_wait); } } /* this function scans all the bits involving at least one logical signal, * and puts the results in the bitfield "phys_read" (one bit per established * contact), and sets "phys_read_prev" to "phys_read". * * Note: to debounce input signals, we will only consider as switched a signal * which is stable across 2 measures. Signals which are different between two * reads will be kept as they previously were in their logical form (phys_prev). * A signal which has just switched will have a 1 in * (phys_read ^ phys_read_prev). */ static void phys_scan_contacts(void) { int bit, bitval; char oldval; char bitmask; char gndmask; phys_prev = phys_curr; phys_read_prev = phys_read; phys_read = 0; /* flush all signals */ /* keep track of old value, with all outputs disabled */ oldval = r_dtr(pprt) | scan_mask_o; /* activate all keyboard outputs (active low) */ w_dtr(pprt, oldval & ~scan_mask_o); /* will have a 1 for each bit set to gnd */ bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* disable all matrix signals */ w_dtr(pprt, oldval); /* now that all outputs are cleared, the only active input bits are * directly connected to the ground */ /* 1 for each grounded input */ gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; /* grounded inputs are signals 40-44 */ phys_read |= (__u64)gndmask << 40; if (bitmask != gndmask) { /* * since clearing the outputs changed some inputs, we know * that some input signals are currently tied to some outputs. * So we'll scan them. */ for (bit = 0; bit < 8; bit++) { bitval = BIT(bit); if (!(scan_mask_o & bitval)) /* skip unused bits */ continue; w_dtr(pprt, oldval & ~bitval); /* enable this output */ bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask; phys_read |= (__u64)bitmask << (5 * bit); } w_dtr(pprt, oldval); /* disable all outputs */ } /* * this is easy: use old bits when they are flapping, * use new ones when stable */ phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) | (phys_read & ~(phys_read ^ phys_read_prev)); } static inline int input_state_high(struct logical_input *input) { #if 0 /* FIXME: * this is an invalid test. It tries to catch * transitions from single-key to multiple-key, but * doesn't take into account the contacts polarity. * The only solution to the problem is to parse keys * from the most complex to the simplest combinations, * and mark them as 'caught' once a combination * matches, then unmatch it for all other ones. */ /* try to catch dangerous transitions cases : * someone adds a bit, so this signal was a false * positive resulting from a transition. We should * invalidate the signal immediately and not call the * release function. * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release. */ if (((phys_prev & input->mask) == input->value) && ((phys_curr & input->mask) > input->value)) { input->state = INPUT_ST_LOW; /* invalidate */ return 1; } #endif if ((phys_curr & input->mask) == input->value) { if ((input->type == INPUT_TYPE_STD) && (input->high_timer == 0)) { input->high_timer++; if (input->u.std.press_fct) input->u.std.press_fct(input->u.std.press_data); } else if (input->type == INPUT_TYPE_KBD) { /* will turn on the light */ keypressed = 1; if (input->high_timer == 0) { char *press_str = input->u.kbd.press_str; if (press_str[0]) { int s = sizeof(input->u.kbd.press_str); keypad_send_key(press_str, s); } } if (input->u.kbd.repeat_str[0]) { char *repeat_str = input->u.kbd.repeat_str; if (input->high_timer >= KEYPAD_REP_START) { int s = sizeof(input->u.kbd.repeat_str); input->high_timer -= KEYPAD_REP_DELAY; keypad_send_key(repeat_str, s); } /* we will need to come back here soon */ inputs_stable = 0; } if (input->high_timer < 255) input->high_timer++; } return 1; } /* else signal falling down. Let's fall through. */ input->state = INPUT_ST_FALLING; input->fall_timer = 0; return 0; } static inline void input_state_falling(struct logical_input *input) { #if 0 /* FIXME !!! same comment as in input_state_high */ if (((phys_prev & input->mask) == input->value) && ((phys_curr & input->mask) > input->value)) { input->state = INPUT_ST_LOW; /* invalidate */ return; } #endif if ((phys_curr & input->mask) == input->value) { if (input->type == INPUT_TYPE_KBD) { /* will turn on the light */ keypressed = 1; if (input->u.kbd.repeat_str[0]) { char *repeat_str = input->u.kbd.repeat_str; if (input->high_timer >= KEYPAD_REP_START) { int s = sizeof(input->u.kbd.repeat_str); input->high_timer -= KEYPAD_REP_DELAY; keypad_send_key(repeat_str, s); } /* we will need to come back here soon */ inputs_stable = 0; } if (input->high_timer < 255) input->high_timer++; } input->state = INPUT_ST_HIGH; } else if (input->fall_timer >= input->fall_time) { /* call release event */ if (input->type == INPUT_TYPE_STD) { void (*release_fct)(int) = input->u.std.release_fct; if (release_fct) release_fct(input->u.std.release_data); } else if (input->type == INPUT_TYPE_KBD) { char *release_str = input->u.kbd.release_str; if (release_str[0]) { int s = sizeof(input->u.kbd.release_str); keypad_send_key(release_str, s); } } input->state = INPUT_ST_LOW; } else { input->fall_timer++; inputs_stable = 0; } } static void panel_process_inputs(void) { struct list_head *item; struct logical_input *input; keypressed = 0; inputs_stable = 1; list_for_each(item, &logical_inputs) { input = list_entry(item, struct logical_input, list); switch (input->state) { case INPUT_ST_LOW: if ((phys_curr & input->mask) != input->value) break; /* if all needed ones were already set previously, * this means that this logical signal has been * activated by the releasing of another combined * signal, so we don't want to match. * eg: AB -(release B)-> A -(release A)-> 0 : * don't match A. */ if ((phys_prev & input->mask) == input->value) break; input->rise_timer = 0; input->state = INPUT_ST_RISING; /* no break here, fall through */ case INPUT_ST_RISING: if ((phys_curr & input->mask) != input->value) { input->state = INPUT_ST_LOW; break; } if (input->rise_timer < input->rise_time) { inputs_stable = 0; input->rise_timer++; break; } input->high_timer = 0; input->state = INPUT_ST_HIGH; /* no break here, fall through */ case INPUT_ST_HIGH: if (input_state_high(input)) break; /* no break here, fall through */ case INPUT_ST_FALLING: input_state_falling(input); } } } static void panel_scan_timer(void) { if (keypad.enabled && keypad_initialized) { if (spin_trylock_irq(&pprt_lock)) { phys_scan_contacts(); /* no need for the parport anymore */ spin_unlock_irq(&pprt_lock); } if (!inputs_stable || phys_curr != phys_prev) panel_process_inputs(); } if (keypressed && lcd.enabled && lcd.initialized) lcd_poke(); mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME); } static void init_scan_timer(void) { if (scan_timer.function) return; /* already started */ setup_timer(&scan_timer, (void *)&panel_scan_timer, 0); scan_timer.expires = jiffies + INPUT_POLL_TIME; add_timer(&scan_timer); } /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits. * if <omask> or <imask> are non-null, they will be or'ed with the bits * corresponding to out and in bits respectively. * returns 1 if ok, 0 if error (in which case, nothing is written). */ static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value, u8 *imask, u8 *omask) { const char sigtab[] = "EeSsPpAaBb"; u8 im, om; __u64 m, v; om = 0; im = 0; m = 0ULL; v = 0ULL; while (*name) { int in, out, bit, neg; const char *idx; idx = strchr(sigtab, *name); if (!idx) return 0; /* input name not found */ in = idx - sigtab; neg = (in & 1); /* odd (lower) names are negated */ in >>= 1; im |= BIT(in); name++; if (*name >= '0' && *name <= '7') { out = *name - '0'; om |= BIT(out); } else if (*name == '-') { out = 8; } else { return 0; /* unknown bit name */ } bit = (out * 5) + in; m |= 1ULL << bit; if (!neg) v |= 1ULL << bit; name++; } *mask = m; *value = v; if (imask) *imask |= im; if (omask) *omask |= om; return 1; } /* tries to bind a key to the signal name <name>. The key will send the * strings <press>, <repeat>, <release> for these respective events. * Returns the pointer to the new key if ok, NULL if the key could not be bound. */ static struct logical_input *panel_bind_key(const char *name, const char *press, const char *repeat, const char *release) { struct logical_input *key; key = kzalloc(sizeof(*key), GFP_KERNEL); if (!key) return NULL; if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i, &scan_mask_o)) { kfree(key); return NULL; } key->type = INPUT_TYPE_KBD; key->state = INPUT_ST_LOW; key->rise_time = 1; key->fall_time = 1; strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str)); strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str)); strncpy(key->u.kbd.release_str, release, sizeof(key->u.kbd.release_str)); list_add(&key->list, &logical_inputs); return key; } #if 0 /* tries to bind a callback function to the signal name <name>. The function * <press_fct> will be called with the <press_data> arg when the signal is * activated, and so on for <release_fct>/<release_data> * Returns the pointer to the new signal if ok, NULL if the signal could not * be bound. */ static struct logical_input *panel_bind_callback(char *name, void (*press_fct)(int), int press_data, void (*release_fct)(int), int release_data) { struct logical_input *callback; callback = kmalloc(sizeof(*callback), GFP_KERNEL); if (!callback) return NULL; memset(callback, 0, sizeof(struct logical_input)); if (!input_name2mask(name, &callback->mask, &callback->value, &scan_mask_i, &scan_mask_o)) return NULL; callback->type = INPUT_TYPE_STD; callback->state = INPUT_ST_LOW; callback->rise_time = 1; callback->fall_time = 1; callback->u.std.press_fct = press_fct; callback->u.std.press_data = press_data; callback->u.std.release_fct = release_fct; callback->u.std.release_data = release_data; list_add(&callback->list, &logical_inputs); return callback; } #endif static void keypad_init(void) { int keynum; init_waitqueue_head(&keypad_read_wait); keypad_buflen = 0; /* flushes any eventual noisy keystroke */ /* Let's create all known keys */ for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) { panel_bind_key(keypad_profile[keynum][0], keypad_profile[keynum][1], keypad_profile[keynum][2], keypad_profile[keynum][3]); } init_scan_timer(); keypad_initialized = 1; } /**************************************************/ /* device initialization */ /**************************************************/ static int panel_notify_sys(struct notifier_block *this, unsigned long code, void *unused) { if (lcd.enabled && lcd.initialized) { switch (code) { case SYS_DOWN: panel_lcd_print ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+"); break; case SYS_HALT: panel_lcd_print ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+"); break; case SYS_POWER_OFF: panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+"); break; default: break; } } return NOTIFY_DONE; } static struct notifier_block panel_notifier = { panel_notify_sys, NULL, 0 }; static void panel_attach(struct parport *port) { struct pardev_cb panel_cb; if (port->number != parport) return; if (pprt) { pr_err("%s: port->number=%d parport=%d, already registered!\n", __func__, port->number, parport); return; } memset(&panel_cb, 0, sizeof(panel_cb)); panel_cb.private = &pprt; /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */ pprt = parport_register_dev_model(port, "panel", &panel_cb, 0); if (!pprt) { pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n", __func__, port->number, parport); return; } if (parport_claim(pprt)) { pr_err("could not claim access to parport%d. Aborting.\n", parport); goto err_unreg_device; } /* must init LCD first, just in case an IRQ from the keypad is * generated at keypad init */ if (lcd.enabled) { lcd_init(); if (misc_register(&lcd_dev)) goto err_unreg_device; } if (keypad.enabled) { keypad_init(); if (misc_register(&keypad_dev)) goto err_lcd_unreg; } register_reboot_notifier(&panel_notifier); return; err_lcd_unreg: if (lcd.enabled) misc_deregister(&lcd_dev); err_unreg_device: parport_unregister_device(pprt); pprt = NULL; } static void panel_detach(struct parport *port) { if (port->number != parport) return; if (!pprt) { pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n", __func__, port->number, parport); return; } if (scan_timer.function) del_timer_sync(&scan_timer); if (keypad.enabled) { misc_deregister(&keypad_dev); keypad_initialized = 0; } if (lcd.enabled) { panel_lcd_print("\x0cLCD driver unloaded.\x1b[Lc\x1b[Lb\x1b[L-"); misc_deregister(&lcd_dev); if (lcd.pins.bl != PIN_NONE) { cancel_delayed_work_sync(&lcd.bl_work); __lcd_backlight(0); } lcd.initialized = false; } /* TODO: free all input signals */ parport_release(pprt); parport_unregister_device(pprt); pprt = NULL; unregister_reboot_notifier(&panel_notifier); } static struct parport_driver panel_driver = { .name = "panel", .match_port = panel_attach, .detach = panel_detach, .devmodel = true, }; /* init function */ static int __init panel_init_module(void) { int selected_keypad_type = NOT_SET, err; /* take care of an eventual profile */ switch (profile) { case PANEL_PROFILE_CUSTOM: /* custom profile */ selected_keypad_type = DEFAULT_KEYPAD_TYPE; selected_lcd_type = DEFAULT_LCD_TYPE; break; case PANEL_PROFILE_OLD: /* 8 bits, 2*16, old keypad */ selected_keypad_type = KEYPAD_TYPE_OLD; selected_lcd_type = LCD_TYPE_OLD; /* TODO: This two are a little hacky, sort it out later */ if (lcd_width == NOT_SET) lcd_width = 16; if (lcd_hwidth == NOT_SET) lcd_hwidth = 16; break; case PANEL_PROFILE_NEW: /* serial, 2*16, new keypad */ selected_keypad_type = KEYPAD_TYPE_NEW; selected_lcd_type = LCD_TYPE_KS0074; break; case PANEL_PROFILE_HANTRONIX: /* 8 bits, 2*16 hantronix-like, no keypad */ selected_keypad_type = KEYPAD_TYPE_NONE; selected_lcd_type = LCD_TYPE_HANTRONIX; break; case PANEL_PROFILE_NEXCOM: /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */ selected_keypad_type = KEYPAD_TYPE_NEXCOM; selected_lcd_type = LCD_TYPE_NEXCOM; break; case PANEL_PROFILE_LARGE: /* 8 bits, 2*40, old keypad */ selected_keypad_type = KEYPAD_TYPE_OLD; selected_lcd_type = LCD_TYPE_OLD; break; } /* * Overwrite selection with module param values (both keypad and lcd), * where the deprecated params have lower prio. */ if (keypad_enabled != NOT_SET) selected_keypad_type = keypad_enabled; if (keypad_type != NOT_SET) selected_keypad_type = keypad_type; keypad.enabled = (selected_keypad_type > 0); if (lcd_enabled != NOT_SET) selected_lcd_type = lcd_enabled; if (lcd_type != NOT_SET) selected_lcd_type = lcd_type; lcd.enabled = (selected_lcd_type > 0); if (lcd.enabled) { /* * Init lcd struct with load-time values to preserve exact * current functionality (at least for now). */ lcd.height = lcd_height; lcd.width = lcd_width; lcd.bwidth = lcd_bwidth; lcd.hwidth = lcd_hwidth; lcd.charset = lcd_charset; lcd.proto = lcd_proto; lcd.pins.e = lcd_e_pin; lcd.pins.rs = lcd_rs_pin; lcd.pins.rw = lcd_rw_pin; lcd.pins.cl = lcd_cl_pin; lcd.pins.da = lcd_da_pin; lcd.pins.bl = lcd_bl_pin; /* Leave it for now, just in case */ lcd.esc_seq.len = -1; } switch (selected_keypad_type) { case KEYPAD_TYPE_OLD: keypad_profile = old_keypad_profile; break; case KEYPAD_TYPE_NEW: keypad_profile = new_keypad_profile; break; case KEYPAD_TYPE_NEXCOM: keypad_profile = nexcom_keypad_profile; break; default: keypad_profile = NULL; break; } if (!lcd.enabled && !keypad.enabled) { /* no device enabled, let's exit */ pr_err("panel driver disabled.\n"); return -ENODEV; } err = parport_register_driver(&panel_driver); if (err) { pr_err("could not register with parport. Aborting.\n"); return err; } if (pprt) pr_info("panel driver registered on parport%d (io=0x%lx).\n", parport, pprt->port->base); else pr_info("panel driver not yet registered\n"); return 0; } static void __exit panel_cleanup_module(void) { parport_unregister_driver(&panel_driver); } module_init(panel_init_module); module_exit(panel_cleanup_module); MODULE_AUTHOR("Willy Tarreau"); MODULE_LICENSE("GPL"); /* * Local variables: * c-indent-level: 4 * tab-width: 8 * End: */