// SPDX-License-Identifier: GPL-2.0 // // flexcan.c - FLEXCAN CAN controller driver // // Copyright (c) 2005-2006 Varma Electronics Oy // Copyright (c) 2009 Sascha Hauer, Pengutronix // Copyright (c) 2010-2017 Pengutronix, Marc Kleine-Budde // Copyright (c) 2014 David Jander, Protonic Holland // // Based on code originally by Andrey Volkov #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "flexcan" /* 8 for RX fifo and 2 error handling */ #define FLEXCAN_NAPI_WEIGHT (8 + 2) /* FLEXCAN module configuration register (CANMCR) bits */ #define FLEXCAN_MCR_MDIS BIT(31) #define FLEXCAN_MCR_FRZ BIT(30) #define FLEXCAN_MCR_FEN BIT(29) #define FLEXCAN_MCR_HALT BIT(28) #define FLEXCAN_MCR_NOT_RDY BIT(27) #define FLEXCAN_MCR_WAK_MSK BIT(26) #define FLEXCAN_MCR_SOFTRST BIT(25) #define FLEXCAN_MCR_FRZ_ACK BIT(24) #define FLEXCAN_MCR_SUPV BIT(23) #define FLEXCAN_MCR_SLF_WAK BIT(22) #define FLEXCAN_MCR_WRN_EN BIT(21) #define FLEXCAN_MCR_LPM_ACK BIT(20) #define FLEXCAN_MCR_WAK_SRC BIT(19) #define FLEXCAN_MCR_DOZE BIT(18) #define FLEXCAN_MCR_SRX_DIS BIT(17) #define FLEXCAN_MCR_IRMQ BIT(16) #define FLEXCAN_MCR_LPRIO_EN BIT(13) #define FLEXCAN_MCR_AEN BIT(12) #define FLEXCAN_MCR_FDEN BIT(11) /* MCR_MAXMB: maximum used MBs is MAXMB + 1 */ #define FLEXCAN_MCR_MAXMB(x) ((x) & 0x7f) #define FLEXCAN_MCR_IDAM_A (0x0 << 8) #define FLEXCAN_MCR_IDAM_B (0x1 << 8) #define FLEXCAN_MCR_IDAM_C (0x2 << 8) #define FLEXCAN_MCR_IDAM_D (0x3 << 8) /* FLEXCAN control register (CANCTRL) bits */ #define FLEXCAN_CTRL_PRESDIV(x) (((x) & 0xff) << 24) #define FLEXCAN_CTRL_RJW(x) (((x) & 0x03) << 22) #define FLEXCAN_CTRL_PSEG1(x) (((x) & 0x07) << 19) #define FLEXCAN_CTRL_PSEG2(x) (((x) & 0x07) << 16) #define FLEXCAN_CTRL_BOFF_MSK BIT(15) #define FLEXCAN_CTRL_ERR_MSK BIT(14) #define FLEXCAN_CTRL_CLK_SRC BIT(13) #define FLEXCAN_CTRL_LPB BIT(12) #define FLEXCAN_CTRL_TWRN_MSK BIT(11) #define FLEXCAN_CTRL_RWRN_MSK BIT(10) #define FLEXCAN_CTRL_SMP BIT(7) #define FLEXCAN_CTRL_BOFF_REC BIT(6) #define FLEXCAN_CTRL_TSYN BIT(5) #define FLEXCAN_CTRL_LBUF BIT(4) #define FLEXCAN_CTRL_LOM BIT(3) #define FLEXCAN_CTRL_PROPSEG(x) ((x) & 0x07) #define FLEXCAN_CTRL_ERR_BUS (FLEXCAN_CTRL_ERR_MSK) #define FLEXCAN_CTRL_ERR_STATE \ (FLEXCAN_CTRL_TWRN_MSK | FLEXCAN_CTRL_RWRN_MSK | \ FLEXCAN_CTRL_BOFF_MSK) #define FLEXCAN_CTRL_ERR_ALL \ (FLEXCAN_CTRL_ERR_BUS | FLEXCAN_CTRL_ERR_STATE) /* FLEXCAN control register 2 (CTRL2) bits */ #define FLEXCAN_CTRL2_ECRWRE BIT(29) #define FLEXCAN_CTRL2_WRMFRZ BIT(28) #define FLEXCAN_CTRL2_RFFN(x) (((x) & 0x0f) << 24) #define FLEXCAN_CTRL2_TASD(x) (((x) & 0x1f) << 19) #define FLEXCAN_CTRL2_MRP BIT(18) #define FLEXCAN_CTRL2_RRS BIT(17) #define FLEXCAN_CTRL2_EACEN BIT(16) #define FLEXCAN_CTRL2_ISOCANFDEN BIT(12) /* FLEXCAN memory error control register (MECR) bits */ #define FLEXCAN_MECR_ECRWRDIS BIT(31) #define FLEXCAN_MECR_HANCEI_MSK BIT(19) #define FLEXCAN_MECR_FANCEI_MSK BIT(18) #define FLEXCAN_MECR_CEI_MSK BIT(16) #define FLEXCAN_MECR_HAERRIE BIT(15) #define FLEXCAN_MECR_FAERRIE BIT(14) #define FLEXCAN_MECR_EXTERRIE BIT(13) #define FLEXCAN_MECR_RERRDIS BIT(9) #define FLEXCAN_MECR_ECCDIS BIT(8) #define FLEXCAN_MECR_NCEFAFRZ BIT(7) /* FLEXCAN error and status register (ESR) bits */ #define FLEXCAN_ESR_TWRN_INT BIT(17) #define FLEXCAN_ESR_RWRN_INT BIT(16) #define FLEXCAN_ESR_BIT1_ERR BIT(15) #define FLEXCAN_ESR_BIT0_ERR BIT(14) #define FLEXCAN_ESR_ACK_ERR BIT(13) #define FLEXCAN_ESR_CRC_ERR BIT(12) #define FLEXCAN_ESR_FRM_ERR BIT(11) #define FLEXCAN_ESR_STF_ERR BIT(10) #define FLEXCAN_ESR_TX_WRN BIT(9) #define FLEXCAN_ESR_RX_WRN BIT(8) #define FLEXCAN_ESR_IDLE BIT(7) #define FLEXCAN_ESR_TXRX BIT(6) #define FLEXCAN_EST_FLT_CONF_SHIFT (4) #define FLEXCAN_ESR_FLT_CONF_MASK (0x3 << FLEXCAN_EST_FLT_CONF_SHIFT) #define FLEXCAN_ESR_FLT_CONF_ACTIVE (0x0 << FLEXCAN_EST_FLT_CONF_SHIFT) #define FLEXCAN_ESR_FLT_CONF_PASSIVE (0x1 << FLEXCAN_EST_FLT_CONF_SHIFT) #define FLEXCAN_ESR_BOFF_INT BIT(2) #define FLEXCAN_ESR_ERR_INT BIT(1) #define FLEXCAN_ESR_WAK_INT BIT(0) #define FLEXCAN_ESR_ERR_BUS \ (FLEXCAN_ESR_BIT1_ERR | FLEXCAN_ESR_BIT0_ERR | \ FLEXCAN_ESR_ACK_ERR | FLEXCAN_ESR_CRC_ERR | \ FLEXCAN_ESR_FRM_ERR | FLEXCAN_ESR_STF_ERR) #define FLEXCAN_ESR_ERR_STATE \ (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | FLEXCAN_ESR_BOFF_INT) #define FLEXCAN_ESR_ERR_ALL \ (FLEXCAN_ESR_ERR_BUS | FLEXCAN_ESR_ERR_STATE) #define FLEXCAN_ESR_ALL_INT \ (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | \ FLEXCAN_ESR_BOFF_INT | FLEXCAN_ESR_ERR_INT) /* FLEXCAN Bit Timing register (CBT) bits */ #define FLEXCAN_CBT_BTF BIT(31) #define FLEXCAN_CBT_EPRESDIV_MASK GENMASK(30, 21) #define FLEXCAN_CBT_ERJW_MASK GENMASK(20, 16) #define FLEXCAN_CBT_EPROPSEG_MASK GENMASK(15, 10) #define FLEXCAN_CBT_EPSEG1_MASK GENMASK(9, 5) #define FLEXCAN_CBT_EPSEG2_MASK GENMASK(4, 0) /* FLEXCAN FD control register (FDCTRL) bits */ #define FLEXCAN_FDCTRL_FDRATE BIT(31) #define FLEXCAN_FDCTRL_MBDSR1 GENMASK(20, 19) #define FLEXCAN_FDCTRL_MBDSR0 GENMASK(17, 16) #define FLEXCAN_FDCTRL_MBDSR_8 0x0 #define FLEXCAN_FDCTRL_MBDSR_12 0x1 #define FLEXCAN_FDCTRL_MBDSR_32 0x2 #define FLEXCAN_FDCTRL_MBDSR_64 0x3 #define FLEXCAN_FDCTRL_TDCEN BIT(15) #define FLEXCAN_FDCTRL_TDCFAIL BIT(14) #define FLEXCAN_FDCTRL_TDCOFF GENMASK(12, 8) #define FLEXCAN_FDCTRL_TDCVAL GENMASK(5, 0) /* FLEXCAN FD Bit Timing register (FDCBT) bits */ #define FLEXCAN_FDCBT_FPRESDIV_MASK GENMASK(29, 20) #define FLEXCAN_FDCBT_FRJW_MASK GENMASK(18, 16) #define FLEXCAN_FDCBT_FPROPSEG_MASK GENMASK(14, 10) #define FLEXCAN_FDCBT_FPSEG1_MASK GENMASK(7, 5) #define FLEXCAN_FDCBT_FPSEG2_MASK GENMASK(2, 0) /* FLEXCAN interrupt flag register (IFLAG) bits */ /* Errata ERR005829 step7: Reserve first valid MB */ #define FLEXCAN_TX_MB_RESERVED_OFF_FIFO 8 #define FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP 0 #define FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST (FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP + 1) #define FLEXCAN_IFLAG_MB(x) BIT_ULL(x) #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7) #define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6) #define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5) /* FLEXCAN message buffers */ #define FLEXCAN_MB_CODE_MASK (0xf << 24) #define FLEXCAN_MB_CODE_RX_BUSY_BIT (0x1 << 24) #define FLEXCAN_MB_CODE_RX_INACTIVE (0x0 << 24) #define FLEXCAN_MB_CODE_RX_EMPTY (0x4 << 24) #define FLEXCAN_MB_CODE_RX_FULL (0x2 << 24) #define FLEXCAN_MB_CODE_RX_OVERRUN (0x6 << 24) #define FLEXCAN_MB_CODE_RX_RANSWER (0xa << 24) #define FLEXCAN_MB_CODE_TX_INACTIVE (0x8 << 24) #define FLEXCAN_MB_CODE_TX_ABORT (0x9 << 24) #define FLEXCAN_MB_CODE_TX_DATA (0xc << 24) #define FLEXCAN_MB_CODE_TX_TANSWER (0xe << 24) #define FLEXCAN_MB_CNT_EDL BIT(31) #define FLEXCAN_MB_CNT_BRS BIT(30) #define FLEXCAN_MB_CNT_ESI BIT(29) #define FLEXCAN_MB_CNT_SRR BIT(22) #define FLEXCAN_MB_CNT_IDE BIT(21) #define FLEXCAN_MB_CNT_RTR BIT(20) #define FLEXCAN_MB_CNT_LENGTH(x) (((x) & 0xf) << 16) #define FLEXCAN_MB_CNT_TIMESTAMP(x) ((x) & 0xffff) #define FLEXCAN_TIMEOUT_US (250) /* FLEXCAN hardware feature flags * * Below is some version info we got: * SOC Version IP-Version Glitch- [TR]WRN_INT IRQ Err Memory err RTR rece- FD Mode * Filter? connected? Passive detection ption in MB Supported? * MX25 FlexCAN2 03.00.00.00 no no no no no no * MX28 FlexCAN2 03.00.04.00 yes yes no no no no * MX35 FlexCAN2 03.00.00.00 no no no no no no * MX53 FlexCAN2 03.00.00.00 yes no no no no no * MX6s FlexCAN3 10.00.12.00 yes yes no no yes no * MX8QM FlexCAN3 03.00.23.00 yes yes no no yes yes * MX8MP FlexCAN3 03.00.17.01 yes yes no yes yes yes * VF610 FlexCAN3 ? no yes no yes yes? no * LS1021A FlexCAN2 03.00.04.00 no yes no no yes no * LX2160A FlexCAN3 03.00.23.00 no yes no yes yes yes * * Some SOCs do not have the RX_WARN & TX_WARN interrupt line connected. */ /* [TR]WRN_INT not connected */ #define FLEXCAN_QUIRK_BROKEN_WERR_STATE BIT(1) /* Disable RX FIFO Global mask */ #define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2) /* Enable EACEN and RRS bit in ctrl2 */ #define FLEXCAN_QUIRK_ENABLE_EACEN_RRS BIT(3) /* Disable non-correctable errors interrupt and freeze mode */ #define FLEXCAN_QUIRK_DISABLE_MECR BIT(4) /* Use timestamp based offloading */ #define FLEXCAN_QUIRK_USE_OFF_TIMESTAMP BIT(5) /* No interrupt for error passive */ #define FLEXCAN_QUIRK_BROKEN_PERR_STATE BIT(6) /* default to BE register access */ #define FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN BIT(7) /* Setup stop mode with GPR to support wakeup */ #define FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR BIT(8) /* Support CAN-FD mode */ #define FLEXCAN_QUIRK_SUPPORT_FD BIT(9) /* support memory detection and correction */ #define FLEXCAN_QUIRK_SUPPORT_ECC BIT(10) /* Structure of the message buffer */ struct flexcan_mb { u32 can_ctrl; u32 can_id; u32 data[]; }; /* Structure of the hardware registers */ struct flexcan_regs { u32 mcr; /* 0x00 */ u32 ctrl; /* 0x04 - Not affected by Soft Reset */ u32 timer; /* 0x08 */ u32 tcr; /* 0x0c */ u32 rxgmask; /* 0x10 - Not affected by Soft Reset */ u32 rx14mask; /* 0x14 - Not affected by Soft Reset */ u32 rx15mask; /* 0x18 - Not affected by Soft Reset */ u32 ecr; /* 0x1c */ u32 esr; /* 0x20 */ u32 imask2; /* 0x24 */ u32 imask1; /* 0x28 */ u32 iflag2; /* 0x2c */ u32 iflag1; /* 0x30 */ union { /* 0x34 */ u32 gfwr_mx28; /* MX28, MX53 */ u32 ctrl2; /* MX6, VF610 - Not affected by Soft Reset */ }; u32 esr2; /* 0x38 */ u32 imeur; /* 0x3c */ u32 lrfr; /* 0x40 */ u32 crcr; /* 0x44 */ u32 rxfgmask; /* 0x48 */ u32 rxfir; /* 0x4c - Not affected by Soft Reset */ u32 cbt; /* 0x50 - Not affected by Soft Reset */ u32 _reserved2; /* 0x54 */ u32 dbg1; /* 0x58 */ u32 dbg2; /* 0x5c */ u32 _reserved3[8]; /* 0x60 */ u8 mb[2][512]; /* 0x80 - Not affected by Soft Reset */ /* FIFO-mode: * MB * 0x080...0x08f 0 RX message buffer * 0x090...0x0df 1-5 reserved * 0x0e0...0x0ff 6-7 8 entry ID table * (mx25, mx28, mx35, mx53) * 0x0e0...0x2df 6-7..37 8..128 entry ID table * size conf'ed via ctrl2::RFFN * (mx6, vf610) */ u32 _reserved4[256]; /* 0x480 */ u32 rximr[64]; /* 0x880 - Not affected by Soft Reset */ u32 _reserved5[24]; /* 0x980 */ u32 gfwr_mx6; /* 0x9e0 - MX6 */ u32 _reserved6[39]; /* 0x9e4 */ u32 _rxfir[6]; /* 0xa80 */ u32 _reserved8[2]; /* 0xa98 */ u32 _rxmgmask; /* 0xaa0 */ u32 _rxfgmask; /* 0xaa4 */ u32 _rx14mask; /* 0xaa8 */ u32 _rx15mask; /* 0xaac */ u32 tx_smb[4]; /* 0xab0 */ u32 rx_smb0[4]; /* 0xac0 */ u32 rx_smb1[4]; /* 0xad0 */ u32 mecr; /* 0xae0 */ u32 erriar; /* 0xae4 */ u32 erridpr; /* 0xae8 */ u32 errippr; /* 0xaec */ u32 rerrar; /* 0xaf0 */ u32 rerrdr; /* 0xaf4 */ u32 rerrsynr; /* 0xaf8 */ u32 errsr; /* 0xafc */ u32 _reserved7[64]; /* 0xb00 */ u32 fdctrl; /* 0xc00 - Not affected by Soft Reset */ u32 fdcbt; /* 0xc04 - Not affected by Soft Reset */ u32 fdcrc; /* 0xc08 */ u32 _reserved9[199]; /* 0xc0c */ u32 tx_smb_fd[18]; /* 0xf28 */ u32 rx_smb0_fd[18]; /* 0xf70 */ u32 rx_smb1_fd[18]; /* 0xfb8 */ }; static_assert(sizeof(struct flexcan_regs) == 0x4 * 18 + 0xfb8); struct flexcan_devtype_data { u32 quirks; /* quirks needed for different IP cores */ }; struct flexcan_stop_mode { struct regmap *gpr; u8 req_gpr; u8 req_bit; }; struct flexcan_priv { struct can_priv can; struct can_rx_offload offload; struct device *dev; struct flexcan_regs __iomem *regs; struct flexcan_mb __iomem *tx_mb; struct flexcan_mb __iomem *tx_mb_reserved; u8 tx_mb_idx; u8 mb_count; u8 mb_size; u8 clk_src; /* clock source of CAN Protocol Engine */ u64 rx_mask; u64 tx_mask; u32 reg_ctrl_default; struct clk *clk_ipg; struct clk *clk_per; const struct flexcan_devtype_data *devtype_data; struct regulator *reg_xceiver; struct flexcan_stop_mode stm; /* Read and Write APIs */ u32 (*read)(void __iomem *addr); void (*write)(u32 val, void __iomem *addr); }; static const struct flexcan_devtype_data fsl_p1010_devtype_data = { .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN, }; static const struct flexcan_devtype_data fsl_imx25_devtype_data = { .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE | FLEXCAN_QUIRK_BROKEN_PERR_STATE, }; static const struct flexcan_devtype_data fsl_imx28_devtype_data = { .quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE, }; static const struct flexcan_devtype_data fsl_imx6q_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR, }; static const struct flexcan_devtype_data fsl_imx8qm_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SUPPORT_FD, }; static struct flexcan_devtype_data fsl_imx8mp_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR | FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SUPPORT_ECC, }; static const struct flexcan_devtype_data fsl_vf610_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_SUPPORT_ECC, }; static const struct flexcan_devtype_data fsl_ls1021a_r2_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP, }; static const struct flexcan_devtype_data fsl_lx2160a_r1_devtype_data = { .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS | FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_BROKEN_PERR_STATE | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_SUPPORT_FD | FLEXCAN_QUIRK_SUPPORT_ECC, }; static const struct can_bittiming_const flexcan_bittiming_const = { .name = DRV_NAME, .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, }; static const struct can_bittiming_const flexcan_fd_bittiming_const = { .name = DRV_NAME, .tseg1_min = 2, .tseg1_max = 96, .tseg2_min = 2, .tseg2_max = 32, .sjw_max = 16, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; static const struct can_bittiming_const flexcan_fd_data_bittiming_const = { .name = DRV_NAME, .tseg1_min = 2, .tseg1_max = 39, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; /* FlexCAN module is essentially modelled as a little-endian IP in most * SoCs, i.e the registers as well as the message buffer areas are * implemented in a little-endian fashion. * * However there are some SoCs (e.g. LS1021A) which implement the FlexCAN * module in a big-endian fashion (i.e the registers as well as the * message buffer areas are implemented in a big-endian way). * * In addition, the FlexCAN module can be found on SoCs having ARM or * PPC cores. So, we need to abstract off the register read/write * functions, ensuring that these cater to all the combinations of module * endianness and underlying CPU endianness. */ static inline u32 flexcan_read_be(void __iomem *addr) { return ioread32be(addr); } static inline void flexcan_write_be(u32 val, void __iomem *addr) { iowrite32be(val, addr); } static inline u32 flexcan_read_le(void __iomem *addr) { return ioread32(addr); } static inline void flexcan_write_le(u32 val, void __iomem *addr) { iowrite32(val, addr); } static struct flexcan_mb __iomem *flexcan_get_mb(const struct flexcan_priv *priv, u8 mb_index) { u8 bank_size; bool bank; if (WARN_ON(mb_index >= priv->mb_count)) return NULL; bank_size = sizeof(priv->regs->mb[0]) / priv->mb_size; bank = mb_index >= bank_size; if (bank) mb_index -= bank_size; return (struct flexcan_mb __iomem *) (&priv->regs->mb[bank][priv->mb_size * mb_index]); } static int flexcan_low_power_enter_ack(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = FLEXCAN_TIMEOUT_US / 10; while (timeout-- && !(priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK)) udelay(10); if (!(priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK)) return -ETIMEDOUT; return 0; } static int flexcan_low_power_exit_ack(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = FLEXCAN_TIMEOUT_US / 10; while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK)) udelay(10); if (priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK) return -ETIMEDOUT; return 0; } static void flexcan_enable_wakeup_irq(struct flexcan_priv *priv, bool enable) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_mcr; reg_mcr = priv->read(®s->mcr); if (enable) reg_mcr |= FLEXCAN_MCR_WAK_MSK; else reg_mcr &= ~FLEXCAN_MCR_WAK_MSK; priv->write(reg_mcr, ®s->mcr); } static inline int flexcan_enter_stop_mode(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_mcr; reg_mcr = priv->read(®s->mcr); reg_mcr |= FLEXCAN_MCR_SLF_WAK; priv->write(reg_mcr, ®s->mcr); /* enable stop request */ regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr, 1 << priv->stm.req_bit, 1 << priv->stm.req_bit); return flexcan_low_power_enter_ack(priv); } static inline int flexcan_exit_stop_mode(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_mcr; /* remove stop request */ regmap_update_bits(priv->stm.gpr, priv->stm.req_gpr, 1 << priv->stm.req_bit, 0); reg_mcr = priv->read(®s->mcr); reg_mcr &= ~FLEXCAN_MCR_SLF_WAK; priv->write(reg_mcr, ®s->mcr); return flexcan_low_power_exit_ack(priv); } static inline void flexcan_error_irq_enable(const struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_ctrl = (priv->reg_ctrl_default | FLEXCAN_CTRL_ERR_MSK); priv->write(reg_ctrl, ®s->ctrl); } static inline void flexcan_error_irq_disable(const struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg_ctrl = (priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_MSK); priv->write(reg_ctrl, ®s->ctrl); } static int flexcan_clks_enable(const struct flexcan_priv *priv) { int err; err = clk_prepare_enable(priv->clk_ipg); if (err) return err; err = clk_prepare_enable(priv->clk_per); if (err) clk_disable_unprepare(priv->clk_ipg); return err; } static void flexcan_clks_disable(const struct flexcan_priv *priv) { clk_disable_unprepare(priv->clk_per); clk_disable_unprepare(priv->clk_ipg); } static inline int flexcan_transceiver_enable(const struct flexcan_priv *priv) { if (!priv->reg_xceiver) return 0; return regulator_enable(priv->reg_xceiver); } static inline int flexcan_transceiver_disable(const struct flexcan_priv *priv) { if (!priv->reg_xceiver) return 0; return regulator_disable(priv->reg_xceiver); } static int flexcan_chip_enable(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg; reg = priv->read(®s->mcr); reg &= ~FLEXCAN_MCR_MDIS; priv->write(reg, ®s->mcr); return flexcan_low_power_exit_ack(priv); } static int flexcan_chip_disable(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; u32 reg; reg = priv->read(®s->mcr); reg |= FLEXCAN_MCR_MDIS; priv->write(reg, ®s->mcr); return flexcan_low_power_enter_ack(priv); } static int flexcan_chip_freeze(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = 1000 * 1000 * 10 / priv->can.bittiming.bitrate; u32 reg; reg = priv->read(®s->mcr); reg |= FLEXCAN_MCR_HALT; priv->write(reg, ®s->mcr); while (timeout-- && !(priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK)) udelay(100); if (!(priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK)) return -ETIMEDOUT; return 0; } static int flexcan_chip_unfreeze(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = FLEXCAN_TIMEOUT_US / 10; u32 reg; reg = priv->read(®s->mcr); reg &= ~FLEXCAN_MCR_HALT; priv->write(reg, ®s->mcr); while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK)) udelay(10); if (priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK) return -ETIMEDOUT; return 0; } static int flexcan_chip_softreset(struct flexcan_priv *priv) { struct flexcan_regs __iomem *regs = priv->regs; unsigned int timeout = FLEXCAN_TIMEOUT_US / 10; priv->write(FLEXCAN_MCR_SOFTRST, ®s->mcr); while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_SOFTRST)) udelay(10); if (priv->read(®s->mcr) & FLEXCAN_MCR_SOFTRST) return -ETIMEDOUT; return 0; } static int __flexcan_get_berr_counter(const struct net_device *dev, struct can_berr_counter *bec) { const struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u32 reg = priv->read(®s->ecr); bec->txerr = (reg >> 0) & 0xff; bec->rxerr = (reg >> 8) & 0xff; return 0; } static int flexcan_get_berr_counter(const struct net_device *dev, struct can_berr_counter *bec) { const struct flexcan_priv *priv = netdev_priv(dev); int err; err = pm_runtime_get_sync(priv->dev); if (err < 0) { pm_runtime_put_noidle(priv->dev); return err; } err = __flexcan_get_berr_counter(dev, bec); pm_runtime_put(priv->dev); return err; } static netdev_tx_t flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev) { const struct flexcan_priv *priv = netdev_priv(dev); struct canfd_frame *cfd = (struct canfd_frame *)skb->data; u32 can_id; u32 data; u32 ctrl = FLEXCAN_MB_CODE_TX_DATA | ((can_fd_len2dlc(cfd->len)) << 16); int i; if (can_dropped_invalid_skb(dev, skb)) return NETDEV_TX_OK; netif_stop_queue(dev); if (cfd->can_id & CAN_EFF_FLAG) { can_id = cfd->can_id & CAN_EFF_MASK; ctrl |= FLEXCAN_MB_CNT_IDE | FLEXCAN_MB_CNT_SRR; } else { can_id = (cfd->can_id & CAN_SFF_MASK) << 18; } if (cfd->can_id & CAN_RTR_FLAG) ctrl |= FLEXCAN_MB_CNT_RTR; if (can_is_canfd_skb(skb)) { ctrl |= FLEXCAN_MB_CNT_EDL; if (cfd->flags & CANFD_BRS) ctrl |= FLEXCAN_MB_CNT_BRS; } for (i = 0; i < cfd->len; i += sizeof(u32)) { data = be32_to_cpup((__be32 *)&cfd->data[i]); priv->write(data, &priv->tx_mb->data[i / sizeof(u32)]); } can_put_echo_skb(skb, dev, 0); priv->write(can_id, &priv->tx_mb->can_id); priv->write(ctrl, &priv->tx_mb->can_ctrl); /* Errata ERR005829 step8: * Write twice INACTIVE(0x8) code to first MB. */ priv->write(FLEXCAN_MB_CODE_TX_INACTIVE, &priv->tx_mb_reserved->can_ctrl); priv->write(FLEXCAN_MB_CODE_TX_INACTIVE, &priv->tx_mb_reserved->can_ctrl); return NETDEV_TX_OK; } static void flexcan_irq_bus_err(struct net_device *dev, u32 reg_esr) { struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; struct sk_buff *skb; struct can_frame *cf; bool rx_errors = false, tx_errors = false; u32 timestamp; int err; timestamp = priv->read(®s->timer) << 16; skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; if (reg_esr & FLEXCAN_ESR_BIT1_ERR) { netdev_dbg(dev, "BIT1_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_BIT1; tx_errors = true; } if (reg_esr & FLEXCAN_ESR_BIT0_ERR) { netdev_dbg(dev, "BIT0_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_BIT0; tx_errors = true; } if (reg_esr & FLEXCAN_ESR_ACK_ERR) { netdev_dbg(dev, "ACK_ERR irq\n"); cf->can_id |= CAN_ERR_ACK; cf->data[3] = CAN_ERR_PROT_LOC_ACK; tx_errors = true; } if (reg_esr & FLEXCAN_ESR_CRC_ERR) { netdev_dbg(dev, "CRC_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_BIT; cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; rx_errors = true; } if (reg_esr & FLEXCAN_ESR_FRM_ERR) { netdev_dbg(dev, "FRM_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_FORM; rx_errors = true; } if (reg_esr & FLEXCAN_ESR_STF_ERR) { netdev_dbg(dev, "STF_ERR irq\n"); cf->data[2] |= CAN_ERR_PROT_STUFF; rx_errors = true; } priv->can.can_stats.bus_error++; if (rx_errors) dev->stats.rx_errors++; if (tx_errors) dev->stats.tx_errors++; err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp); if (err) dev->stats.rx_fifo_errors++; } static void flexcan_irq_state(struct net_device *dev, u32 reg_esr) { struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; struct sk_buff *skb; struct can_frame *cf; enum can_state new_state, rx_state, tx_state; int flt; struct can_berr_counter bec; u32 timestamp; int err; flt = reg_esr & FLEXCAN_ESR_FLT_CONF_MASK; if (likely(flt == FLEXCAN_ESR_FLT_CONF_ACTIVE)) { tx_state = unlikely(reg_esr & FLEXCAN_ESR_TX_WRN) ? CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE; rx_state = unlikely(reg_esr & FLEXCAN_ESR_RX_WRN) ? CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE; new_state = max(tx_state, rx_state); } else { __flexcan_get_berr_counter(dev, &bec); new_state = flt == FLEXCAN_ESR_FLT_CONF_PASSIVE ? CAN_STATE_ERROR_PASSIVE : CAN_STATE_BUS_OFF; rx_state = bec.rxerr >= bec.txerr ? new_state : 0; tx_state = bec.rxerr <= bec.txerr ? new_state : 0; } /* state hasn't changed */ if (likely(new_state == priv->can.state)) return; timestamp = priv->read(®s->timer) << 16; skb = alloc_can_err_skb(dev, &cf); if (unlikely(!skb)) return; can_change_state(dev, cf, tx_state, rx_state); if (unlikely(new_state == CAN_STATE_BUS_OFF)) can_bus_off(dev); err = can_rx_offload_queue_sorted(&priv->offload, skb, timestamp); if (err) dev->stats.rx_fifo_errors++; } static inline u64 flexcan_read64_mask(struct flexcan_priv *priv, void __iomem *addr, u64 mask) { u64 reg = 0; if (upper_32_bits(mask)) reg = (u64)priv->read(addr - 4) << 32; if (lower_32_bits(mask)) reg |= priv->read(addr); return reg & mask; } static inline void flexcan_write64(struct flexcan_priv *priv, u64 val, void __iomem *addr) { if (upper_32_bits(val)) priv->write(upper_32_bits(val), addr - 4); if (lower_32_bits(val)) priv->write(lower_32_bits(val), addr); } static inline u64 flexcan_read_reg_iflag_rx(struct flexcan_priv *priv) { return flexcan_read64_mask(priv, &priv->regs->iflag1, priv->rx_mask); } static inline u64 flexcan_read_reg_iflag_tx(struct flexcan_priv *priv) { return flexcan_read64_mask(priv, &priv->regs->iflag1, priv->tx_mask); } static inline struct flexcan_priv *rx_offload_to_priv(struct can_rx_offload *offload) { return container_of(offload, struct flexcan_priv, offload); } static struct sk_buff *flexcan_mailbox_read(struct can_rx_offload *offload, unsigned int n, u32 *timestamp, bool drop) { struct flexcan_priv *priv = rx_offload_to_priv(offload); struct flexcan_regs __iomem *regs = priv->regs; struct flexcan_mb __iomem *mb; struct sk_buff *skb; struct canfd_frame *cfd; u32 reg_ctrl, reg_id, reg_iflag1; int i; if (unlikely(drop)) { skb = ERR_PTR(-ENOBUFS); goto mark_as_read; } mb = flexcan_get_mb(priv, n); if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { u32 code; do { reg_ctrl = priv->read(&mb->can_ctrl); } while (reg_ctrl & FLEXCAN_MB_CODE_RX_BUSY_BIT); /* is this MB empty? */ code = reg_ctrl & FLEXCAN_MB_CODE_MASK; if ((code != FLEXCAN_MB_CODE_RX_FULL) && (code != FLEXCAN_MB_CODE_RX_OVERRUN)) return NULL; if (code == FLEXCAN_MB_CODE_RX_OVERRUN) { /* This MB was overrun, we lost data */ offload->dev->stats.rx_over_errors++; offload->dev->stats.rx_errors++; } } else { reg_iflag1 = priv->read(®s->iflag1); if (!(reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE)) return NULL; reg_ctrl = priv->read(&mb->can_ctrl); } if (reg_ctrl & FLEXCAN_MB_CNT_EDL) skb = alloc_canfd_skb(offload->dev, &cfd); else skb = alloc_can_skb(offload->dev, (struct can_frame **)&cfd); if (unlikely(!skb)) { skb = ERR_PTR(-ENOMEM); goto mark_as_read; } /* increase timstamp to full 32 bit */ *timestamp = reg_ctrl << 16; reg_id = priv->read(&mb->can_id); if (reg_ctrl & FLEXCAN_MB_CNT_IDE) cfd->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG; else cfd->can_id = (reg_id >> 18) & CAN_SFF_MASK; if (reg_ctrl & FLEXCAN_MB_CNT_EDL) { cfd->len = can_fd_dlc2len((reg_ctrl >> 16) & 0xf); if (reg_ctrl & FLEXCAN_MB_CNT_BRS) cfd->flags |= CANFD_BRS; } else { cfd->len = can_cc_dlc2len((reg_ctrl >> 16) & 0xf); if (reg_ctrl & FLEXCAN_MB_CNT_RTR) cfd->can_id |= CAN_RTR_FLAG; } if (reg_ctrl & FLEXCAN_MB_CNT_ESI) cfd->flags |= CANFD_ESI; for (i = 0; i < cfd->len; i += sizeof(u32)) { __be32 data = cpu_to_be32(priv->read(&mb->data[i / sizeof(u32)])); *(__be32 *)(cfd->data + i) = data; } mark_as_read: if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) flexcan_write64(priv, FLEXCAN_IFLAG_MB(n), ®s->iflag1); else priv->write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, ®s->iflag1); /* Read the Free Running Timer. It is optional but recommended * to unlock Mailbox as soon as possible and make it available * for reception. */ priv->read(®s->timer); return skb; } static irqreturn_t flexcan_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct net_device_stats *stats = &dev->stats; struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; irqreturn_t handled = IRQ_NONE; u64 reg_iflag_tx; u32 reg_esr; enum can_state last_state = priv->can.state; /* reception interrupt */ if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { u64 reg_iflag_rx; int ret; while ((reg_iflag_rx = flexcan_read_reg_iflag_rx(priv))) { handled = IRQ_HANDLED; ret = can_rx_offload_irq_offload_timestamp(&priv->offload, reg_iflag_rx); if (!ret) break; } } else { u32 reg_iflag1; reg_iflag1 = priv->read(®s->iflag1); if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) { handled = IRQ_HANDLED; can_rx_offload_irq_offload_fifo(&priv->offload); } /* FIFO overflow interrupt */ if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) { handled = IRQ_HANDLED; priv->write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW, ®s->iflag1); dev->stats.rx_over_errors++; dev->stats.rx_errors++; } } reg_iflag_tx = flexcan_read_reg_iflag_tx(priv); /* transmission complete interrupt */ if (reg_iflag_tx & priv->tx_mask) { u32 reg_ctrl = priv->read(&priv->tx_mb->can_ctrl); handled = IRQ_HANDLED; stats->tx_bytes += can_rx_offload_get_echo_skb(&priv->offload, 0, reg_ctrl << 16); stats->tx_packets++; can_led_event(dev, CAN_LED_EVENT_TX); /* after sending a RTR frame MB is in RX mode */ priv->write(FLEXCAN_MB_CODE_TX_INACTIVE, &priv->tx_mb->can_ctrl); flexcan_write64(priv, priv->tx_mask, ®s->iflag1); netif_wake_queue(dev); } reg_esr = priv->read(®s->esr); /* ACK all bus error, state change and wake IRQ sources */ if (reg_esr & (FLEXCAN_ESR_ALL_INT | FLEXCAN_ESR_WAK_INT)) { handled = IRQ_HANDLED; priv->write(reg_esr & (FLEXCAN_ESR_ALL_INT | FLEXCAN_ESR_WAK_INT), ®s->esr); } /* state change interrupt or broken error state quirk fix is enabled */ if ((reg_esr & FLEXCAN_ESR_ERR_STATE) || (priv->devtype_data->quirks & (FLEXCAN_QUIRK_BROKEN_WERR_STATE | FLEXCAN_QUIRK_BROKEN_PERR_STATE))) flexcan_irq_state(dev, reg_esr); /* bus error IRQ - handle if bus error reporting is activated */ if ((reg_esr & FLEXCAN_ESR_ERR_BUS) && (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) flexcan_irq_bus_err(dev, reg_esr); /* availability of error interrupt among state transitions in case * bus error reporting is de-activated and * FLEXCAN_QUIRK_BROKEN_PERR_STATE is enabled: * +--------------------------------------------------------------+ * | +----------------------------------------------+ [stopped / | * | | | sleeping] -+ * +-+-> active <-> warning <-> passive -> bus off -+ * ___________^^^^^^^^^^^^_______________________________ * disabled(1) enabled disabled * * (1): enabled if FLEXCAN_QUIRK_BROKEN_WERR_STATE is enabled */ if ((last_state != priv->can.state) && (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_PERR_STATE) && !(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) { switch (priv->can.state) { case CAN_STATE_ERROR_ACTIVE: if (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE) flexcan_error_irq_enable(priv); else flexcan_error_irq_disable(priv); break; case CAN_STATE_ERROR_WARNING: flexcan_error_irq_enable(priv); break; case CAN_STATE_ERROR_PASSIVE: case CAN_STATE_BUS_OFF: flexcan_error_irq_disable(priv); break; default: break; } } return handled; } static void flexcan_set_bittiming_ctrl(const struct net_device *dev) { const struct flexcan_priv *priv = netdev_priv(dev); const struct can_bittiming *bt = &priv->can.bittiming; struct flexcan_regs __iomem *regs = priv->regs; u32 reg; reg = priv->read(®s->ctrl); reg &= ~(FLEXCAN_CTRL_PRESDIV(0xff) | FLEXCAN_CTRL_RJW(0x3) | FLEXCAN_CTRL_PSEG1(0x7) | FLEXCAN_CTRL_PSEG2(0x7) | FLEXCAN_CTRL_PROPSEG(0x7)); reg |= FLEXCAN_CTRL_PRESDIV(bt->brp - 1) | FLEXCAN_CTRL_PSEG1(bt->phase_seg1 - 1) | FLEXCAN_CTRL_PSEG2(bt->phase_seg2 - 1) | FLEXCAN_CTRL_RJW(bt->sjw - 1) | FLEXCAN_CTRL_PROPSEG(bt->prop_seg - 1); netdev_dbg(dev, "writing ctrl=0x%08x\n", reg); priv->write(reg, ®s->ctrl); /* print chip status */ netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x\n", __func__, priv->read(®s->mcr), priv->read(®s->ctrl)); } static void flexcan_set_bittiming_cbt(const struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); struct can_bittiming *bt = &priv->can.bittiming; struct can_bittiming *dbt = &priv->can.data_bittiming; struct flexcan_regs __iomem *regs = priv->regs; u32 reg_cbt, reg_fdctrl; /* CBT */ /* CBT[EPSEG1] is 5 bit long and CBT[EPROPSEG] is 6 bit * long. The can_calc_bittiming() tries to divide the tseg1 * equally between phase_seg1 and prop_seg, which may not fit * in CBT register. Therefore, if phase_seg1 is more than * possible value, increase prop_seg and decrease phase_seg1. */ if (bt->phase_seg1 > 0x20) { bt->prop_seg += (bt->phase_seg1 - 0x20); bt->phase_seg1 = 0x20; } reg_cbt = FLEXCAN_CBT_BTF | FIELD_PREP(FLEXCAN_CBT_EPRESDIV_MASK, bt->brp - 1) | FIELD_PREP(FLEXCAN_CBT_ERJW_MASK, bt->sjw - 1) | FIELD_PREP(FLEXCAN_CBT_EPROPSEG_MASK, bt->prop_seg - 1) | FIELD_PREP(FLEXCAN_CBT_EPSEG1_MASK, bt->phase_seg1 - 1) | FIELD_PREP(FLEXCAN_CBT_EPSEG2_MASK, bt->phase_seg2 - 1); netdev_dbg(dev, "writing cbt=0x%08x\n", reg_cbt); priv->write(reg_cbt, ®s->cbt); if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { u32 reg_fdcbt, reg_ctrl2; if (bt->brp != dbt->brp) netdev_warn(dev, "Data brp=%d and brp=%d don't match, this may result in a phase error. Consider using different bitrate and/or data bitrate.\n", dbt->brp, bt->brp); /* FDCBT */ /* FDCBT[FPSEG1] is 3 bit long and FDCBT[FPROPSEG] is * 5 bit long. The can_calc_bittiming tries to divide * the tseg1 equally between phase_seg1 and prop_seg, * which may not fit in FDCBT register. Therefore, if * phase_seg1 is more than possible value, increase * prop_seg and decrease phase_seg1 */ if (dbt->phase_seg1 > 0x8) { dbt->prop_seg += (dbt->phase_seg1 - 0x8); dbt->phase_seg1 = 0x8; } reg_fdcbt = priv->read(®s->fdcbt); reg_fdcbt &= ~(FIELD_PREP(FLEXCAN_FDCBT_FPRESDIV_MASK, 0x3ff) | FIELD_PREP(FLEXCAN_FDCBT_FRJW_MASK, 0x7) | FIELD_PREP(FLEXCAN_FDCBT_FPROPSEG_MASK, 0x1f) | FIELD_PREP(FLEXCAN_FDCBT_FPSEG1_MASK, 0x7) | FIELD_PREP(FLEXCAN_FDCBT_FPSEG2_MASK, 0x7)); reg_fdcbt |= FIELD_PREP(FLEXCAN_FDCBT_FPRESDIV_MASK, dbt->brp - 1) | FIELD_PREP(FLEXCAN_FDCBT_FRJW_MASK, dbt->sjw - 1) | FIELD_PREP(FLEXCAN_FDCBT_FPROPSEG_MASK, dbt->prop_seg) | FIELD_PREP(FLEXCAN_FDCBT_FPSEG1_MASK, dbt->phase_seg1 - 1) | FIELD_PREP(FLEXCAN_FDCBT_FPSEG2_MASK, dbt->phase_seg2 - 1); netdev_dbg(dev, "writing fdcbt=0x%08x\n", reg_fdcbt); priv->write(reg_fdcbt, ®s->fdcbt); /* CTRL2 */ reg_ctrl2 = priv->read(®s->ctrl2); reg_ctrl2 &= ~FLEXCAN_CTRL2_ISOCANFDEN; if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)) reg_ctrl2 |= FLEXCAN_CTRL2_ISOCANFDEN; netdev_dbg(dev, "writing ctrl2=0x%08x\n", reg_ctrl2); priv->write(reg_ctrl2, ®s->ctrl2); } /* FDCTRL */ reg_fdctrl = priv->read(®s->fdctrl); reg_fdctrl &= ~(FLEXCAN_FDCTRL_FDRATE | FIELD_PREP(FLEXCAN_FDCTRL_TDCOFF, 0x1f)); if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { reg_fdctrl |= FLEXCAN_FDCTRL_FDRATE; if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { /* TDC must be disabled for Loop Back mode */ reg_fdctrl &= ~FLEXCAN_FDCTRL_TDCEN; } else { reg_fdctrl |= FLEXCAN_FDCTRL_TDCEN | FIELD_PREP(FLEXCAN_FDCTRL_TDCOFF, ((dbt->phase_seg1 - 1) + dbt->prop_seg + 2) * ((dbt->brp - 1 ) + 1)); } } netdev_dbg(dev, "writing fdctrl=0x%08x\n", reg_fdctrl); priv->write(reg_fdctrl, ®s->fdctrl); netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x ctrl2=0x%08x fdctrl=0x%08x cbt=0x%08x fdcbt=0x%08x\n", __func__, priv->read(®s->mcr), priv->read(®s->ctrl), priv->read(®s->ctrl2), priv->read(®s->fdctrl), priv->read(®s->cbt), priv->read(®s->fdcbt)); } static void flexcan_set_bittiming(struct net_device *dev) { const struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u32 reg; reg = priv->read(®s->ctrl); reg &= ~(FLEXCAN_CTRL_LPB | FLEXCAN_CTRL_SMP | FLEXCAN_CTRL_LOM); if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) reg |= FLEXCAN_CTRL_LPB; if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) reg |= FLEXCAN_CTRL_LOM; if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) reg |= FLEXCAN_CTRL_SMP; netdev_dbg(dev, "writing ctrl=0x%08x\n", reg); priv->write(reg, ®s->ctrl); if (priv->can.ctrlmode_supported & CAN_CTRLMODE_FD) return flexcan_set_bittiming_cbt(dev); else return flexcan_set_bittiming_ctrl(dev); } static void flexcan_ram_init(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u32 reg_ctrl2; /* 11.8.3.13 Detection and correction of memory errors: * CTRL2[WRMFRZ] grants write access to all memory positions * that require initialization, ranging from 0x080 to 0xADF * and from 0xF28 to 0xFFF when the CAN FD feature is enabled. * The RXMGMASK, RX14MASK, RX15MASK, and RXFGMASK registers * need to be initialized as well. MCR[RFEN] must not be set * during memory initialization. */ reg_ctrl2 = priv->read(®s->ctrl2); reg_ctrl2 |= FLEXCAN_CTRL2_WRMFRZ; priv->write(reg_ctrl2, ®s->ctrl2); memset_io(®s->mb[0][0], 0, offsetof(struct flexcan_regs, rx_smb1[3]) - offsetof(struct flexcan_regs, mb[0][0]) + 0x4); if (priv->can.ctrlmode & CAN_CTRLMODE_FD) memset_io(®s->tx_smb_fd[0], 0, offsetof(struct flexcan_regs, rx_smb1_fd[17]) - offsetof(struct flexcan_regs, tx_smb_fd[0]) + 0x4); reg_ctrl2 &= ~FLEXCAN_CTRL2_WRMFRZ; priv->write(reg_ctrl2, ®s->ctrl2); } static int flexcan_rx_offload_setup(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); int err; if (priv->can.ctrlmode & CAN_CTRLMODE_FD) priv->mb_size = sizeof(struct flexcan_mb) + CANFD_MAX_DLEN; else priv->mb_size = sizeof(struct flexcan_mb) + CAN_MAX_DLEN; priv->mb_count = (sizeof(priv->regs->mb[0]) / priv->mb_size) + (sizeof(priv->regs->mb[1]) / priv->mb_size); if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) priv->tx_mb_reserved = flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP); else priv->tx_mb_reserved = flexcan_get_mb(priv, FLEXCAN_TX_MB_RESERVED_OFF_FIFO); priv->tx_mb_idx = priv->mb_count - 1; priv->tx_mb = flexcan_get_mb(priv, priv->tx_mb_idx); priv->tx_mask = FLEXCAN_IFLAG_MB(priv->tx_mb_idx); priv->offload.mailbox_read = flexcan_mailbox_read; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { priv->offload.mb_first = FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST; priv->offload.mb_last = priv->mb_count - 2; priv->rx_mask = GENMASK_ULL(priv->offload.mb_last, priv->offload.mb_first); err = can_rx_offload_add_timestamp(dev, &priv->offload); } else { priv->rx_mask = FLEXCAN_IFLAG_RX_FIFO_OVERFLOW | FLEXCAN_IFLAG_RX_FIFO_AVAILABLE; err = can_rx_offload_add_fifo(dev, &priv->offload, FLEXCAN_NAPI_WEIGHT); } return err; } static void flexcan_chip_interrupts_enable(const struct net_device *dev) { const struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u64 reg_imask; disable_irq(dev->irq); priv->write(priv->reg_ctrl_default, ®s->ctrl); reg_imask = priv->rx_mask | priv->tx_mask; priv->write(upper_32_bits(reg_imask), ®s->imask2); priv->write(lower_32_bits(reg_imask), ®s->imask1); enable_irq(dev->irq); } static void flexcan_chip_interrupts_disable(const struct net_device *dev) { const struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; priv->write(0, ®s->imask2); priv->write(0, ®s->imask1); priv->write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL, ®s->ctrl); } /* flexcan_chip_start * * this functions is entered with clocks enabled * */ static int flexcan_chip_start(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u32 reg_mcr, reg_ctrl, reg_ctrl2, reg_mecr; int err, i; struct flexcan_mb __iomem *mb; /* enable module */ err = flexcan_chip_enable(priv); if (err) return err; /* soft reset */ err = flexcan_chip_softreset(priv); if (err) goto out_chip_disable; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_ECC) flexcan_ram_init(dev); flexcan_set_bittiming(dev); /* MCR * * enable freeze * halt now * only supervisor access * enable warning int * enable individual RX masking * choose format C * set max mailbox number */ reg_mcr = priv->read(®s->mcr); reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff); reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT | FLEXCAN_MCR_SUPV | FLEXCAN_MCR_WRN_EN | FLEXCAN_MCR_IRMQ | FLEXCAN_MCR_IDAM_C | FLEXCAN_MCR_MAXMB(priv->tx_mb_idx); /* MCR * * FIFO: * - disable for timestamp mode * - enable for FIFO mode */ if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) reg_mcr &= ~FLEXCAN_MCR_FEN; else reg_mcr |= FLEXCAN_MCR_FEN; /* MCR * * NOTE: In loopback mode, the CAN_MCR[SRXDIS] cannot be * asserted because this will impede the self reception * of a transmitted message. This is not documented in * earlier versions of flexcan block guide. * * Self Reception: * - enable Self Reception for loopback mode * (by clearing "Self Reception Disable" bit) * - disable for normal operation */ if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) reg_mcr &= ~FLEXCAN_MCR_SRX_DIS; else reg_mcr |= FLEXCAN_MCR_SRX_DIS; /* MCR - CAN-FD */ if (priv->can.ctrlmode & CAN_CTRLMODE_FD) reg_mcr |= FLEXCAN_MCR_FDEN; else reg_mcr &= ~FLEXCAN_MCR_FDEN; netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr); priv->write(reg_mcr, ®s->mcr); /* CTRL * * disable timer sync feature * * disable auto busoff recovery * transmit lowest buffer first * * enable tx and rx warning interrupt * enable bus off interrupt * (== FLEXCAN_CTRL_ERR_STATE) */ reg_ctrl = priv->read(®s->ctrl); reg_ctrl &= ~FLEXCAN_CTRL_TSYN; reg_ctrl |= FLEXCAN_CTRL_BOFF_REC | FLEXCAN_CTRL_LBUF | FLEXCAN_CTRL_ERR_STATE; /* enable the "error interrupt" (FLEXCAN_CTRL_ERR_MSK), * on most Flexcan cores, too. Otherwise we don't get * any error warning or passive interrupts. */ if (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE || priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) reg_ctrl |= FLEXCAN_CTRL_ERR_MSK; else reg_ctrl &= ~FLEXCAN_CTRL_ERR_MSK; /* save for later use */ priv->reg_ctrl_default = reg_ctrl; /* leave interrupts disabled for now */ reg_ctrl &= ~FLEXCAN_CTRL_ERR_ALL; netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl); priv->write(reg_ctrl, ®s->ctrl); if ((priv->devtype_data->quirks & FLEXCAN_QUIRK_ENABLE_EACEN_RRS)) { reg_ctrl2 = priv->read(®s->ctrl2); reg_ctrl2 |= FLEXCAN_CTRL2_EACEN | FLEXCAN_CTRL2_RRS; priv->write(reg_ctrl2, ®s->ctrl2); } if (priv->can.ctrlmode_supported & CAN_CTRLMODE_FD) { u32 reg_fdctrl; reg_fdctrl = priv->read(®s->fdctrl); reg_fdctrl &= ~(FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1, 0x3) | FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0, 0x3)); if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { reg_fdctrl |= FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1, FLEXCAN_FDCTRL_MBDSR_64) | FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0, FLEXCAN_FDCTRL_MBDSR_64); } else { reg_fdctrl |= FIELD_PREP(FLEXCAN_FDCTRL_MBDSR1, FLEXCAN_FDCTRL_MBDSR_8) | FIELD_PREP(FLEXCAN_FDCTRL_MBDSR0, FLEXCAN_FDCTRL_MBDSR_8); } netdev_dbg(dev, "%s: writing fdctrl=0x%08x", __func__, reg_fdctrl); priv->write(reg_fdctrl, ®s->fdctrl); } if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) { for (i = priv->offload.mb_first; i <= priv->offload.mb_last; i++) { mb = flexcan_get_mb(priv, i); priv->write(FLEXCAN_MB_CODE_RX_EMPTY, &mb->can_ctrl); } } else { /* clear and invalidate unused mailboxes first */ for (i = FLEXCAN_TX_MB_RESERVED_OFF_FIFO; i < priv->mb_count; i++) { mb = flexcan_get_mb(priv, i); priv->write(FLEXCAN_MB_CODE_RX_INACTIVE, &mb->can_ctrl); } } /* Errata ERR005829: mark first TX mailbox as INACTIVE */ priv->write(FLEXCAN_MB_CODE_TX_INACTIVE, &priv->tx_mb_reserved->can_ctrl); /* mark TX mailbox as INACTIVE */ priv->write(FLEXCAN_MB_CODE_TX_INACTIVE, &priv->tx_mb->can_ctrl); /* acceptance mask/acceptance code (accept everything) */ priv->write(0x0, ®s->rxgmask); priv->write(0x0, ®s->rx14mask); priv->write(0x0, ®s->rx15mask); if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG) priv->write(0x0, ®s->rxfgmask); /* clear acceptance filters */ for (i = 0; i < priv->mb_count; i++) priv->write(0, ®s->rximr[i]); /* On Vybrid, disable non-correctable errors interrupt and * freeze mode. It still can correct the correctable errors * when HW supports ECC. * * This also works around errata e5295 which generates false * positive memory errors and put the device in freeze mode. */ if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_MECR) { /* Follow the protocol as described in "Detection * and Correction of Memory Errors" to write to * MECR register (step 1 - 5) * * 1. By default, CTRL2[ECRWRE] = 0, MECR[ECRWRDIS] = 1 * 2. set CTRL2[ECRWRE] */ reg_ctrl2 = priv->read(®s->ctrl2); reg_ctrl2 |= FLEXCAN_CTRL2_ECRWRE; priv->write(reg_ctrl2, ®s->ctrl2); /* 3. clear MECR[ECRWRDIS] */ reg_mecr = priv->read(®s->mecr); reg_mecr &= ~FLEXCAN_MECR_ECRWRDIS; priv->write(reg_mecr, ®s->mecr); /* 4. all writes to MECR must keep MECR[ECRWRDIS] cleared */ reg_mecr &= ~(FLEXCAN_MECR_NCEFAFRZ | FLEXCAN_MECR_HANCEI_MSK | FLEXCAN_MECR_FANCEI_MSK); priv->write(reg_mecr, ®s->mecr); /* 5. after configuration done, lock MECR by either * setting MECR[ECRWRDIS] or clearing CTRL2[ECRWRE] */ reg_mecr |= FLEXCAN_MECR_ECRWRDIS; priv->write(reg_mecr, ®s->mecr); reg_ctrl2 &= ~FLEXCAN_CTRL2_ECRWRE; priv->write(reg_ctrl2, ®s->ctrl2); } /* synchronize with the can bus */ err = flexcan_chip_unfreeze(priv); if (err) goto out_chip_disable; priv->can.state = CAN_STATE_ERROR_ACTIVE; /* print chip status */ netdev_dbg(dev, "%s: reading mcr=0x%08x ctrl=0x%08x\n", __func__, priv->read(®s->mcr), priv->read(®s->ctrl)); return 0; out_chip_disable: flexcan_chip_disable(priv); return err; } /* __flexcan_chip_stop * * this function is entered with clocks enabled */ static int __flexcan_chip_stop(struct net_device *dev, bool disable_on_error) { struct flexcan_priv *priv = netdev_priv(dev); int err; /* freeze + disable module */ err = flexcan_chip_freeze(priv); if (err && !disable_on_error) return err; err = flexcan_chip_disable(priv); if (err && !disable_on_error) goto out_chip_unfreeze; priv->can.state = CAN_STATE_STOPPED; return 0; out_chip_unfreeze: flexcan_chip_unfreeze(priv); return err; } static inline int flexcan_chip_stop_disable_on_error(struct net_device *dev) { return __flexcan_chip_stop(dev, true); } static inline int flexcan_chip_stop(struct net_device *dev) { return __flexcan_chip_stop(dev, false); } static int flexcan_open(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); int err; if ((priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) && (priv->can.ctrlmode & CAN_CTRLMODE_FD)) { netdev_err(dev, "Three Samples mode and CAN-FD mode can't be used together\n"); return -EINVAL; } err = pm_runtime_get_sync(priv->dev); if (err < 0) { pm_runtime_put_noidle(priv->dev); return err; } err = open_candev(dev); if (err) goto out_runtime_put; err = flexcan_transceiver_enable(priv); if (err) goto out_close; err = flexcan_rx_offload_setup(dev); if (err) goto out_transceiver_disable; err = flexcan_chip_start(dev); if (err) goto out_can_rx_offload_del; can_rx_offload_enable(&priv->offload); err = request_irq(dev->irq, flexcan_irq, IRQF_SHARED, dev->name, dev); if (err) goto out_can_rx_offload_disable; flexcan_chip_interrupts_enable(dev); can_led_event(dev, CAN_LED_EVENT_OPEN); netif_start_queue(dev); return 0; out_can_rx_offload_disable: can_rx_offload_disable(&priv->offload); flexcan_chip_stop(dev); out_can_rx_offload_del: can_rx_offload_del(&priv->offload); out_transceiver_disable: flexcan_transceiver_disable(priv); out_close: close_candev(dev); out_runtime_put: pm_runtime_put(priv->dev); return err; } static int flexcan_close(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); netif_stop_queue(dev); flexcan_chip_interrupts_disable(dev); free_irq(dev->irq, dev); can_rx_offload_disable(&priv->offload); flexcan_chip_stop_disable_on_error(dev); can_rx_offload_del(&priv->offload); flexcan_transceiver_disable(priv); close_candev(dev); pm_runtime_put(priv->dev); can_led_event(dev, CAN_LED_EVENT_STOP); return 0; } static int flexcan_set_mode(struct net_device *dev, enum can_mode mode) { int err; switch (mode) { case CAN_MODE_START: err = flexcan_chip_start(dev); if (err) return err; flexcan_chip_interrupts_enable(dev); netif_wake_queue(dev); break; default: return -EOPNOTSUPP; } return 0; } static const struct net_device_ops flexcan_netdev_ops = { .ndo_open = flexcan_open, .ndo_stop = flexcan_close, .ndo_start_xmit = flexcan_start_xmit, .ndo_change_mtu = can_change_mtu, }; static int register_flexcandev(struct net_device *dev) { struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_regs __iomem *regs = priv->regs; u32 reg, err; err = flexcan_clks_enable(priv); if (err) return err; /* select "bus clock", chip must be disabled */ err = flexcan_chip_disable(priv); if (err) goto out_clks_disable; reg = priv->read(®s->ctrl); if (priv->clk_src) reg |= FLEXCAN_CTRL_CLK_SRC; else reg &= ~FLEXCAN_CTRL_CLK_SRC; priv->write(reg, ®s->ctrl); err = flexcan_chip_enable(priv); if (err) goto out_chip_disable; /* set freeze, halt and activate FIFO, restrict register access */ reg = priv->read(®s->mcr); reg |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT | FLEXCAN_MCR_FEN | FLEXCAN_MCR_SUPV; priv->write(reg, ®s->mcr); /* Currently we only support newer versions of this core * featuring a RX hardware FIFO (although this driver doesn't * make use of it on some cores). Older cores, found on some * Coldfire derivates are not tested. */ reg = priv->read(®s->mcr); if (!(reg & FLEXCAN_MCR_FEN)) { netdev_err(dev, "Could not enable RX FIFO, unsupported core\n"); err = -ENODEV; goto out_chip_disable; } err = register_candev(dev); if (err) goto out_chip_disable; /* Disable core and let pm_runtime_put() disable the clocks. * If CONFIG_PM is not enabled, the clocks will stay powered. */ flexcan_chip_disable(priv); pm_runtime_put(priv->dev); return 0; out_chip_disable: flexcan_chip_disable(priv); out_clks_disable: flexcan_clks_disable(priv); return err; } static void unregister_flexcandev(struct net_device *dev) { unregister_candev(dev); } static int flexcan_setup_stop_mode(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct device_node *np = pdev->dev.of_node; struct device_node *gpr_np; struct flexcan_priv *priv; phandle phandle; u32 out_val[3]; int ret; if (!np) return -EINVAL; /* stop mode property format is: * <&gpr req_gpr req_bit>. */ ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, ARRAY_SIZE(out_val)); if (ret) { dev_dbg(&pdev->dev, "no stop-mode property\n"); return ret; } phandle = *out_val; gpr_np = of_find_node_by_phandle(phandle); if (!gpr_np) { dev_dbg(&pdev->dev, "could not find gpr node by phandle\n"); return -ENODEV; } priv = netdev_priv(dev); priv->stm.gpr = syscon_node_to_regmap(gpr_np); if (IS_ERR(priv->stm.gpr)) { dev_dbg(&pdev->dev, "could not find gpr regmap\n"); ret = PTR_ERR(priv->stm.gpr); goto out_put_node; } priv->stm.req_gpr = out_val[1]; priv->stm.req_bit = out_val[2]; dev_dbg(&pdev->dev, "gpr %s req_gpr=0x02%x req_bit=%u\n", gpr_np->full_name, priv->stm.req_gpr, priv->stm.req_bit); device_set_wakeup_capable(&pdev->dev, true); if (of_property_read_bool(np, "wakeup-source")) device_set_wakeup_enable(&pdev->dev, true); return 0; out_put_node: of_node_put(gpr_np); return ret; } static const struct of_device_id flexcan_of_match[] = { { .compatible = "fsl,imx8qm-flexcan", .data = &fsl_imx8qm_devtype_data, }, { .compatible = "fsl,imx8mp-flexcan", .data = &fsl_imx8mp_devtype_data, }, { .compatible = "fsl,imx6q-flexcan", .data = &fsl_imx6q_devtype_data, }, { .compatible = "fsl,imx28-flexcan", .data = &fsl_imx28_devtype_data, }, { .compatible = "fsl,imx53-flexcan", .data = &fsl_imx25_devtype_data, }, { .compatible = "fsl,imx35-flexcan", .data = &fsl_imx25_devtype_data, }, { .compatible = "fsl,imx25-flexcan", .data = &fsl_imx25_devtype_data, }, { .compatible = "fsl,p1010-flexcan", .data = &fsl_p1010_devtype_data, }, { .compatible = "fsl,vf610-flexcan", .data = &fsl_vf610_devtype_data, }, { .compatible = "fsl,ls1021ar2-flexcan", .data = &fsl_ls1021a_r2_devtype_data, }, { .compatible = "fsl,lx2160ar1-flexcan", .data = &fsl_lx2160a_r1_devtype_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, flexcan_of_match); static const struct platform_device_id flexcan_id_table[] = { { .name = "flexcan", .driver_data = (kernel_ulong_t)&fsl_p1010_devtype_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(platform, flexcan_id_table); static int flexcan_probe(struct platform_device *pdev) { const struct of_device_id *of_id; const struct flexcan_devtype_data *devtype_data; struct net_device *dev; struct flexcan_priv *priv; struct regulator *reg_xceiver; struct clk *clk_ipg = NULL, *clk_per = NULL; struct flexcan_regs __iomem *regs; int err, irq; u8 clk_src = 1; u32 clock_freq = 0; reg_xceiver = devm_regulator_get_optional(&pdev->dev, "xceiver"); if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER) return -EPROBE_DEFER; else if (PTR_ERR(reg_xceiver) == -ENODEV) reg_xceiver = NULL; else if (IS_ERR(reg_xceiver)) return PTR_ERR(reg_xceiver); if (pdev->dev.of_node) { of_property_read_u32(pdev->dev.of_node, "clock-frequency", &clock_freq); of_property_read_u8(pdev->dev.of_node, "fsl,clk-source", &clk_src); } if (!clock_freq) { clk_ipg = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(clk_ipg)) { dev_err(&pdev->dev, "no ipg clock defined\n"); return PTR_ERR(clk_ipg); } clk_per = devm_clk_get(&pdev->dev, "per"); if (IS_ERR(clk_per)) { dev_err(&pdev->dev, "no per clock defined\n"); return PTR_ERR(clk_per); } clock_freq = clk_get_rate(clk_per); } irq = platform_get_irq(pdev, 0); if (irq <= 0) return -ENODEV; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) return PTR_ERR(regs); of_id = of_match_device(flexcan_of_match, &pdev->dev); if (of_id) { devtype_data = of_id->data; } else if (platform_get_device_id(pdev)->driver_data) { devtype_data = (struct flexcan_devtype_data *) platform_get_device_id(pdev)->driver_data; } else { return -ENODEV; } if ((devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_FD) && !(devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP)) { dev_err(&pdev->dev, "CAN-FD mode doesn't work with FIFO mode!\n"); return -EINVAL; } dev = alloc_candev(sizeof(struct flexcan_priv), 1); if (!dev) return -ENOMEM; platform_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); dev->netdev_ops = &flexcan_netdev_ops; dev->irq = irq; dev->flags |= IFF_ECHO; priv = netdev_priv(dev); if (of_property_read_bool(pdev->dev.of_node, "big-endian") || devtype_data->quirks & FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN) { priv->read = flexcan_read_be; priv->write = flexcan_write_be; } else { priv->read = flexcan_read_le; priv->write = flexcan_write_le; } priv->dev = &pdev->dev; priv->can.clock.freq = clock_freq; priv->can.do_set_mode = flexcan_set_mode; priv->can.do_get_berr_counter = flexcan_get_berr_counter; priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_BERR_REPORTING; priv->regs = regs; priv->clk_ipg = clk_ipg; priv->clk_per = clk_per; priv->clk_src = clk_src; priv->devtype_data = devtype_data; priv->reg_xceiver = reg_xceiver; if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SUPPORT_FD) { priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD | CAN_CTRLMODE_FD_NON_ISO; priv->can.bittiming_const = &flexcan_fd_bittiming_const; priv->can.data_bittiming_const = &flexcan_fd_data_bittiming_const; } else { priv->can.bittiming_const = &flexcan_bittiming_const; } pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); err = register_flexcandev(dev); if (err) { dev_err(&pdev->dev, "registering netdev failed\n"); goto failed_register; } of_can_transceiver(dev); devm_can_led_init(dev); if (priv->devtype_data->quirks & FLEXCAN_QUIRK_SETUP_STOP_MODE_GPR) { err = flexcan_setup_stop_mode(pdev); if (err) dev_dbg(&pdev->dev, "failed to setup stop-mode\n"); } return 0; failed_register: pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); free_candev(dev); return err; } static int flexcan_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); device_set_wakeup_enable(&pdev->dev, false); device_set_wakeup_capable(&pdev->dev, false); unregister_flexcandev(dev); pm_runtime_disable(&pdev->dev); free_candev(dev); return 0; } static int __maybe_unused flexcan_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); int err; if (netif_running(dev)) { /* if wakeup is enabled, enter stop mode * else enter disabled mode. */ if (device_may_wakeup(device)) { enable_irq_wake(dev->irq); err = flexcan_enter_stop_mode(priv); if (err) return err; } else { err = flexcan_chip_stop(dev); if (err) return err; flexcan_chip_interrupts_disable(dev); err = pinctrl_pm_select_sleep_state(device); if (err) return err; } netif_stop_queue(dev); netif_device_detach(dev); } priv->can.state = CAN_STATE_SLEEPING; return 0; } static int __maybe_unused flexcan_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); int err; priv->can.state = CAN_STATE_ERROR_ACTIVE; if (netif_running(dev)) { netif_device_attach(dev); netif_start_queue(dev); if (device_may_wakeup(device)) { disable_irq_wake(dev->irq); err = flexcan_exit_stop_mode(priv); if (err) return err; } else { err = pinctrl_pm_select_default_state(device); if (err) return err; err = flexcan_chip_start(dev); if (err) return err; flexcan_chip_interrupts_enable(dev); } } return 0; } static int __maybe_unused flexcan_runtime_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); flexcan_clks_disable(priv); return 0; } static int __maybe_unused flexcan_runtime_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); return flexcan_clks_enable(priv); } static int __maybe_unused flexcan_noirq_suspend(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); if (netif_running(dev)) { int err; if (device_may_wakeup(device)) flexcan_enable_wakeup_irq(priv, true); err = pm_runtime_force_suspend(device); if (err) return err; } return 0; } static int __maybe_unused flexcan_noirq_resume(struct device *device) { struct net_device *dev = dev_get_drvdata(device); struct flexcan_priv *priv = netdev_priv(dev); if (netif_running(dev)) { int err; err = pm_runtime_force_resume(device); if (err) return err; if (device_may_wakeup(device)) flexcan_enable_wakeup_irq(priv, false); } return 0; } static const struct dev_pm_ops flexcan_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(flexcan_suspend, flexcan_resume) SET_RUNTIME_PM_OPS(flexcan_runtime_suspend, flexcan_runtime_resume, NULL) SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(flexcan_noirq_suspend, flexcan_noirq_resume) }; static struct platform_driver flexcan_driver = { .driver = { .name = DRV_NAME, .pm = &flexcan_pm_ops, .of_match_table = flexcan_of_match, }, .probe = flexcan_probe, .remove = flexcan_remove, .id_table = flexcan_id_table, }; module_platform_driver(flexcan_driver); MODULE_AUTHOR("Sascha Hauer , " "Marc Kleine-Budde "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("CAN port driver for flexcan based chip");