/* * pnpacpi -- PnP ACPI driver * * Copyright (c) 2004 Matthieu Castet <castet.matthieu@free.fr> * Copyright (c) 2004 Li Shaohua <shaohua.li@intel.com> * Copyright (C) 2008 Hewlett-Packard Development Company, L.P. * Bjorn Helgaas <bjorn.helgaas@hp.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/acpi.h> #include <linux/pci.h> #include <linux/pnp.h> #include <linux/slab.h> #include "../base.h" #include "pnpacpi.h" #ifdef CONFIG_IA64 #define valid_IRQ(i) (1) #else #define valid_IRQ(i) (((i) != 0) && ((i) != 2)) #endif /* * Allocated Resources */ static int irq_flags(int triggering, int polarity, int shareable) { int flags; if (triggering == ACPI_LEVEL_SENSITIVE) { if (polarity == ACPI_ACTIVE_LOW) flags = IORESOURCE_IRQ_LOWLEVEL; else flags = IORESOURCE_IRQ_HIGHLEVEL; } else { if (polarity == ACPI_ACTIVE_LOW) flags = IORESOURCE_IRQ_LOWEDGE; else flags = IORESOURCE_IRQ_HIGHEDGE; } if (shareable == ACPI_SHARED) flags |= IORESOURCE_IRQ_SHAREABLE; return flags; } static void decode_irq_flags(struct pnp_dev *dev, int flags, int *triggering, int *polarity, int *shareable) { switch (flags & (IORESOURCE_IRQ_LOWLEVEL | IORESOURCE_IRQ_HIGHLEVEL | IORESOURCE_IRQ_LOWEDGE | IORESOURCE_IRQ_HIGHEDGE)) { case IORESOURCE_IRQ_LOWLEVEL: *triggering = ACPI_LEVEL_SENSITIVE; *polarity = ACPI_ACTIVE_LOW; break; case IORESOURCE_IRQ_HIGHLEVEL: *triggering = ACPI_LEVEL_SENSITIVE; *polarity = ACPI_ACTIVE_HIGH; break; case IORESOURCE_IRQ_LOWEDGE: *triggering = ACPI_EDGE_SENSITIVE; *polarity = ACPI_ACTIVE_LOW; break; case IORESOURCE_IRQ_HIGHEDGE: *triggering = ACPI_EDGE_SENSITIVE; *polarity = ACPI_ACTIVE_HIGH; break; default: dev_err(&dev->dev, "can't encode invalid IRQ mode %#x\n", flags); *triggering = ACPI_EDGE_SENSITIVE; *polarity = ACPI_ACTIVE_HIGH; break; } if (flags & IORESOURCE_IRQ_SHAREABLE) *shareable = ACPI_SHARED; else *shareable = ACPI_EXCLUSIVE; } static void pnpacpi_parse_allocated_irqresource(struct pnp_dev *dev, u32 gsi, int triggering, int polarity, int shareable) { int irq, flags; int p, t; if (!valid_IRQ(gsi)) { pnp_add_irq_resource(dev, gsi, IORESOURCE_DISABLED); return; } /* * in IO-APIC mode, use overrided attribute. Two reasons: * 1. BIOS bug in DSDT * 2. BIOS uses IO-APIC mode Interrupt Source Override */ if (!acpi_get_override_irq(gsi, &t, &p)) { t = t ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE; p = p ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; if (triggering != t || polarity != p) { dev_warn(&dev->dev, "IRQ %d override to %s, %s\n", gsi, t ? "edge":"level", p ? "low":"high"); triggering = t; polarity = p; } } flags = irq_flags(triggering, polarity, shareable); irq = acpi_register_gsi(&dev->dev, gsi, triggering, polarity); if (irq >= 0) pcibios_penalize_isa_irq(irq, 1); else flags |= IORESOURCE_DISABLED; pnp_add_irq_resource(dev, irq, flags); } static int dma_flags(struct pnp_dev *dev, int type, int bus_master, int transfer) { int flags = 0; if (bus_master) flags |= IORESOURCE_DMA_MASTER; switch (type) { case ACPI_COMPATIBILITY: flags |= IORESOURCE_DMA_COMPATIBLE; break; case ACPI_TYPE_A: flags |= IORESOURCE_DMA_TYPEA; break; case ACPI_TYPE_B: flags |= IORESOURCE_DMA_TYPEB; break; case ACPI_TYPE_F: flags |= IORESOURCE_DMA_TYPEF; break; default: /* Set a default value ? */ flags |= IORESOURCE_DMA_COMPATIBLE; dev_err(&dev->dev, "invalid DMA type %d\n", type); } switch (transfer) { case ACPI_TRANSFER_8: flags |= IORESOURCE_DMA_8BIT; break; case ACPI_TRANSFER_8_16: flags |= IORESOURCE_DMA_8AND16BIT; break; case ACPI_TRANSFER_16: flags |= IORESOURCE_DMA_16BIT; break; default: /* Set a default value ? */ flags |= IORESOURCE_DMA_8AND16BIT; dev_err(&dev->dev, "invalid DMA transfer type %d\n", transfer); } return flags; } static void pnpacpi_parse_allocated_ioresource(struct pnp_dev *dev, u64 start, u64 len, int io_decode, int window) { int flags = 0; u64 end = start + len - 1; if (io_decode == ACPI_DECODE_16) flags |= IORESOURCE_IO_16BIT_ADDR; if (len == 0 || end >= 0x10003) flags |= IORESOURCE_DISABLED; if (window) flags |= IORESOURCE_WINDOW; pnp_add_io_resource(dev, start, end, flags); } /* * Device CSRs that do not appear in PCI config space should be described * via ACPI. This would normally be done with Address Space Descriptors * marked as "consumer-only," but old versions of Windows and Linux ignore * the producer/consumer flag, so HP invented a vendor-defined resource to * describe the location and size of CSR space. */ static struct acpi_vendor_uuid hp_ccsr_uuid = { .subtype = 2, .data = { 0xf9, 0xad, 0xe9, 0x69, 0x4f, 0x92, 0x5f, 0xab, 0xf6, 0x4a, 0x24, 0xd2, 0x01, 0x37, 0x0e, 0xad }, }; static int vendor_resource_matches(struct pnp_dev *dev, struct acpi_resource_vendor_typed *vendor, struct acpi_vendor_uuid *match, int expected_len) { int uuid_len = sizeof(vendor->uuid); u8 uuid_subtype = vendor->uuid_subtype; u8 *uuid = vendor->uuid; int actual_len; /* byte_length includes uuid_subtype and uuid */ actual_len = vendor->byte_length - uuid_len - 1; if (uuid_subtype == match->subtype && uuid_len == sizeof(match->data) && memcmp(uuid, match->data, uuid_len) == 0) { if (expected_len && expected_len != actual_len) { dev_err(&dev->dev, "wrong vendor descriptor size; " "expected %d, found %d bytes\n", expected_len, actual_len); return 0; } return 1; } return 0; } static void pnpacpi_parse_allocated_vendor(struct pnp_dev *dev, struct acpi_resource_vendor_typed *vendor) { if (vendor_resource_matches(dev, vendor, &hp_ccsr_uuid, 16)) { u64 start, length; memcpy(&start, vendor->byte_data, sizeof(start)); memcpy(&length, vendor->byte_data + 8, sizeof(length)); pnp_add_mem_resource(dev, start, start + length - 1, 0); } } static void pnpacpi_parse_allocated_memresource(struct pnp_dev *dev, u64 start, u64 len, int write_protect, int window) { int flags = 0; u64 end = start + len - 1; if (len == 0) flags |= IORESOURCE_DISABLED; if (write_protect == ACPI_READ_WRITE_MEMORY) flags |= IORESOURCE_MEM_WRITEABLE; if (window) flags |= IORESOURCE_WINDOW; pnp_add_mem_resource(dev, start, end, flags); } static void pnpacpi_parse_allocated_busresource(struct pnp_dev *dev, u64 start, u64 len) { u64 end = start + len - 1; pnp_add_bus_resource(dev, start, end); } static void pnpacpi_parse_allocated_address_space(struct pnp_dev *dev, struct acpi_resource *res) { struct acpi_resource_address64 addr, *p = &addr; acpi_status status; int window; u64 len; status = acpi_resource_to_address64(res, p); if (!ACPI_SUCCESS(status)) { dev_warn(&dev->dev, "failed to convert resource type %d\n", res->type); return; } /* Windows apparently computes length rather than using _LEN */ len = p->maximum - p->minimum + 1; window = (p->producer_consumer == ACPI_PRODUCER) ? 1 : 0; if (p->resource_type == ACPI_MEMORY_RANGE) pnpacpi_parse_allocated_memresource(dev, p->minimum, len, p->info.mem.write_protect, window); else if (p->resource_type == ACPI_IO_RANGE) pnpacpi_parse_allocated_ioresource(dev, p->minimum, len, p->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16, window); else if (p->resource_type == ACPI_BUS_NUMBER_RANGE) pnpacpi_parse_allocated_busresource(dev, p->minimum, len); } static void pnpacpi_parse_allocated_ext_address_space(struct pnp_dev *dev, struct acpi_resource *res) { struct acpi_resource_extended_address64 *p = &res->data.ext_address64; int window; u64 len; /* Windows apparently computes length rather than using _LEN */ len = p->maximum - p->minimum + 1; window = (p->producer_consumer == ACPI_PRODUCER) ? 1 : 0; if (p->resource_type == ACPI_MEMORY_RANGE) pnpacpi_parse_allocated_memresource(dev, p->minimum, len, p->info.mem.write_protect, window); else if (p->resource_type == ACPI_IO_RANGE) pnpacpi_parse_allocated_ioresource(dev, p->minimum, len, p->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16, window); else if (p->resource_type == ACPI_BUS_NUMBER_RANGE) pnpacpi_parse_allocated_busresource(dev, p->minimum, len); } static acpi_status pnpacpi_allocated_resource(struct acpi_resource *res, void *data) { struct pnp_dev *dev = data; struct acpi_resource_irq *irq; struct acpi_resource_dma *dma; struct acpi_resource_io *io; struct acpi_resource_fixed_io *fixed_io; struct acpi_resource_vendor_typed *vendor_typed; struct acpi_resource_memory24 *memory24; struct acpi_resource_memory32 *memory32; struct acpi_resource_fixed_memory32 *fixed_memory32; struct acpi_resource_extended_irq *extended_irq; int i, flags; switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: /* * Per spec, only one interrupt per descriptor is allowed in * _CRS, but some firmware violates this, so parse them all. */ irq = &res->data.irq; if (irq->interrupt_count == 0) pnp_add_irq_resource(dev, 0, IORESOURCE_DISABLED); else { for (i = 0; i < irq->interrupt_count; i++) { pnpacpi_parse_allocated_irqresource(dev, irq->interrupts[i], irq->triggering, irq->polarity, irq->sharable); } /* * The IRQ encoder puts a single interrupt in each * descriptor, so if a _CRS descriptor has more than * one interrupt, we won't be able to re-encode it. */ if (pnp_can_write(dev) && irq->interrupt_count > 1) { dev_warn(&dev->dev, "multiple interrupts in " "_CRS descriptor; configuration can't " "be changed\n"); dev->capabilities &= ~PNP_WRITE; } } break; case ACPI_RESOURCE_TYPE_DMA: dma = &res->data.dma; if (dma->channel_count > 0 && dma->channels[0] != (u8) -1) flags = dma_flags(dev, dma->type, dma->bus_master, dma->transfer); else flags = IORESOURCE_DISABLED; pnp_add_dma_resource(dev, dma->channels[0], flags); break; case ACPI_RESOURCE_TYPE_IO: io = &res->data.io; pnpacpi_parse_allocated_ioresource(dev, io->minimum, io->address_length, io->io_decode, 0); break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: case ACPI_RESOURCE_TYPE_END_DEPENDENT: break; case ACPI_RESOURCE_TYPE_FIXED_IO: fixed_io = &res->data.fixed_io; pnpacpi_parse_allocated_ioresource(dev, fixed_io->address, fixed_io->address_length, ACPI_DECODE_10, 0); break; case ACPI_RESOURCE_TYPE_VENDOR: vendor_typed = &res->data.vendor_typed; pnpacpi_parse_allocated_vendor(dev, vendor_typed); break; case ACPI_RESOURCE_TYPE_END_TAG: break; case ACPI_RESOURCE_TYPE_MEMORY24: memory24 = &res->data.memory24; pnpacpi_parse_allocated_memresource(dev, memory24->minimum, memory24->address_length, memory24->write_protect, 0); break; case ACPI_RESOURCE_TYPE_MEMORY32: memory32 = &res->data.memory32; pnpacpi_parse_allocated_memresource(dev, memory32->minimum, memory32->address_length, memory32->write_protect, 0); break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: fixed_memory32 = &res->data.fixed_memory32; pnpacpi_parse_allocated_memresource(dev, fixed_memory32->address, fixed_memory32->address_length, fixed_memory32->write_protect, 0); break; case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: pnpacpi_parse_allocated_address_space(dev, res); break; case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: pnpacpi_parse_allocated_ext_address_space(dev, res); break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: extended_irq = &res->data.extended_irq; if (extended_irq->interrupt_count == 0) pnp_add_irq_resource(dev, 0, IORESOURCE_DISABLED); else { for (i = 0; i < extended_irq->interrupt_count; i++) { pnpacpi_parse_allocated_irqresource(dev, extended_irq->interrupts[i], extended_irq->triggering, extended_irq->polarity, extended_irq->sharable); } /* * The IRQ encoder puts a single interrupt in each * descriptor, so if a _CRS descriptor has more than * one interrupt, we won't be able to re-encode it. */ if (pnp_can_write(dev) && extended_irq->interrupt_count > 1) { dev_warn(&dev->dev, "multiple interrupts in " "_CRS descriptor; configuration can't " "be changed\n"); dev->capabilities &= ~PNP_WRITE; } } break; case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: break; default: dev_warn(&dev->dev, "unknown resource type %d in _CRS\n", res->type); return AE_ERROR; } return AE_OK; } int pnpacpi_parse_allocated_resource(struct pnp_dev *dev) { struct acpi_device *acpi_dev = dev->data; acpi_handle handle = acpi_dev->handle; acpi_status status; pnp_dbg(&dev->dev, "parse allocated resources\n"); pnp_init_resources(dev); status = acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_allocated_resource, dev); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) dev_err(&dev->dev, "can't evaluate _CRS: %d", status); return -EPERM; } return 0; } static __init void pnpacpi_parse_dma_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_dma *p) { int i; unsigned char map = 0, flags; for (i = 0; i < p->channel_count; i++) map |= 1 << p->channels[i]; flags = dma_flags(dev, p->type, p->bus_master, p->transfer); pnp_register_dma_resource(dev, option_flags, map, flags); } static __init void pnpacpi_parse_irq_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_irq *p) { int i; pnp_irq_mask_t map; unsigned char flags; bitmap_zero(map.bits, PNP_IRQ_NR); for (i = 0; i < p->interrupt_count; i++) if (p->interrupts[i]) __set_bit(p->interrupts[i], map.bits); flags = irq_flags(p->triggering, p->polarity, p->sharable); pnp_register_irq_resource(dev, option_flags, &map, flags); } static __init void pnpacpi_parse_ext_irq_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_extended_irq *p) { int i; pnp_irq_mask_t map; unsigned char flags; bitmap_zero(map.bits, PNP_IRQ_NR); for (i = 0; i < p->interrupt_count; i++) { if (p->interrupts[i]) { if (p->interrupts[i] < PNP_IRQ_NR) __set_bit(p->interrupts[i], map.bits); else dev_err(&dev->dev, "ignoring IRQ %d option " "(too large for %d entry bitmap)\n", p->interrupts[i], PNP_IRQ_NR); } } flags = irq_flags(p->triggering, p->polarity, p->sharable); pnp_register_irq_resource(dev, option_flags, &map, flags); } static __init void pnpacpi_parse_port_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_io *io) { unsigned char flags = 0; if (io->io_decode == ACPI_DECODE_16) flags = IORESOURCE_IO_16BIT_ADDR; pnp_register_port_resource(dev, option_flags, io->minimum, io->maximum, io->alignment, io->address_length, flags); } static __init void pnpacpi_parse_fixed_port_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_fixed_io *io) { pnp_register_port_resource(dev, option_flags, io->address, io->address, 0, io->address_length, IORESOURCE_IO_FIXED); } static __init void pnpacpi_parse_mem24_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_memory24 *p) { unsigned char flags = 0; if (p->write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->minimum, p->maximum, p->alignment, p->address_length, flags); } static __init void pnpacpi_parse_mem32_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_memory32 *p) { unsigned char flags = 0; if (p->write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->minimum, p->maximum, p->alignment, p->address_length, flags); } static __init void pnpacpi_parse_fixed_mem32_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource_fixed_memory32 *p) { unsigned char flags = 0; if (p->write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->address, p->address, 0, p->address_length, flags); } static __init void pnpacpi_parse_address_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource *r) { struct acpi_resource_address64 addr, *p = &addr; acpi_status status; unsigned char flags = 0; status = acpi_resource_to_address64(r, p); if (ACPI_FAILURE(status)) { dev_warn(&dev->dev, "can't convert resource type %d\n", r->type); return; } if (p->resource_type == ACPI_MEMORY_RANGE) { if (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->minimum, p->minimum, 0, p->address_length, flags); } else if (p->resource_type == ACPI_IO_RANGE) pnp_register_port_resource(dev, option_flags, p->minimum, p->minimum, 0, p->address_length, IORESOURCE_IO_FIXED); } static __init void pnpacpi_parse_ext_address_option(struct pnp_dev *dev, unsigned int option_flags, struct acpi_resource *r) { struct acpi_resource_extended_address64 *p = &r->data.ext_address64; unsigned char flags = 0; if (p->resource_type == ACPI_MEMORY_RANGE) { if (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY) flags = IORESOURCE_MEM_WRITEABLE; pnp_register_mem_resource(dev, option_flags, p->minimum, p->minimum, 0, p->address_length, flags); } else if (p->resource_type == ACPI_IO_RANGE) pnp_register_port_resource(dev, option_flags, p->minimum, p->minimum, 0, p->address_length, IORESOURCE_IO_FIXED); } struct acpipnp_parse_option_s { struct pnp_dev *dev; unsigned int option_flags; }; static __init acpi_status pnpacpi_option_resource(struct acpi_resource *res, void *data) { int priority; struct acpipnp_parse_option_s *parse_data = data; struct pnp_dev *dev = parse_data->dev; unsigned int option_flags = parse_data->option_flags; switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: pnpacpi_parse_irq_option(dev, option_flags, &res->data.irq); break; case ACPI_RESOURCE_TYPE_DMA: pnpacpi_parse_dma_option(dev, option_flags, &res->data.dma); break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: switch (res->data.start_dpf.compatibility_priority) { case ACPI_GOOD_CONFIGURATION: priority = PNP_RES_PRIORITY_PREFERRED; break; case ACPI_ACCEPTABLE_CONFIGURATION: priority = PNP_RES_PRIORITY_ACCEPTABLE; break; case ACPI_SUB_OPTIMAL_CONFIGURATION: priority = PNP_RES_PRIORITY_FUNCTIONAL; break; default: priority = PNP_RES_PRIORITY_INVALID; break; } parse_data->option_flags = pnp_new_dependent_set(dev, priority); break; case ACPI_RESOURCE_TYPE_END_DEPENDENT: parse_data->option_flags = 0; break; case ACPI_RESOURCE_TYPE_IO: pnpacpi_parse_port_option(dev, option_flags, &res->data.io); break; case ACPI_RESOURCE_TYPE_FIXED_IO: pnpacpi_parse_fixed_port_option(dev, option_flags, &res->data.fixed_io); break; case ACPI_RESOURCE_TYPE_VENDOR: case ACPI_RESOURCE_TYPE_END_TAG: break; case ACPI_RESOURCE_TYPE_MEMORY24: pnpacpi_parse_mem24_option(dev, option_flags, &res->data.memory24); break; case ACPI_RESOURCE_TYPE_MEMORY32: pnpacpi_parse_mem32_option(dev, option_flags, &res->data.memory32); break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: pnpacpi_parse_fixed_mem32_option(dev, option_flags, &res->data.fixed_memory32); break; case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: pnpacpi_parse_address_option(dev, option_flags, res); break; case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: pnpacpi_parse_ext_address_option(dev, option_flags, res); break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: pnpacpi_parse_ext_irq_option(dev, option_flags, &res->data.extended_irq); break; case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: break; default: dev_warn(&dev->dev, "unknown resource type %d in _PRS\n", res->type); return AE_ERROR; } return AE_OK; } int __init pnpacpi_parse_resource_option_data(struct pnp_dev *dev) { struct acpi_device *acpi_dev = dev->data; acpi_handle handle = acpi_dev->handle; acpi_status status; struct acpipnp_parse_option_s parse_data; pnp_dbg(&dev->dev, "parse resource options\n"); parse_data.dev = dev; parse_data.option_flags = 0; status = acpi_walk_resources(handle, METHOD_NAME__PRS, pnpacpi_option_resource, &parse_data); if (ACPI_FAILURE(status)) { if (status != AE_NOT_FOUND) dev_err(&dev->dev, "can't evaluate _PRS: %d", status); return -EPERM; } return 0; } static int pnpacpi_supported_resource(struct acpi_resource *res) { switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: case ACPI_RESOURCE_TYPE_DMA: case ACPI_RESOURCE_TYPE_IO: case ACPI_RESOURCE_TYPE_FIXED_IO: case ACPI_RESOURCE_TYPE_MEMORY24: case ACPI_RESOURCE_TYPE_MEMORY32: case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: return 1; } return 0; } /* * Set resource */ static acpi_status pnpacpi_count_resources(struct acpi_resource *res, void *data) { int *res_cnt = data; if (pnpacpi_supported_resource(res)) (*res_cnt)++; return AE_OK; } static acpi_status pnpacpi_type_resources(struct acpi_resource *res, void *data) { struct acpi_resource **resource = data; if (pnpacpi_supported_resource(res)) { (*resource)->type = res->type; (*resource)->length = sizeof(struct acpi_resource); if (res->type == ACPI_RESOURCE_TYPE_IRQ) (*resource)->data.irq.descriptor_length = res->data.irq.descriptor_length; (*resource)++; } return AE_OK; } int pnpacpi_build_resource_template(struct pnp_dev *dev, struct acpi_buffer *buffer) { struct acpi_device *acpi_dev = dev->data; acpi_handle handle = acpi_dev->handle; struct acpi_resource *resource; int res_cnt = 0; acpi_status status; status = acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_count_resources, &res_cnt); if (ACPI_FAILURE(status)) { dev_err(&dev->dev, "can't evaluate _CRS: %d\n", status); return -EINVAL; } if (!res_cnt) return -EINVAL; buffer->length = sizeof(struct acpi_resource) * (res_cnt + 1) + 1; buffer->pointer = kzalloc(buffer->length - 1, GFP_KERNEL); if (!buffer->pointer) return -ENOMEM; resource = (struct acpi_resource *)buffer->pointer; status = acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_type_resources, &resource); if (ACPI_FAILURE(status)) { kfree(buffer->pointer); dev_err(&dev->dev, "can't evaluate _CRS: %d\n", status); return -EINVAL; } /* resource will pointer the end resource now */ resource->type = ACPI_RESOURCE_TYPE_END_TAG; return 0; } static void pnpacpi_encode_irq(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_irq *irq = &resource->data.irq; int triggering, polarity, shareable; if (!pnp_resource_enabled(p)) { irq->interrupt_count = 0; pnp_dbg(&dev->dev, " encode irq (%s)\n", p ? "disabled" : "missing"); return; } decode_irq_flags(dev, p->flags, &triggering, &polarity, &shareable); irq->triggering = triggering; irq->polarity = polarity; irq->sharable = shareable; irq->interrupt_count = 1; irq->interrupts[0] = p->start; pnp_dbg(&dev->dev, " encode irq %d %s %s %s (%d-byte descriptor)\n", (int) p->start, triggering == ACPI_LEVEL_SENSITIVE ? "level" : "edge", polarity == ACPI_ACTIVE_LOW ? "low" : "high", irq->sharable == ACPI_SHARED ? "shared" : "exclusive", irq->descriptor_length); } static void pnpacpi_encode_ext_irq(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_extended_irq *extended_irq = &resource->data.extended_irq; int triggering, polarity, shareable; if (!pnp_resource_enabled(p)) { extended_irq->interrupt_count = 0; pnp_dbg(&dev->dev, " encode extended irq (%s)\n", p ? "disabled" : "missing"); return; } decode_irq_flags(dev, p->flags, &triggering, &polarity, &shareable); extended_irq->producer_consumer = ACPI_CONSUMER; extended_irq->triggering = triggering; extended_irq->polarity = polarity; extended_irq->sharable = shareable; extended_irq->interrupt_count = 1; extended_irq->interrupts[0] = p->start; pnp_dbg(&dev->dev, " encode irq %d %s %s %s\n", (int) p->start, triggering == ACPI_LEVEL_SENSITIVE ? "level" : "edge", polarity == ACPI_ACTIVE_LOW ? "low" : "high", extended_irq->sharable == ACPI_SHARED ? "shared" : "exclusive"); } static void pnpacpi_encode_dma(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_dma *dma = &resource->data.dma; if (!pnp_resource_enabled(p)) { dma->channel_count = 0; pnp_dbg(&dev->dev, " encode dma (%s)\n", p ? "disabled" : "missing"); return; } /* Note: pnp_assign_dma will copy pnp_dma->flags into p->flags */ switch (p->flags & IORESOURCE_DMA_SPEED_MASK) { case IORESOURCE_DMA_TYPEA: dma->type = ACPI_TYPE_A; break; case IORESOURCE_DMA_TYPEB: dma->type = ACPI_TYPE_B; break; case IORESOURCE_DMA_TYPEF: dma->type = ACPI_TYPE_F; break; default: dma->type = ACPI_COMPATIBILITY; } switch (p->flags & IORESOURCE_DMA_TYPE_MASK) { case IORESOURCE_DMA_8BIT: dma->transfer = ACPI_TRANSFER_8; break; case IORESOURCE_DMA_8AND16BIT: dma->transfer = ACPI_TRANSFER_8_16; break; default: dma->transfer = ACPI_TRANSFER_16; } dma->bus_master = !!(p->flags & IORESOURCE_DMA_MASTER); dma->channel_count = 1; dma->channels[0] = p->start; pnp_dbg(&dev->dev, " encode dma %d " "type %#x transfer %#x master %d\n", (int) p->start, dma->type, dma->transfer, dma->bus_master); } static void pnpacpi_encode_io(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_io *io = &resource->data.io; if (pnp_resource_enabled(p)) { /* Note: pnp_assign_port copies pnp_port->flags into p->flags */ io->io_decode = (p->flags & IORESOURCE_IO_16BIT_ADDR) ? ACPI_DECODE_16 : ACPI_DECODE_10; io->minimum = p->start; io->maximum = p->end; io->alignment = 0; /* Correct? */ io->address_length = resource_size(p); } else { io->minimum = 0; io->address_length = 0; } pnp_dbg(&dev->dev, " encode io %#x-%#x decode %#x\n", io->minimum, io->minimum + io->address_length - 1, io->io_decode); } static void pnpacpi_encode_fixed_io(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_fixed_io *fixed_io = &resource->data.fixed_io; if (pnp_resource_enabled(p)) { fixed_io->address = p->start; fixed_io->address_length = resource_size(p); } else { fixed_io->address = 0; fixed_io->address_length = 0; } pnp_dbg(&dev->dev, " encode fixed_io %#x-%#x\n", fixed_io->address, fixed_io->address + fixed_io->address_length - 1); } static void pnpacpi_encode_mem24(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_memory24 *memory24 = &resource->data.memory24; if (pnp_resource_enabled(p)) { /* Note: pnp_assign_mem copies pnp_mem->flags into p->flags */ memory24->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; memory24->minimum = p->start; memory24->maximum = p->end; memory24->alignment = 0; memory24->address_length = resource_size(p); } else { memory24->minimum = 0; memory24->address_length = 0; } pnp_dbg(&dev->dev, " encode mem24 %#x-%#x write_protect %#x\n", memory24->minimum, memory24->minimum + memory24->address_length - 1, memory24->write_protect); } static void pnpacpi_encode_mem32(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_memory32 *memory32 = &resource->data.memory32; if (pnp_resource_enabled(p)) { memory32->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; memory32->minimum = p->start; memory32->maximum = p->end; memory32->alignment = 0; memory32->address_length = resource_size(p); } else { memory32->minimum = 0; memory32->alignment = 0; } pnp_dbg(&dev->dev, " encode mem32 %#x-%#x write_protect %#x\n", memory32->minimum, memory32->minimum + memory32->address_length - 1, memory32->write_protect); } static void pnpacpi_encode_fixed_mem32(struct pnp_dev *dev, struct acpi_resource *resource, struct resource *p) { struct acpi_resource_fixed_memory32 *fixed_memory32 = &resource->data.fixed_memory32; if (pnp_resource_enabled(p)) { fixed_memory32->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; fixed_memory32->address = p->start; fixed_memory32->address_length = resource_size(p); } else { fixed_memory32->address = 0; fixed_memory32->address_length = 0; } pnp_dbg(&dev->dev, " encode fixed_mem32 %#x-%#x write_protect %#x\n", fixed_memory32->address, fixed_memory32->address + fixed_memory32->address_length - 1, fixed_memory32->write_protect); } int pnpacpi_encode_resources(struct pnp_dev *dev, struct acpi_buffer *buffer) { int i = 0; /* pnpacpi_build_resource_template allocates extra mem */ int res_cnt = (buffer->length - 1) / sizeof(struct acpi_resource) - 1; struct acpi_resource *resource = buffer->pointer; int port = 0, irq = 0, dma = 0, mem = 0; pnp_dbg(&dev->dev, "encode %d resources\n", res_cnt); while (i < res_cnt) { switch (resource->type) { case ACPI_RESOURCE_TYPE_IRQ: pnpacpi_encode_irq(dev, resource, pnp_get_resource(dev, IORESOURCE_IRQ, irq)); irq++; break; case ACPI_RESOURCE_TYPE_DMA: pnpacpi_encode_dma(dev, resource, pnp_get_resource(dev, IORESOURCE_DMA, dma)); dma++; break; case ACPI_RESOURCE_TYPE_IO: pnpacpi_encode_io(dev, resource, pnp_get_resource(dev, IORESOURCE_IO, port)); port++; break; case ACPI_RESOURCE_TYPE_FIXED_IO: pnpacpi_encode_fixed_io(dev, resource, pnp_get_resource(dev, IORESOURCE_IO, port)); port++; break; case ACPI_RESOURCE_TYPE_MEMORY24: pnpacpi_encode_mem24(dev, resource, pnp_get_resource(dev, IORESOURCE_MEM, mem)); mem++; break; case ACPI_RESOURCE_TYPE_MEMORY32: pnpacpi_encode_mem32(dev, resource, pnp_get_resource(dev, IORESOURCE_MEM, mem)); mem++; break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: pnpacpi_encode_fixed_mem32(dev, resource, pnp_get_resource(dev, IORESOURCE_MEM, mem)); mem++; break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: pnpacpi_encode_ext_irq(dev, resource, pnp_get_resource(dev, IORESOURCE_IRQ, irq)); irq++; break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: case ACPI_RESOURCE_TYPE_END_DEPENDENT: case ACPI_RESOURCE_TYPE_VENDOR: case ACPI_RESOURCE_TYPE_END_TAG: case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: default: /* other type */ dev_warn(&dev->dev, "can't encode unknown resource " "type %d\n", resource->type); return -EINVAL; } resource++; i++; } return 0; }