/* * Copyright (C) 2017 Spreadtrum Communications Inc. * * SPDX-License-Identifier: GPL-2.0 */ #include <linux/delay.h> #include <linux/hwspinlock.h> #include <linux/init.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/reboot.h> #include <linux/spi/spi.h> #include <linux/sizes.h> /* Registers definitions for ADI controller */ #define REG_ADI_CTRL0 0x4 #define REG_ADI_CHN_PRIL 0x8 #define REG_ADI_CHN_PRIH 0xc #define REG_ADI_INT_EN 0x10 #define REG_ADI_INT_RAW 0x14 #define REG_ADI_INT_MASK 0x18 #define REG_ADI_INT_CLR 0x1c #define REG_ADI_GSSI_CFG0 0x20 #define REG_ADI_GSSI_CFG1 0x24 #define REG_ADI_RD_CMD 0x28 #define REG_ADI_RD_DATA 0x2c #define REG_ADI_ARM_FIFO_STS 0x30 #define REG_ADI_STS 0x34 #define REG_ADI_EVT_FIFO_STS 0x38 #define REG_ADI_ARM_CMD_STS 0x3c #define REG_ADI_CHN_EN 0x40 #define REG_ADI_CHN_ADDR(id) (0x44 + (id - 2) * 4) #define REG_ADI_CHN_EN1 0x20c /* Bits definitions for register REG_ADI_GSSI_CFG0 */ #define BIT_CLK_ALL_ON BIT(30) /* Bits definitions for register REG_ADI_RD_DATA */ #define BIT_RD_CMD_BUSY BIT(31) #define RD_ADDR_SHIFT 16 #define RD_VALUE_MASK GENMASK(15, 0) #define RD_ADDR_MASK GENMASK(30, 16) /* Bits definitions for register REG_ADI_ARM_FIFO_STS */ #define BIT_FIFO_FULL BIT(11) #define BIT_FIFO_EMPTY BIT(10) /* * ADI slave devices include RTC, ADC, regulator, charger, thermal and so on. * The slave devices address offset is always 0x8000 and size is 4K. */ #define ADI_SLAVE_ADDR_SIZE SZ_4K #define ADI_SLAVE_OFFSET 0x8000 /* Timeout (ms) for the trylock of hardware spinlocks */ #define ADI_HWSPINLOCK_TIMEOUT 5000 /* * ADI controller has 50 channels including 2 software channels * and 48 hardware channels. */ #define ADI_HW_CHNS 50 #define ADI_FIFO_DRAIN_TIMEOUT 1000 #define ADI_READ_TIMEOUT 2000 #define REG_ADDR_LOW_MASK GENMASK(11, 0) /* Registers definitions for PMIC watchdog controller */ #define REG_WDG_LOAD_LOW 0x80 #define REG_WDG_LOAD_HIGH 0x84 #define REG_WDG_CTRL 0x88 #define REG_WDG_LOCK 0xa0 /* Bits definitions for register REG_WDG_CTRL */ #define BIT_WDG_RUN BIT(1) #define BIT_WDG_RST BIT(3) /* Registers definitions for PMIC */ #define PMIC_RST_STATUS 0xee8 #define PMIC_MODULE_EN 0xc08 #define PMIC_CLK_EN 0xc18 #define BIT_WDG_EN BIT(2) /* Definition of PMIC reset status register */ #define HWRST_STATUS_RECOVERY 0x20 #define HWRST_STATUS_NORMAL 0x40 #define HWRST_STATUS_ALARM 0x50 #define HWRST_STATUS_SLEEP 0x60 #define HWRST_STATUS_FASTBOOT 0x30 #define HWRST_STATUS_SPECIAL 0x70 #define HWRST_STATUS_PANIC 0x80 #define HWRST_STATUS_CFTREBOOT 0x90 #define HWRST_STATUS_AUTODLOADER 0xa0 #define HWRST_STATUS_IQMODE 0xb0 #define HWRST_STATUS_SPRDISK 0xc0 /* Use default timeout 50 ms that converts to watchdog values */ #define WDG_LOAD_VAL ((50 * 1000) / 32768) #define WDG_LOAD_MASK GENMASK(15, 0) #define WDG_UNLOCK_KEY 0xe551 struct sprd_adi { struct spi_controller *ctlr; struct device *dev; void __iomem *base; struct hwspinlock *hwlock; unsigned long slave_vbase; unsigned long slave_pbase; struct notifier_block restart_handler; }; static int sprd_adi_check_paddr(struct sprd_adi *sadi, u32 paddr) { if (paddr < sadi->slave_pbase || paddr > (sadi->slave_pbase + ADI_SLAVE_ADDR_SIZE)) { dev_err(sadi->dev, "slave physical address is incorrect, addr = 0x%x\n", paddr); return -EINVAL; } return 0; } static unsigned long sprd_adi_to_vaddr(struct sprd_adi *sadi, u32 paddr) { return (paddr - sadi->slave_pbase + sadi->slave_vbase); } static int sprd_adi_drain_fifo(struct sprd_adi *sadi) { u32 timeout = ADI_FIFO_DRAIN_TIMEOUT; u32 sts; do { sts = readl_relaxed(sadi->base + REG_ADI_ARM_FIFO_STS); if (sts & BIT_FIFO_EMPTY) break; cpu_relax(); } while (--timeout); if (timeout == 0) { dev_err(sadi->dev, "drain write fifo timeout\n"); return -EBUSY; } return 0; } static int sprd_adi_fifo_is_full(struct sprd_adi *sadi) { return readl_relaxed(sadi->base + REG_ADI_ARM_FIFO_STS) & BIT_FIFO_FULL; } static int sprd_adi_read(struct sprd_adi *sadi, u32 reg_paddr, u32 *read_val) { int read_timeout = ADI_READ_TIMEOUT; unsigned long flags; u32 val, rd_addr; int ret; ret = hwspin_lock_timeout_irqsave(sadi->hwlock, ADI_HWSPINLOCK_TIMEOUT, &flags); if (ret) { dev_err(sadi->dev, "get the hw lock failed\n"); return ret; } /* * Set the physical register address need to read into RD_CMD register, * then ADI controller will start to transfer automatically. */ writel_relaxed(reg_paddr, sadi->base + REG_ADI_RD_CMD); /* * Wait read operation complete, the BIT_RD_CMD_BUSY will be set * simultaneously when writing read command to register, and the * BIT_RD_CMD_BUSY will be cleared after the read operation is * completed. */ do { val = readl_relaxed(sadi->base + REG_ADI_RD_DATA); if (!(val & BIT_RD_CMD_BUSY)) break; cpu_relax(); } while (--read_timeout); if (read_timeout == 0) { dev_err(sadi->dev, "ADI read timeout\n"); ret = -EBUSY; goto out; } /* * The return value includes data and read register address, from bit 0 * to bit 15 are data, and from bit 16 to bit 30 are read register * address. Then we can check the returned register address to validate * data. */ rd_addr = (val & RD_ADDR_MASK ) >> RD_ADDR_SHIFT; if (rd_addr != (reg_paddr & REG_ADDR_LOW_MASK)) { dev_err(sadi->dev, "read error, reg addr = 0x%x, val = 0x%x\n", reg_paddr, val); ret = -EIO; goto out; } *read_val = val & RD_VALUE_MASK; out: hwspin_unlock_irqrestore(sadi->hwlock, &flags); return ret; } static int sprd_adi_write(struct sprd_adi *sadi, u32 reg_paddr, u32 val) { unsigned long reg = sprd_adi_to_vaddr(sadi, reg_paddr); u32 timeout = ADI_FIFO_DRAIN_TIMEOUT; unsigned long flags; int ret; ret = hwspin_lock_timeout_irqsave(sadi->hwlock, ADI_HWSPINLOCK_TIMEOUT, &flags); if (ret) { dev_err(sadi->dev, "get the hw lock failed\n"); return ret; } ret = sprd_adi_drain_fifo(sadi); if (ret < 0) goto out; /* * we should wait for write fifo is empty before writing data to PMIC * registers. */ do { if (!sprd_adi_fifo_is_full(sadi)) { writel_relaxed(val, (void __iomem *)reg); break; } cpu_relax(); } while (--timeout); if (timeout == 0) { dev_err(sadi->dev, "write fifo is full\n"); ret = -EBUSY; } out: hwspin_unlock_irqrestore(sadi->hwlock, &flags); return ret; } static int sprd_adi_transfer_one(struct spi_controller *ctlr, struct spi_device *spi_dev, struct spi_transfer *t) { struct sprd_adi *sadi = spi_controller_get_devdata(ctlr); u32 phy_reg, val; int ret; if (t->rx_buf) { phy_reg = *(u32 *)t->rx_buf + sadi->slave_pbase; ret = sprd_adi_check_paddr(sadi, phy_reg); if (ret) return ret; ret = sprd_adi_read(sadi, phy_reg, &val); if (ret) return ret; *(u32 *)t->rx_buf = val; } else if (t->tx_buf) { u32 *p = (u32 *)t->tx_buf; /* * Get the physical register address need to write and convert * the physical address to virtual address. Since we need * virtual register address to write. */ phy_reg = *p++ + sadi->slave_pbase; ret = sprd_adi_check_paddr(sadi, phy_reg); if (ret) return ret; val = *p; ret = sprd_adi_write(sadi, phy_reg, val); if (ret) return ret; } else { dev_err(sadi->dev, "no buffer for transfer\n"); return -EINVAL; } return 0; } static int sprd_adi_restart_handler(struct notifier_block *this, unsigned long mode, void *cmd) { struct sprd_adi *sadi = container_of(this, struct sprd_adi, restart_handler); u32 val, reboot_mode = 0; if (!cmd) reboot_mode = HWRST_STATUS_NORMAL; else if (!strncmp(cmd, "recovery", 8)) reboot_mode = HWRST_STATUS_RECOVERY; else if (!strncmp(cmd, "alarm", 5)) reboot_mode = HWRST_STATUS_ALARM; else if (!strncmp(cmd, "fastsleep", 9)) reboot_mode = HWRST_STATUS_SLEEP; else if (!strncmp(cmd, "bootloader", 10)) reboot_mode = HWRST_STATUS_FASTBOOT; else if (!strncmp(cmd, "panic", 5)) reboot_mode = HWRST_STATUS_PANIC; else if (!strncmp(cmd, "special", 7)) reboot_mode = HWRST_STATUS_SPECIAL; else if (!strncmp(cmd, "cftreboot", 9)) reboot_mode = HWRST_STATUS_CFTREBOOT; else if (!strncmp(cmd, "autodloader", 11)) reboot_mode = HWRST_STATUS_AUTODLOADER; else if (!strncmp(cmd, "iqmode", 6)) reboot_mode = HWRST_STATUS_IQMODE; else if (!strncmp(cmd, "sprdisk", 7)) reboot_mode = HWRST_STATUS_SPRDISK; else reboot_mode = HWRST_STATUS_NORMAL; /* Record the reboot mode */ sprd_adi_read(sadi, sadi->slave_pbase + PMIC_RST_STATUS, &val); val |= reboot_mode; sprd_adi_write(sadi, sadi->slave_pbase + PMIC_RST_STATUS, val); /* Enable the interface clock of the watchdog */ sprd_adi_read(sadi, sadi->slave_pbase + PMIC_MODULE_EN, &val); val |= BIT_WDG_EN; sprd_adi_write(sadi, sadi->slave_pbase + PMIC_MODULE_EN, val); /* Enable the work clock of the watchdog */ sprd_adi_read(sadi, sadi->slave_pbase + PMIC_CLK_EN, &val); val |= BIT_WDG_EN; sprd_adi_write(sadi, sadi->slave_pbase + PMIC_CLK_EN, val); /* Unlock the watchdog */ sprd_adi_write(sadi, sadi->slave_pbase + REG_WDG_LOCK, WDG_UNLOCK_KEY); /* Load the watchdog timeout value, 50ms is always enough. */ sprd_adi_write(sadi, sadi->slave_pbase + REG_WDG_LOAD_LOW, WDG_LOAD_VAL & WDG_LOAD_MASK); sprd_adi_write(sadi, sadi->slave_pbase + REG_WDG_LOAD_HIGH, 0); /* Start the watchdog to reset system */ sprd_adi_read(sadi, sadi->slave_pbase + REG_WDG_CTRL, &val); val |= BIT_WDG_RUN | BIT_WDG_RST; sprd_adi_write(sadi, sadi->slave_pbase + REG_WDG_CTRL, val); mdelay(1000); dev_emerg(sadi->dev, "Unable to restart system\n"); return NOTIFY_DONE; } static void sprd_adi_hw_init(struct sprd_adi *sadi) { struct device_node *np = sadi->dev->of_node; int i, size, chn_cnt; const __be32 *list; u32 tmp; /* Address bits select default 12 bits */ writel_relaxed(0, sadi->base + REG_ADI_CTRL0); /* Set all channels as default priority */ writel_relaxed(0, sadi->base + REG_ADI_CHN_PRIL); writel_relaxed(0, sadi->base + REG_ADI_CHN_PRIH); /* Set clock auto gate mode */ tmp = readl_relaxed(sadi->base + REG_ADI_GSSI_CFG0); tmp &= ~BIT_CLK_ALL_ON; writel_relaxed(tmp, sadi->base + REG_ADI_GSSI_CFG0); /* Set hardware channels setting */ list = of_get_property(np, "sprd,hw-channels", &size); if (!list || !size) { dev_info(sadi->dev, "no hw channels setting in node\n"); return; } chn_cnt = size / 8; for (i = 0; i < chn_cnt; i++) { u32 value; u32 chn_id = be32_to_cpu(*list++); u32 chn_config = be32_to_cpu(*list++); /* Channel 0 and 1 are software channels */ if (chn_id < 2) continue; writel_relaxed(chn_config, sadi->base + REG_ADI_CHN_ADDR(chn_id)); if (chn_id < 32) { value = readl_relaxed(sadi->base + REG_ADI_CHN_EN); value |= BIT(chn_id); writel_relaxed(value, sadi->base + REG_ADI_CHN_EN); } else if (chn_id < ADI_HW_CHNS) { value = readl_relaxed(sadi->base + REG_ADI_CHN_EN1); value |= BIT(chn_id - 32); writel_relaxed(value, sadi->base + REG_ADI_CHN_EN1); } } } static int sprd_adi_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct spi_controller *ctlr; struct sprd_adi *sadi; struct resource *res; u32 num_chipselect; int ret; if (!np) { dev_err(&pdev->dev, "can not find the adi bus node\n"); return -ENODEV; } pdev->id = of_alias_get_id(np, "spi"); num_chipselect = of_get_child_count(np); ctlr = spi_alloc_master(&pdev->dev, sizeof(struct sprd_adi)); if (!ctlr) return -ENOMEM; dev_set_drvdata(&pdev->dev, ctlr); sadi = spi_controller_get_devdata(ctlr); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); sadi->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(sadi->base)) { ret = PTR_ERR(sadi->base); goto put_ctlr; } sadi->slave_vbase = (unsigned long)sadi->base + ADI_SLAVE_OFFSET; sadi->slave_pbase = res->start + ADI_SLAVE_OFFSET; sadi->ctlr = ctlr; sadi->dev = &pdev->dev; ret = of_hwspin_lock_get_id_byname(np, "adi"); if (ret < 0) { dev_err(&pdev->dev, "can not get the hardware spinlock\n"); goto put_ctlr; } sadi->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret); if (!sadi->hwlock) { ret = -ENXIO; goto put_ctlr; } sprd_adi_hw_init(sadi); ctlr->dev.of_node = pdev->dev.of_node; ctlr->bus_num = pdev->id; ctlr->num_chipselect = num_chipselect; ctlr->flags = SPI_MASTER_HALF_DUPLEX; ctlr->bits_per_word_mask = 0; ctlr->transfer_one = sprd_adi_transfer_one; ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret) { dev_err(&pdev->dev, "failed to register SPI controller\n"); goto put_ctlr; } sadi->restart_handler.notifier_call = sprd_adi_restart_handler; sadi->restart_handler.priority = 128; ret = register_restart_handler(&sadi->restart_handler); if (ret) { dev_err(&pdev->dev, "can not register restart handler\n"); goto put_ctlr; } return 0; put_ctlr: spi_controller_put(ctlr); return ret; } static int sprd_adi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = dev_get_drvdata(&pdev->dev); struct sprd_adi *sadi = spi_controller_get_devdata(ctlr); unregister_restart_handler(&sadi->restart_handler); return 0; } static const struct of_device_id sprd_adi_of_match[] = { { .compatible = "sprd,sc9860-adi", }, { }, }; MODULE_DEVICE_TABLE(of, sprd_adi_of_match); static struct platform_driver sprd_adi_driver = { .driver = { .name = "sprd-adi", .of_match_table = sprd_adi_of_match, }, .probe = sprd_adi_probe, .remove = sprd_adi_remove, }; module_platform_driver(sprd_adi_driver); MODULE_DESCRIPTION("Spreadtrum ADI Controller Driver"); MODULE_AUTHOR("Baolin Wang <Baolin.Wang@spreadtrum.com>"); MODULE_LICENSE("GPL v2");