// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include "super.h" #include "mds_client.h" #include "cache.h" #include #include /* * Capability management * * The Ceph metadata servers control client access to inode metadata * and file data by issuing capabilities, granting clients permission * to read and/or write both inode field and file data to OSDs * (storage nodes). Each capability consists of a set of bits * indicating which operations are allowed. * * If the client holds a *_SHARED cap, the client has a coherent value * that can be safely read from the cached inode. * * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the * client is allowed to change inode attributes (e.g., file size, * mtime), note its dirty state in the ceph_cap, and asynchronously * flush that metadata change to the MDS. * * In the event of a conflicting operation (perhaps by another * client), the MDS will revoke the conflicting client capabilities. * * In order for a client to cache an inode, it must hold a capability * with at least one MDS server. When inodes are released, release * notifications are batched and periodically sent en masse to the MDS * cluster to release server state. */ static u64 __get_oldest_flush_tid(struct ceph_mds_client *mdsc); static void __kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_inode_info *ci, u64 oldest_flush_tid); /* * Generate readable cap strings for debugging output. */ #define MAX_CAP_STR 20 static char cap_str[MAX_CAP_STR][40]; static DEFINE_SPINLOCK(cap_str_lock); static int last_cap_str; static char *gcap_string(char *s, int c) { if (c & CEPH_CAP_GSHARED) *s++ = 's'; if (c & CEPH_CAP_GEXCL) *s++ = 'x'; if (c & CEPH_CAP_GCACHE) *s++ = 'c'; if (c & CEPH_CAP_GRD) *s++ = 'r'; if (c & CEPH_CAP_GWR) *s++ = 'w'; if (c & CEPH_CAP_GBUFFER) *s++ = 'b'; if (c & CEPH_CAP_GWREXTEND) *s++ = 'a'; if (c & CEPH_CAP_GLAZYIO) *s++ = 'l'; return s; } const char *ceph_cap_string(int caps) { int i; char *s; int c; spin_lock(&cap_str_lock); i = last_cap_str++; if (last_cap_str == MAX_CAP_STR) last_cap_str = 0; spin_unlock(&cap_str_lock); s = cap_str[i]; if (caps & CEPH_CAP_PIN) *s++ = 'p'; c = (caps >> CEPH_CAP_SAUTH) & 3; if (c) { *s++ = 'A'; s = gcap_string(s, c); } c = (caps >> CEPH_CAP_SLINK) & 3; if (c) { *s++ = 'L'; s = gcap_string(s, c); } c = (caps >> CEPH_CAP_SXATTR) & 3; if (c) { *s++ = 'X'; s = gcap_string(s, c); } c = caps >> CEPH_CAP_SFILE; if (c) { *s++ = 'F'; s = gcap_string(s, c); } if (s == cap_str[i]) *s++ = '-'; *s = 0; return cap_str[i]; } void ceph_caps_init(struct ceph_mds_client *mdsc) { INIT_LIST_HEAD(&mdsc->caps_list); spin_lock_init(&mdsc->caps_list_lock); } void ceph_caps_finalize(struct ceph_mds_client *mdsc) { struct ceph_cap *cap; spin_lock(&mdsc->caps_list_lock); while (!list_empty(&mdsc->caps_list)) { cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); list_del(&cap->caps_item); kmem_cache_free(ceph_cap_cachep, cap); } mdsc->caps_total_count = 0; mdsc->caps_avail_count = 0; mdsc->caps_use_count = 0; mdsc->caps_reserve_count = 0; mdsc->caps_min_count = 0; spin_unlock(&mdsc->caps_list_lock); } void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc, struct ceph_mount_options *fsopt) { spin_lock(&mdsc->caps_list_lock); mdsc->caps_min_count = fsopt->max_readdir; if (mdsc->caps_min_count < 1024) mdsc->caps_min_count = 1024; mdsc->caps_use_max = fsopt->caps_max; if (mdsc->caps_use_max > 0 && mdsc->caps_use_max < mdsc->caps_min_count) mdsc->caps_use_max = mdsc->caps_min_count; spin_unlock(&mdsc->caps_list_lock); } static void __ceph_unreserve_caps(struct ceph_mds_client *mdsc, int nr_caps) { struct ceph_cap *cap; int i; if (nr_caps) { BUG_ON(mdsc->caps_reserve_count < nr_caps); mdsc->caps_reserve_count -= nr_caps; if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + mdsc->caps_min_count) { mdsc->caps_total_count -= nr_caps; for (i = 0; i < nr_caps; i++) { cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); list_del(&cap->caps_item); kmem_cache_free(ceph_cap_cachep, cap); } } else { mdsc->caps_avail_count += nr_caps; } dout("%s: caps %d = %d used + %d resv + %d avail\n", __func__, mdsc->caps_total_count, mdsc->caps_use_count, mdsc->caps_reserve_count, mdsc->caps_avail_count); BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + mdsc->caps_reserve_count + mdsc->caps_avail_count); } } /* * Called under mdsc->mutex. */ int ceph_reserve_caps(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx, int need) { int i, j; struct ceph_cap *cap; int have; int alloc = 0; int max_caps; int err = 0; bool trimmed = false; struct ceph_mds_session *s; LIST_HEAD(newcaps); dout("reserve caps ctx=%p need=%d\n", ctx, need); /* first reserve any caps that are already allocated */ spin_lock(&mdsc->caps_list_lock); if (mdsc->caps_avail_count >= need) have = need; else have = mdsc->caps_avail_count; mdsc->caps_avail_count -= have; mdsc->caps_reserve_count += have; BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + mdsc->caps_reserve_count + mdsc->caps_avail_count); spin_unlock(&mdsc->caps_list_lock); for (i = have; i < need; ) { cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); if (cap) { list_add(&cap->caps_item, &newcaps); alloc++; i++; continue; } if (!trimmed) { for (j = 0; j < mdsc->max_sessions; j++) { s = __ceph_lookup_mds_session(mdsc, j); if (!s) continue; mutex_unlock(&mdsc->mutex); mutex_lock(&s->s_mutex); max_caps = s->s_nr_caps - (need - i); ceph_trim_caps(mdsc, s, max_caps); mutex_unlock(&s->s_mutex); ceph_put_mds_session(s); mutex_lock(&mdsc->mutex); } trimmed = true; spin_lock(&mdsc->caps_list_lock); if (mdsc->caps_avail_count) { int more_have; if (mdsc->caps_avail_count >= need - i) more_have = need - i; else more_have = mdsc->caps_avail_count; i += more_have; have += more_have; mdsc->caps_avail_count -= more_have; mdsc->caps_reserve_count += more_have; } spin_unlock(&mdsc->caps_list_lock); continue; } pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", ctx, need, have + alloc); err = -ENOMEM; break; } if (!err) { BUG_ON(have + alloc != need); ctx->count = need; ctx->used = 0; } spin_lock(&mdsc->caps_list_lock); mdsc->caps_total_count += alloc; mdsc->caps_reserve_count += alloc; list_splice(&newcaps, &mdsc->caps_list); BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + mdsc->caps_reserve_count + mdsc->caps_avail_count); if (err) __ceph_unreserve_caps(mdsc, have + alloc); spin_unlock(&mdsc->caps_list_lock); dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", ctx, mdsc->caps_total_count, mdsc->caps_use_count, mdsc->caps_reserve_count, mdsc->caps_avail_count); return err; } void ceph_unreserve_caps(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx) { bool reclaim = false; if (!ctx->count) return; dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); spin_lock(&mdsc->caps_list_lock); __ceph_unreserve_caps(mdsc, ctx->count); ctx->count = 0; if (mdsc->caps_use_max > 0 && mdsc->caps_use_count > mdsc->caps_use_max) reclaim = true; spin_unlock(&mdsc->caps_list_lock); if (reclaim) ceph_reclaim_caps_nr(mdsc, ctx->used); } struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx) { struct ceph_cap *cap = NULL; /* temporary, until we do something about cap import/export */ if (!ctx) { cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); if (cap) { spin_lock(&mdsc->caps_list_lock); mdsc->caps_use_count++; mdsc->caps_total_count++; spin_unlock(&mdsc->caps_list_lock); } else { spin_lock(&mdsc->caps_list_lock); if (mdsc->caps_avail_count) { BUG_ON(list_empty(&mdsc->caps_list)); mdsc->caps_avail_count--; mdsc->caps_use_count++; cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); list_del(&cap->caps_item); BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + mdsc->caps_reserve_count + mdsc->caps_avail_count); } spin_unlock(&mdsc->caps_list_lock); } return cap; } spin_lock(&mdsc->caps_list_lock); dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, mdsc->caps_reserve_count, mdsc->caps_avail_count); BUG_ON(!ctx->count); BUG_ON(ctx->count > mdsc->caps_reserve_count); BUG_ON(list_empty(&mdsc->caps_list)); ctx->count--; ctx->used++; mdsc->caps_reserve_count--; mdsc->caps_use_count++; cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); list_del(&cap->caps_item); BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + mdsc->caps_reserve_count + mdsc->caps_avail_count); spin_unlock(&mdsc->caps_list_lock); return cap; } void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) { spin_lock(&mdsc->caps_list_lock); dout("put_cap %p %d = %d used + %d resv + %d avail\n", cap, mdsc->caps_total_count, mdsc->caps_use_count, mdsc->caps_reserve_count, mdsc->caps_avail_count); mdsc->caps_use_count--; /* * Keep some preallocated caps around (ceph_min_count), to * avoid lots of free/alloc churn. */ if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + mdsc->caps_min_count) { mdsc->caps_total_count--; kmem_cache_free(ceph_cap_cachep, cap); } else { mdsc->caps_avail_count++; list_add(&cap->caps_item, &mdsc->caps_list); } BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + mdsc->caps_reserve_count + mdsc->caps_avail_count); spin_unlock(&mdsc->caps_list_lock); } void ceph_reservation_status(struct ceph_fs_client *fsc, int *total, int *avail, int *used, int *reserved, int *min) { struct ceph_mds_client *mdsc = fsc->mdsc; spin_lock(&mdsc->caps_list_lock); if (total) *total = mdsc->caps_total_count; if (avail) *avail = mdsc->caps_avail_count; if (used) *used = mdsc->caps_use_count; if (reserved) *reserved = mdsc->caps_reserve_count; if (min) *min = mdsc->caps_min_count; spin_unlock(&mdsc->caps_list_lock); } /* * Find ceph_cap for given mds, if any. * * Called with i_ceph_lock held. */ static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) { struct ceph_cap *cap; struct rb_node *n = ci->i_caps.rb_node; while (n) { cap = rb_entry(n, struct ceph_cap, ci_node); if (mds < cap->mds) n = n->rb_left; else if (mds > cap->mds) n = n->rb_right; else return cap; } return NULL; } struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) { struct ceph_cap *cap; spin_lock(&ci->i_ceph_lock); cap = __get_cap_for_mds(ci, mds); spin_unlock(&ci->i_ceph_lock); return cap; } /* * Called under i_ceph_lock. */ static void __insert_cap_node(struct ceph_inode_info *ci, struct ceph_cap *new) { struct rb_node **p = &ci->i_caps.rb_node; struct rb_node *parent = NULL; struct ceph_cap *cap = NULL; while (*p) { parent = *p; cap = rb_entry(parent, struct ceph_cap, ci_node); if (new->mds < cap->mds) p = &(*p)->rb_left; else if (new->mds > cap->mds) p = &(*p)->rb_right; else BUG(); } rb_link_node(&new->ci_node, parent, p); rb_insert_color(&new->ci_node, &ci->i_caps); } /* * (re)set cap hold timeouts, which control the delayed release * of unused caps back to the MDS. Should be called on cap use. */ static void __cap_set_timeouts(struct ceph_mds_client *mdsc, struct ceph_inode_info *ci) { struct ceph_mount_options *opt = mdsc->fsc->mount_options; ci->i_hold_caps_max = round_jiffies(jiffies + opt->caps_wanted_delay_max * HZ); dout("__cap_set_timeouts %p %lu\n", &ci->netfs.inode, ci->i_hold_caps_max - jiffies); } /* * (Re)queue cap at the end of the delayed cap release list. * * If I_FLUSH is set, leave the inode at the front of the list. * * Caller holds i_ceph_lock * -> we take mdsc->cap_delay_lock */ static void __cap_delay_requeue(struct ceph_mds_client *mdsc, struct ceph_inode_info *ci) { dout("__cap_delay_requeue %p flags 0x%lx at %lu\n", &ci->netfs.inode, ci->i_ceph_flags, ci->i_hold_caps_max); if (!mdsc->stopping) { spin_lock(&mdsc->cap_delay_lock); if (!list_empty(&ci->i_cap_delay_list)) { if (ci->i_ceph_flags & CEPH_I_FLUSH) goto no_change; list_del_init(&ci->i_cap_delay_list); } __cap_set_timeouts(mdsc, ci); list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); no_change: spin_unlock(&mdsc->cap_delay_lock); } } /* * Queue an inode for immediate writeback. Mark inode with I_FLUSH, * indicating we should send a cap message to flush dirty metadata * asap, and move to the front of the delayed cap list. */ static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, struct ceph_inode_info *ci) { dout("__cap_delay_requeue_front %p\n", &ci->netfs.inode); spin_lock(&mdsc->cap_delay_lock); ci->i_ceph_flags |= CEPH_I_FLUSH; if (!list_empty(&ci->i_cap_delay_list)) list_del_init(&ci->i_cap_delay_list); list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); spin_unlock(&mdsc->cap_delay_lock); } /* * Cancel delayed work on cap. * * Caller must hold i_ceph_lock. */ static void __cap_delay_cancel(struct ceph_mds_client *mdsc, struct ceph_inode_info *ci) { dout("__cap_delay_cancel %p\n", &ci->netfs.inode); if (list_empty(&ci->i_cap_delay_list)) return; spin_lock(&mdsc->cap_delay_lock); list_del_init(&ci->i_cap_delay_list); spin_unlock(&mdsc->cap_delay_lock); } /* Common issue checks for add_cap, handle_cap_grant. */ static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, unsigned issued) { unsigned had = __ceph_caps_issued(ci, NULL); lockdep_assert_held(&ci->i_ceph_lock); /* * Each time we receive FILE_CACHE anew, we increment * i_rdcache_gen. */ if (S_ISREG(ci->netfs.inode.i_mode) && (issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { ci->i_rdcache_gen++; } /* * If FILE_SHARED is newly issued, mark dir not complete. We don't * know what happened to this directory while we didn't have the cap. * If FILE_SHARED is being revoked, also mark dir not complete. It * stops on-going cached readdir. */ if ((issued & CEPH_CAP_FILE_SHARED) != (had & CEPH_CAP_FILE_SHARED)) { if (issued & CEPH_CAP_FILE_SHARED) atomic_inc(&ci->i_shared_gen); if (S_ISDIR(ci->netfs.inode.i_mode)) { dout(" marking %p NOT complete\n", &ci->netfs.inode); __ceph_dir_clear_complete(ci); } } /* Wipe saved layout if we're losing DIR_CREATE caps */ if (S_ISDIR(ci->netfs.inode.i_mode) && (had & CEPH_CAP_DIR_CREATE) && !(issued & CEPH_CAP_DIR_CREATE)) { ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns)); memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout)); } } /** * change_auth_cap_ses - move inode to appropriate lists when auth caps change * @ci: inode to be moved * @session: new auth caps session */ void change_auth_cap_ses(struct ceph_inode_info *ci, struct ceph_mds_session *session) { lockdep_assert_held(&ci->i_ceph_lock); if (list_empty(&ci->i_dirty_item) && list_empty(&ci->i_flushing_item)) return; spin_lock(&session->s_mdsc->cap_dirty_lock); if (!list_empty(&ci->i_dirty_item)) list_move(&ci->i_dirty_item, &session->s_cap_dirty); if (!list_empty(&ci->i_flushing_item)) list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); spin_unlock(&session->s_mdsc->cap_dirty_lock); } /* * Add a capability under the given MDS session. * * Caller should hold session snap_rwsem (read) and ci->i_ceph_lock * * @fmode is the open file mode, if we are opening a file, otherwise * it is < 0. (This is so we can atomically add the cap and add an * open file reference to it.) */ void ceph_add_cap(struct inode *inode, struct ceph_mds_session *session, u64 cap_id, unsigned issued, unsigned wanted, unsigned seq, unsigned mseq, u64 realmino, int flags, struct ceph_cap **new_cap) { struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_cap *cap; int mds = session->s_mds; int actual_wanted; u32 gen; lockdep_assert_held(&ci->i_ceph_lock); dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, session->s_mds, cap_id, ceph_cap_string(issued), seq); gen = atomic_read(&session->s_cap_gen); cap = __get_cap_for_mds(ci, mds); if (!cap) { cap = *new_cap; *new_cap = NULL; cap->issued = 0; cap->implemented = 0; cap->mds = mds; cap->mds_wanted = 0; cap->mseq = 0; cap->ci = ci; __insert_cap_node(ci, cap); /* add to session cap list */ cap->session = session; spin_lock(&session->s_cap_lock); list_add_tail(&cap->session_caps, &session->s_caps); session->s_nr_caps++; atomic64_inc(&mdsc->metric.total_caps); spin_unlock(&session->s_cap_lock); } else { spin_lock(&session->s_cap_lock); list_move_tail(&cap->session_caps, &session->s_caps); spin_unlock(&session->s_cap_lock); if (cap->cap_gen < gen) cap->issued = cap->implemented = CEPH_CAP_PIN; /* * auth mds of the inode changed. we received the cap export * message, but still haven't received the cap import message. * handle_cap_export() updated the new auth MDS' cap. * * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing * a message that was send before the cap import message. So * don't remove caps. */ if (ceph_seq_cmp(seq, cap->seq) <= 0) { WARN_ON(cap != ci->i_auth_cap); WARN_ON(cap->cap_id != cap_id); seq = cap->seq; mseq = cap->mseq; issued |= cap->issued; flags |= CEPH_CAP_FLAG_AUTH; } } if (!ci->i_snap_realm || ((flags & CEPH_CAP_FLAG_AUTH) && realmino != (u64)-1 && ci->i_snap_realm->ino != realmino)) { /* * add this inode to the appropriate snap realm */ struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, realmino); if (realm) ceph_change_snap_realm(inode, realm); else WARN(1, "%s: couldn't find snap realm 0x%llx (ino 0x%llx oldrealm 0x%llx)\n", __func__, realmino, ci->i_vino.ino, ci->i_snap_realm ? ci->i_snap_realm->ino : 0); } __check_cap_issue(ci, cap, issued); /* * If we are issued caps we don't want, or the mds' wanted * value appears to be off, queue a check so we'll release * later and/or update the mds wanted value. */ actual_wanted = __ceph_caps_wanted(ci); if ((wanted & ~actual_wanted) || (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { dout(" issued %s, mds wanted %s, actual %s, queueing\n", ceph_cap_string(issued), ceph_cap_string(wanted), ceph_cap_string(actual_wanted)); __cap_delay_requeue(mdsc, ci); } if (flags & CEPH_CAP_FLAG_AUTH) { if (!ci->i_auth_cap || ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) { if (ci->i_auth_cap && ci->i_auth_cap->session != cap->session) change_auth_cap_ses(ci, cap->session); ci->i_auth_cap = cap; cap->mds_wanted = wanted; } } else { WARN_ON(ci->i_auth_cap == cap); } dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", inode, ceph_vinop(inode), cap, ceph_cap_string(issued), ceph_cap_string(issued|cap->issued), seq, mds); cap->cap_id = cap_id; cap->issued = issued; cap->implemented |= issued; if (ceph_seq_cmp(mseq, cap->mseq) > 0) cap->mds_wanted = wanted; else cap->mds_wanted |= wanted; cap->seq = seq; cap->issue_seq = seq; cap->mseq = mseq; cap->cap_gen = gen; wake_up_all(&ci->i_cap_wq); } /* * Return true if cap has not timed out and belongs to the current * generation of the MDS session (i.e. has not gone 'stale' due to * us losing touch with the mds). */ static int __cap_is_valid(struct ceph_cap *cap) { unsigned long ttl; u32 gen; gen = atomic_read(&cap->session->s_cap_gen); ttl = cap->session->s_cap_ttl; if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { dout("__cap_is_valid %p cap %p issued %s " "but STALE (gen %u vs %u)\n", &cap->ci->netfs.inode, cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); return 0; } return 1; } /* * Return set of valid cap bits issued to us. Note that caps time * out, and may be invalidated in bulk if the client session times out * and session->s_cap_gen is bumped. */ int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) { int have = ci->i_snap_caps; struct ceph_cap *cap; struct rb_node *p; if (implemented) *implemented = 0; for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (!__cap_is_valid(cap)) continue; dout("__ceph_caps_issued %p cap %p issued %s\n", &ci->netfs.inode, cap, ceph_cap_string(cap->issued)); have |= cap->issued; if (implemented) *implemented |= cap->implemented; } /* * exclude caps issued by non-auth MDS, but are been revoking * by the auth MDS. The non-auth MDS should be revoking/exporting * these caps, but the message is delayed. */ if (ci->i_auth_cap) { cap = ci->i_auth_cap; have &= ~cap->implemented | cap->issued; } return have; } /* * Get cap bits issued by caps other than @ocap */ int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) { int have = ci->i_snap_caps; struct ceph_cap *cap; struct rb_node *p; for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (cap == ocap) continue; if (!__cap_is_valid(cap)) continue; have |= cap->issued; } return have; } /* * Move a cap to the end of the LRU (oldest caps at list head, newest * at list tail). */ static void __touch_cap(struct ceph_cap *cap) { struct ceph_mds_session *s = cap->session; spin_lock(&s->s_cap_lock); if (!s->s_cap_iterator) { dout("__touch_cap %p cap %p mds%d\n", &cap->ci->netfs.inode, cap, s->s_mds); list_move_tail(&cap->session_caps, &s->s_caps); } else { dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", &cap->ci->netfs.inode, cap, s->s_mds); } spin_unlock(&s->s_cap_lock); } /* * Check if we hold the given mask. If so, move the cap(s) to the * front of their respective LRUs. (This is the preferred way for * callers to check for caps they want.) */ int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) { struct ceph_cap *cap; struct rb_node *p; int have = ci->i_snap_caps; if ((have & mask) == mask) { dout("__ceph_caps_issued_mask ino 0x%llx snap issued %s" " (mask %s)\n", ceph_ino(&ci->netfs.inode), ceph_cap_string(have), ceph_cap_string(mask)); return 1; } for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (!__cap_is_valid(cap)) continue; if ((cap->issued & mask) == mask) { dout("__ceph_caps_issued_mask ino 0x%llx cap %p issued %s" " (mask %s)\n", ceph_ino(&ci->netfs.inode), cap, ceph_cap_string(cap->issued), ceph_cap_string(mask)); if (touch) __touch_cap(cap); return 1; } /* does a combination of caps satisfy mask? */ have |= cap->issued; if ((have & mask) == mask) { dout("__ceph_caps_issued_mask ino 0x%llx combo issued %s" " (mask %s)\n", ceph_ino(&ci->netfs.inode), ceph_cap_string(cap->issued), ceph_cap_string(mask)); if (touch) { struct rb_node *q; /* touch this + preceding caps */ __touch_cap(cap); for (q = rb_first(&ci->i_caps); q != p; q = rb_next(q)) { cap = rb_entry(q, struct ceph_cap, ci_node); if (!__cap_is_valid(cap)) continue; if (cap->issued & mask) __touch_cap(cap); } } return 1; } } return 0; } int __ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask, int touch) { struct ceph_fs_client *fsc = ceph_sb_to_client(ci->netfs.inode.i_sb); int r; r = __ceph_caps_issued_mask(ci, mask, touch); if (r) ceph_update_cap_hit(&fsc->mdsc->metric); else ceph_update_cap_mis(&fsc->mdsc->metric); return r; } /* * Return true if mask caps are currently being revoked by an MDS. */ int __ceph_caps_revoking_other(struct ceph_inode_info *ci, struct ceph_cap *ocap, int mask) { struct ceph_cap *cap; struct rb_node *p; for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (cap != ocap && (cap->implemented & ~cap->issued & mask)) return 1; } return 0; } int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) { struct inode *inode = &ci->netfs.inode; int ret; spin_lock(&ci->i_ceph_lock); ret = __ceph_caps_revoking_other(ci, NULL, mask); spin_unlock(&ci->i_ceph_lock); dout("ceph_caps_revoking %p %s = %d\n", inode, ceph_cap_string(mask), ret); return ret; } int __ceph_caps_used(struct ceph_inode_info *ci) { int used = 0; if (ci->i_pin_ref) used |= CEPH_CAP_PIN; if (ci->i_rd_ref) used |= CEPH_CAP_FILE_RD; if (ci->i_rdcache_ref || (S_ISREG(ci->netfs.inode.i_mode) && ci->netfs.inode.i_data.nrpages)) used |= CEPH_CAP_FILE_CACHE; if (ci->i_wr_ref) used |= CEPH_CAP_FILE_WR; if (ci->i_wb_ref || ci->i_wrbuffer_ref) used |= CEPH_CAP_FILE_BUFFER; if (ci->i_fx_ref) used |= CEPH_CAP_FILE_EXCL; return used; } #define FMODE_WAIT_BIAS 1000 /* * wanted, by virtue of open file modes */ int __ceph_caps_file_wanted(struct ceph_inode_info *ci) { const int PIN_SHIFT = ffs(CEPH_FILE_MODE_PIN); const int RD_SHIFT = ffs(CEPH_FILE_MODE_RD); const int WR_SHIFT = ffs(CEPH_FILE_MODE_WR); const int LAZY_SHIFT = ffs(CEPH_FILE_MODE_LAZY); struct ceph_mount_options *opt = ceph_inode_to_client(&ci->netfs.inode)->mount_options; unsigned long used_cutoff = jiffies - opt->caps_wanted_delay_max * HZ; unsigned long idle_cutoff = jiffies - opt->caps_wanted_delay_min * HZ; if (S_ISDIR(ci->netfs.inode.i_mode)) { int want = 0; /* use used_cutoff here, to keep dir's wanted caps longer */ if (ci->i_nr_by_mode[RD_SHIFT] > 0 || time_after(ci->i_last_rd, used_cutoff)) want |= CEPH_CAP_ANY_SHARED; if (ci->i_nr_by_mode[WR_SHIFT] > 0 || time_after(ci->i_last_wr, used_cutoff)) { want |= CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL; if (opt->flags & CEPH_MOUNT_OPT_ASYNC_DIROPS) want |= CEPH_CAP_ANY_DIR_OPS; } if (want || ci->i_nr_by_mode[PIN_SHIFT] > 0) want |= CEPH_CAP_PIN; return want; } else { int bits = 0; if (ci->i_nr_by_mode[RD_SHIFT] > 0) { if (ci->i_nr_by_mode[RD_SHIFT] >= FMODE_WAIT_BIAS || time_after(ci->i_last_rd, used_cutoff)) bits |= 1 << RD_SHIFT; } else if (time_after(ci->i_last_rd, idle_cutoff)) { bits |= 1 << RD_SHIFT; } if (ci->i_nr_by_mode[WR_SHIFT] > 0) { if (ci->i_nr_by_mode[WR_SHIFT] >= FMODE_WAIT_BIAS || time_after(ci->i_last_wr, used_cutoff)) bits |= 1 << WR_SHIFT; } else if (time_after(ci->i_last_wr, idle_cutoff)) { bits |= 1 << WR_SHIFT; } /* check lazyio only when read/write is wanted */ if ((bits & (CEPH_FILE_MODE_RDWR << 1)) && ci->i_nr_by_mode[LAZY_SHIFT] > 0) bits |= 1 << LAZY_SHIFT; return bits ? ceph_caps_for_mode(bits >> 1) : 0; } } /* * wanted, by virtue of open file modes AND cap refs (buffered/cached data) */ int __ceph_caps_wanted(struct ceph_inode_info *ci) { int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci); if (S_ISDIR(ci->netfs.inode.i_mode)) { /* we want EXCL if holding caps of dir ops */ if (w & CEPH_CAP_ANY_DIR_OPS) w |= CEPH_CAP_FILE_EXCL; } else { /* we want EXCL if dirty data */ if (w & CEPH_CAP_FILE_BUFFER) w |= CEPH_CAP_FILE_EXCL; } return w; } /* * Return caps we have registered with the MDS(s) as 'wanted'. */ int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check) { struct ceph_cap *cap; struct rb_node *p; int mds_wanted = 0; for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { cap = rb_entry(p, struct ceph_cap, ci_node); if (check && !__cap_is_valid(cap)) continue; if (cap == ci->i_auth_cap) mds_wanted |= cap->mds_wanted; else mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR); } return mds_wanted; } int ceph_is_any_caps(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); int ret; spin_lock(&ci->i_ceph_lock); ret = __ceph_is_any_real_caps(ci); spin_unlock(&ci->i_ceph_lock); return ret; } /* * Remove a cap. Take steps to deal with a racing iterate_session_caps. * * caller should hold i_ceph_lock. * caller will not hold session s_mutex if called from destroy_inode. */ void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) { struct ceph_mds_session *session = cap->session; struct ceph_inode_info *ci = cap->ci; struct ceph_mds_client *mdsc; int removed = 0; /* 'ci' being NULL means the remove have already occurred */ if (!ci) { dout("%s: cap inode is NULL\n", __func__); return; } lockdep_assert_held(&ci->i_ceph_lock); dout("__ceph_remove_cap %p from %p\n", cap, &ci->netfs.inode); mdsc = ceph_inode_to_client(&ci->netfs.inode)->mdsc; /* remove from inode's cap rbtree, and clear auth cap */ rb_erase(&cap->ci_node, &ci->i_caps); if (ci->i_auth_cap == cap) ci->i_auth_cap = NULL; /* remove from session list */ spin_lock(&session->s_cap_lock); if (session->s_cap_iterator == cap) { /* not yet, we are iterating over this very cap */ dout("__ceph_remove_cap delaying %p removal from session %p\n", cap, cap->session); } else { list_del_init(&cap->session_caps); session->s_nr_caps--; atomic64_dec(&mdsc->metric.total_caps); cap->session = NULL; removed = 1; } /* protect backpointer with s_cap_lock: see iterate_session_caps */ cap->ci = NULL; /* * s_cap_reconnect is protected by s_cap_lock. no one changes * s_cap_gen while session is in the reconnect state. */ if (queue_release && (!session->s_cap_reconnect || cap->cap_gen == atomic_read(&session->s_cap_gen))) { cap->queue_release = 1; if (removed) { __ceph_queue_cap_release(session, cap); removed = 0; } } else { cap->queue_release = 0; } cap->cap_ino = ci->i_vino.ino; spin_unlock(&session->s_cap_lock); if (removed) ceph_put_cap(mdsc, cap); if (!__ceph_is_any_real_caps(ci)) { /* when reconnect denied, we remove session caps forcibly, * i_wr_ref can be non-zero. If there are ongoing write, * keep i_snap_realm. */ if (ci->i_wr_ref == 0 && ci->i_snap_realm) ceph_change_snap_realm(&ci->netfs.inode, NULL); __cap_delay_cancel(mdsc, ci); } } void ceph_remove_cap(struct ceph_cap *cap, bool queue_release) { struct ceph_inode_info *ci = cap->ci; struct ceph_fs_client *fsc; /* 'ci' being NULL means the remove have already occurred */ if (!ci) { dout("%s: cap inode is NULL\n", __func__); return; } lockdep_assert_held(&ci->i_ceph_lock); fsc = ceph_inode_to_client(&ci->netfs.inode); WARN_ON_ONCE(ci->i_auth_cap == cap && !list_empty(&ci->i_dirty_item) && !fsc->blocklisted && !ceph_inode_is_shutdown(&ci->netfs.inode)); __ceph_remove_cap(cap, queue_release); } struct cap_msg_args { struct ceph_mds_session *session; u64 ino, cid, follows; u64 flush_tid, oldest_flush_tid, size, max_size; u64 xattr_version; u64 change_attr; struct ceph_buffer *xattr_buf; struct ceph_buffer *old_xattr_buf; struct timespec64 atime, mtime, ctime, btime; int op, caps, wanted, dirty; u32 seq, issue_seq, mseq, time_warp_seq; u32 flags; kuid_t uid; kgid_t gid; umode_t mode; bool inline_data; bool wake; }; /* * cap struct size + flock buffer size + inline version + inline data size + * osd_epoch_barrier + oldest_flush_tid */ #define CAP_MSG_SIZE (sizeof(struct ceph_mds_caps) + \ 4 + 8 + 4 + 4 + 8 + 4 + 4 + 4 + 8 + 8 + 4) /* Marshal up the cap msg to the MDS */ static void encode_cap_msg(struct ceph_msg *msg, struct cap_msg_args *arg) { struct ceph_mds_caps *fc; void *p; struct ceph_osd_client *osdc = &arg->session->s_mdsc->fsc->client->osdc; dout("%s %s %llx %llx caps %s wanted %s dirty %s seq %u/%u tid %llu/%llu mseq %u follows %lld size %llu/%llu xattr_ver %llu xattr_len %d\n", __func__, ceph_cap_op_name(arg->op), arg->cid, arg->ino, ceph_cap_string(arg->caps), ceph_cap_string(arg->wanted), ceph_cap_string(arg->dirty), arg->seq, arg->issue_seq, arg->flush_tid, arg->oldest_flush_tid, arg->mseq, arg->follows, arg->size, arg->max_size, arg->xattr_version, arg->xattr_buf ? (int)arg->xattr_buf->vec.iov_len : 0); msg->hdr.version = cpu_to_le16(10); msg->hdr.tid = cpu_to_le64(arg->flush_tid); fc = msg->front.iov_base; memset(fc, 0, sizeof(*fc)); fc->cap_id = cpu_to_le64(arg->cid); fc->op = cpu_to_le32(arg->op); fc->seq = cpu_to_le32(arg->seq); fc->issue_seq = cpu_to_le32(arg->issue_seq); fc->migrate_seq = cpu_to_le32(arg->mseq); fc->caps = cpu_to_le32(arg->caps); fc->wanted = cpu_to_le32(arg->wanted); fc->dirty = cpu_to_le32(arg->dirty); fc->ino = cpu_to_le64(arg->ino); fc->snap_follows = cpu_to_le64(arg->follows); fc->size = cpu_to_le64(arg->size); fc->max_size = cpu_to_le64(arg->max_size); ceph_encode_timespec64(&fc->mtime, &arg->mtime); ceph_encode_timespec64(&fc->atime, &arg->atime); ceph_encode_timespec64(&fc->ctime, &arg->ctime); fc->time_warp_seq = cpu_to_le32(arg->time_warp_seq); fc->uid = cpu_to_le32(from_kuid(&init_user_ns, arg->uid)); fc->gid = cpu_to_le32(from_kgid(&init_user_ns, arg->gid)); fc->mode = cpu_to_le32(arg->mode); fc->xattr_version = cpu_to_le64(arg->xattr_version); if (arg->xattr_buf) { msg->middle = ceph_buffer_get(arg->xattr_buf); fc->xattr_len = cpu_to_le32(arg->xattr_buf->vec.iov_len); msg->hdr.middle_len = cpu_to_le32(arg->xattr_buf->vec.iov_len); } p = fc + 1; /* flock buffer size (version 2) */ ceph_encode_32(&p, 0); /* inline version (version 4) */ ceph_encode_64(&p, arg->inline_data ? 0 : CEPH_INLINE_NONE); /* inline data size */ ceph_encode_32(&p, 0); /* * osd_epoch_barrier (version 5) * The epoch_barrier is protected osdc->lock, so READ_ONCE here in * case it was recently changed */ ceph_encode_32(&p, READ_ONCE(osdc->epoch_barrier)); /* oldest_flush_tid (version 6) */ ceph_encode_64(&p, arg->oldest_flush_tid); /* * caller_uid/caller_gid (version 7) * * Currently, we don't properly track which caller dirtied the caps * last, and force a flush of them when there is a conflict. For now, * just set this to 0:0, to emulate how the MDS has worked up to now. */ ceph_encode_32(&p, 0); ceph_encode_32(&p, 0); /* pool namespace (version 8) (mds always ignores this) */ ceph_encode_32(&p, 0); /* btime and change_attr (version 9) */ ceph_encode_timespec64(p, &arg->btime); p += sizeof(struct ceph_timespec); ceph_encode_64(&p, arg->change_attr); /* Advisory flags (version 10) */ ceph_encode_32(&p, arg->flags); } /* * Queue cap releases when an inode is dropped from our cache. */ void __ceph_remove_caps(struct ceph_inode_info *ci) { struct rb_node *p; /* lock i_ceph_lock, because ceph_d_revalidate(..., LOOKUP_RCU) * may call __ceph_caps_issued_mask() on a freeing inode. */ spin_lock(&ci->i_ceph_lock); p = rb_first(&ci->i_caps); while (p) { struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); p = rb_next(p); ceph_remove_cap(cap, true); } spin_unlock(&ci->i_ceph_lock); } /* * Prepare to send a cap message to an MDS. Update the cap state, and populate * the arg struct with the parameters that will need to be sent. This should * be done under the i_ceph_lock to guard against changes to cap state. * * Make note of max_size reported/requested from mds, revoked caps * that have now been implemented. */ static void __prep_cap(struct cap_msg_args *arg, struct ceph_cap *cap, int op, int flags, int used, int want, int retain, int flushing, u64 flush_tid, u64 oldest_flush_tid) { struct ceph_inode_info *ci = cap->ci; struct inode *inode = &ci->netfs.inode; int held, revoking; lockdep_assert_held(&ci->i_ceph_lock); held = cap->issued | cap->implemented; revoking = cap->implemented & ~cap->issued; retain &= ~revoking; dout("%s %p cap %p session %p %s -> %s (revoking %s)\n", __func__, inode, cap, cap->session, ceph_cap_string(held), ceph_cap_string(held & retain), ceph_cap_string(revoking)); BUG_ON((retain & CEPH_CAP_PIN) == 0); ci->i_ceph_flags &= ~CEPH_I_FLUSH; cap->issued &= retain; /* drop bits we don't want */ /* * Wake up any waiters on wanted -> needed transition. This is due to * the weird transition from buffered to sync IO... we need to flush * dirty pages _before_ allowing sync writes to avoid reordering. */ arg->wake = cap->implemented & ~cap->issued; cap->implemented &= cap->issued | used; cap->mds_wanted = want; arg->session = cap->session; arg->ino = ceph_vino(inode).ino; arg->cid = cap->cap_id; arg->follows = flushing ? ci->i_head_snapc->seq : 0; arg->flush_tid = flush_tid; arg->oldest_flush_tid = oldest_flush_tid; arg->size = i_size_read(inode); ci->i_reported_size = arg->size; arg->max_size = ci->i_wanted_max_size; if (cap == ci->i_auth_cap) { if (want & CEPH_CAP_ANY_FILE_WR) ci->i_requested_max_size = arg->max_size; else ci->i_requested_max_size = 0; } if (flushing & CEPH_CAP_XATTR_EXCL) { arg->old_xattr_buf = __ceph_build_xattrs_blob(ci); arg->xattr_version = ci->i_xattrs.version; arg->xattr_buf = ci->i_xattrs.blob; } else { arg->xattr_buf = NULL; arg->old_xattr_buf = NULL; } arg->mtime = inode->i_mtime; arg->atime = inode->i_atime; arg->ctime = inode->i_ctime; arg->btime = ci->i_btime; arg->change_attr = inode_peek_iversion_raw(inode); arg->op = op; arg->caps = cap->implemented; arg->wanted = want; arg->dirty = flushing; arg->seq = cap->seq; arg->issue_seq = cap->issue_seq; arg->mseq = cap->mseq; arg->time_warp_seq = ci->i_time_warp_seq; arg->uid = inode->i_uid; arg->gid = inode->i_gid; arg->mode = inode->i_mode; arg->inline_data = ci->i_inline_version != CEPH_INLINE_NONE; if (!(flags & CEPH_CLIENT_CAPS_PENDING_CAPSNAP) && !list_empty(&ci->i_cap_snaps)) { struct ceph_cap_snap *capsnap; list_for_each_entry_reverse(capsnap, &ci->i_cap_snaps, ci_item) { if (capsnap->cap_flush.tid) break; if (capsnap->need_flush) { flags |= CEPH_CLIENT_CAPS_PENDING_CAPSNAP; break; } } } arg->flags = flags; } /* * Send a cap msg on the given inode. * * Caller should hold snap_rwsem (read), s_mutex. */ static void __send_cap(struct cap_msg_args *arg, struct ceph_inode_info *ci) { struct ceph_msg *msg; struct inode *inode = &ci->netfs.inode; msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, CAP_MSG_SIZE, GFP_NOFS, false); if (!msg) { pr_err("error allocating cap msg: ino (%llx.%llx) flushing %s tid %llu, requeuing cap.\n", ceph_vinop(inode), ceph_cap_string(arg->dirty), arg->flush_tid); spin_lock(&ci->i_ceph_lock); __cap_delay_requeue(arg->session->s_mdsc, ci); spin_unlock(&ci->i_ceph_lock); return; } encode_cap_msg(msg, arg); ceph_con_send(&arg->session->s_con, msg); ceph_buffer_put(arg->old_xattr_buf); if (arg->wake) wake_up_all(&ci->i_cap_wq); } static inline int __send_flush_snap(struct inode *inode, struct ceph_mds_session *session, struct ceph_cap_snap *capsnap, u32 mseq, u64 oldest_flush_tid) { struct cap_msg_args arg; struct ceph_msg *msg; msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, CAP_MSG_SIZE, GFP_NOFS, false); if (!msg) return -ENOMEM; arg.session = session; arg.ino = ceph_vino(inode).ino; arg.cid = 0; arg.follows = capsnap->follows; arg.flush_tid = capsnap->cap_flush.tid; arg.oldest_flush_tid = oldest_flush_tid; arg.size = capsnap->size; arg.max_size = 0; arg.xattr_version = capsnap->xattr_version; arg.xattr_buf = capsnap->xattr_blob; arg.old_xattr_buf = NULL; arg.atime = capsnap->atime; arg.mtime = capsnap->mtime; arg.ctime = capsnap->ctime; arg.btime = capsnap->btime; arg.change_attr = capsnap->change_attr; arg.op = CEPH_CAP_OP_FLUSHSNAP; arg.caps = capsnap->issued; arg.wanted = 0; arg.dirty = capsnap->dirty; arg.seq = 0; arg.issue_seq = 0; arg.mseq = mseq; arg.time_warp_seq = capsnap->time_warp_seq; arg.uid = capsnap->uid; arg.gid = capsnap->gid; arg.mode = capsnap->mode; arg.inline_data = capsnap->inline_data; arg.flags = 0; arg.wake = false; encode_cap_msg(msg, &arg); ceph_con_send(&arg.session->s_con, msg); return 0; } /* * When a snapshot is taken, clients accumulate dirty metadata on * inodes with capabilities in ceph_cap_snaps to describe the file * state at the time the snapshot was taken. This must be flushed * asynchronously back to the MDS once sync writes complete and dirty * data is written out. * * Called under i_ceph_lock. */ static void __ceph_flush_snaps(struct ceph_inode_info *ci, struct ceph_mds_session *session) __releases(ci->i_ceph_lock) __acquires(ci->i_ceph_lock) { struct inode *inode = &ci->netfs.inode; struct ceph_mds_client *mdsc = session->s_mdsc; struct ceph_cap_snap *capsnap; u64 oldest_flush_tid = 0; u64 first_tid = 1, last_tid = 0; dout("__flush_snaps %p session %p\n", inode, session); list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { /* * we need to wait for sync writes to complete and for dirty * pages to be written out. */ if (capsnap->dirty_pages || capsnap->writing) break; /* should be removed by ceph_try_drop_cap_snap() */ BUG_ON(!capsnap->need_flush); /* only flush each capsnap once */ if (capsnap->cap_flush.tid > 0) { dout(" already flushed %p, skipping\n", capsnap); continue; } spin_lock(&mdsc->cap_dirty_lock); capsnap->cap_flush.tid = ++mdsc->last_cap_flush_tid; list_add_tail(&capsnap->cap_flush.g_list, &mdsc->cap_flush_list); if (oldest_flush_tid == 0) oldest_flush_tid = __get_oldest_flush_tid(mdsc); if (list_empty(&ci->i_flushing_item)) { list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); } spin_unlock(&mdsc->cap_dirty_lock); list_add_tail(&capsnap->cap_flush.i_list, &ci->i_cap_flush_list); if (first_tid == 1) first_tid = capsnap->cap_flush.tid; last_tid = capsnap->cap_flush.tid; } ci->i_ceph_flags &= ~CEPH_I_FLUSH_SNAPS; while (first_tid <= last_tid) { struct ceph_cap *cap = ci->i_auth_cap; struct ceph_cap_flush *cf = NULL, *iter; int ret; if (!(cap && cap->session == session)) { dout("__flush_snaps %p auth cap %p not mds%d, " "stop\n", inode, cap, session->s_mds); break; } ret = -ENOENT; list_for_each_entry(iter, &ci->i_cap_flush_list, i_list) { if (iter->tid >= first_tid) { cf = iter; ret = 0; break; } } if (ret < 0) break; first_tid = cf->tid + 1; capsnap = container_of(cf, struct ceph_cap_snap, cap_flush); refcount_inc(&capsnap->nref); spin_unlock(&ci->i_ceph_lock); dout("__flush_snaps %p capsnap %p tid %llu %s\n", inode, capsnap, cf->tid, ceph_cap_string(capsnap->dirty)); ret = __send_flush_snap(inode, session, capsnap, cap->mseq, oldest_flush_tid); if (ret < 0) { pr_err("__flush_snaps: error sending cap flushsnap, " "ino (%llx.%llx) tid %llu follows %llu\n", ceph_vinop(inode), cf->tid, capsnap->follows); } ceph_put_cap_snap(capsnap); spin_lock(&ci->i_ceph_lock); } } void ceph_flush_snaps(struct ceph_inode_info *ci, struct ceph_mds_session **psession) { struct inode *inode = &ci->netfs.inode; struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; struct ceph_mds_session *session = NULL; int mds; dout("ceph_flush_snaps %p\n", inode); if (psession) session = *psession; retry: spin_lock(&ci->i_ceph_lock); if (!(ci->i_ceph_flags & CEPH_I_FLUSH_SNAPS)) { dout(" no capsnap needs flush, doing nothing\n"); goto out; } if (!ci->i_auth_cap) { dout(" no auth cap (migrating?), doing nothing\n"); goto out; } mds = ci->i_auth_cap->session->s_mds; if (session && session->s_mds != mds) { dout(" oops, wrong session %p mutex\n", session); ceph_put_mds_session(session); session = NULL; } if (!session) { spin_unlock(&ci->i_ceph_lock); mutex_lock(&mdsc->mutex); session = __ceph_lookup_mds_session(mdsc, mds); mutex_unlock(&mdsc->mutex); goto retry; } // make sure flushsnap messages are sent in proper order. if (ci->i_ceph_flags & CEPH_I_KICK_FLUSH) __kick_flushing_caps(mdsc, session, ci, 0); __ceph_flush_snaps(ci, session); out: spin_unlock(&ci->i_ceph_lock); if (psession) *psession = session; else ceph_put_mds_session(session); /* we flushed them all; remove this inode from the queue */ spin_lock(&mdsc->snap_flush_lock); list_del_init(&ci->i_snap_flush_item); spin_unlock(&mdsc->snap_flush_lock); } /* * Mark caps dirty. If inode is newly dirty, return the dirty flags. * Caller is then responsible for calling __mark_inode_dirty with the * returned flags value. */ int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask, struct ceph_cap_flush **pcf) { struct ceph_mds_client *mdsc = ceph_sb_to_client(ci->netfs.inode.i_sb)->mdsc; struct inode *inode = &ci->netfs.inode; int was = ci->i_dirty_caps; int dirty = 0; lockdep_assert_held(&ci->i_ceph_lock); if (!ci->i_auth_cap) { pr_warn("__mark_dirty_caps %p %llx mask %s, " "but no auth cap (session was closed?)\n", inode, ceph_ino(inode), ceph_cap_string(mask)); return 0; } dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->netfs.inode, ceph_cap_string(mask), ceph_cap_string(was), ceph_cap_string(was | mask)); ci->i_dirty_caps |= mask; if (was == 0) { struct ceph_mds_session *session = ci->i_auth_cap->session; WARN_ON_ONCE(ci->i_prealloc_cap_flush); swap(ci->i_prealloc_cap_flush, *pcf); if (!ci->i_head_snapc) { WARN_ON_ONCE(!rwsem_is_locked(&mdsc->snap_rwsem)); ci->i_head_snapc = ceph_get_snap_context( ci->i_snap_realm->cached_context); } dout(" inode %p now dirty snapc %p auth cap %p\n", &ci->netfs.inode, ci->i_head_snapc, ci->i_auth_cap); BUG_ON(!list_empty(&ci->i_dirty_item)); spin_lock(&mdsc->cap_dirty_lock); list_add(&ci->i_dirty_item, &session->s_cap_dirty); spin_unlock(&mdsc->cap_dirty_lock); if (ci->i_flushing_caps == 0) { ihold(inode); dirty |= I_DIRTY_SYNC; } } else { WARN_ON_ONCE(!ci->i_prealloc_cap_flush); } BUG_ON(list_empty(&ci->i_dirty_item)); if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && (mask & CEPH_CAP_FILE_BUFFER)) dirty |= I_DIRTY_DATASYNC; __cap_delay_requeue(mdsc, ci); return dirty; } struct ceph_cap_flush *ceph_alloc_cap_flush(void) { struct ceph_cap_flush *cf; cf = kmem_cache_alloc(ceph_cap_flush_cachep, GFP_KERNEL); if (!cf) return NULL; cf->is_capsnap = false; return cf; } void ceph_free_cap_flush(struct ceph_cap_flush *cf) { if (cf) kmem_cache_free(ceph_cap_flush_cachep, cf); } static u64 __get_oldest_flush_tid(struct ceph_mds_client *mdsc) { if (!list_empty(&mdsc->cap_flush_list)) { struct ceph_cap_flush *cf = list_first_entry(&mdsc->cap_flush_list, struct ceph_cap_flush, g_list); return cf->tid; } return 0; } /* * Remove cap_flush from the mdsc's or inode's flushing cap list. * Return true if caller needs to wake up flush waiters. */ static bool __detach_cap_flush_from_mdsc(struct ceph_mds_client *mdsc, struct ceph_cap_flush *cf) { struct ceph_cap_flush *prev; bool wake = cf->wake; if (wake && cf->g_list.prev != &mdsc->cap_flush_list) { prev = list_prev_entry(cf, g_list); prev->wake = true; wake = false; } list_del_init(&cf->g_list); return wake; } static bool __detach_cap_flush_from_ci(struct ceph_inode_info *ci, struct ceph_cap_flush *cf) { struct ceph_cap_flush *prev; bool wake = cf->wake; if (wake && cf->i_list.prev != &ci->i_cap_flush_list) { prev = list_prev_entry(cf, i_list); prev->wake = true; wake = false; } list_del_init(&cf->i_list); return wake; } /* * Add dirty inode to the flushing list. Assigned a seq number so we * can wait for caps to flush without starving. * * Called under i_ceph_lock. Returns the flush tid. */ static u64 __mark_caps_flushing(struct inode *inode, struct ceph_mds_session *session, bool wake, u64 *oldest_flush_tid) { struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_cap_flush *cf = NULL; int flushing; lockdep_assert_held(&ci->i_ceph_lock); BUG_ON(ci->i_dirty_caps == 0); BUG_ON(list_empty(&ci->i_dirty_item)); BUG_ON(!ci->i_prealloc_cap_flush); flushing = ci->i_dirty_caps; dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", ceph_cap_string(flushing), ceph_cap_string(ci->i_flushing_caps), ceph_cap_string(ci->i_flushing_caps | flushing)); ci->i_flushing_caps |= flushing; ci->i_dirty_caps = 0; dout(" inode %p now !dirty\n", inode); swap(cf, ci->i_prealloc_cap_flush); cf->caps = flushing; cf->wake = wake; spin_lock(&mdsc->cap_dirty_lock); list_del_init(&ci->i_dirty_item); cf->tid = ++mdsc->last_cap_flush_tid; list_add_tail(&cf->g_list, &mdsc->cap_flush_list); *oldest_flush_tid = __get_oldest_flush_tid(mdsc); if (list_empty(&ci->i_flushing_item)) { list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); mdsc->num_cap_flushing++; } spin_unlock(&mdsc->cap_dirty_lock); list_add_tail(&cf->i_list, &ci->i_cap_flush_list); return cf->tid; } /* * try to invalidate mapping pages without blocking. */ static int try_nonblocking_invalidate(struct inode *inode) __releases(ci->i_ceph_lock) __acquires(ci->i_ceph_lock) { struct ceph_inode_info *ci = ceph_inode(inode); u32 invalidating_gen = ci->i_rdcache_gen; spin_unlock(&ci->i_ceph_lock); ceph_fscache_invalidate(inode, false); invalidate_mapping_pages(&inode->i_data, 0, -1); spin_lock(&ci->i_ceph_lock); if (inode->i_data.nrpages == 0 && invalidating_gen == ci->i_rdcache_gen) { /* success. */ dout("try_nonblocking_invalidate %p success\n", inode); /* save any racing async invalidate some trouble */ ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; return 0; } dout("try_nonblocking_invalidate %p failed\n", inode); return -1; } bool __ceph_should_report_size(struct ceph_inode_info *ci) { loff_t size = i_size_read(&ci->netfs.inode); /* mds will adjust max size according to the reported size */ if (ci->i_flushing_caps & CEPH_CAP_FILE_WR) return false; if (size >= ci->i_max_size) return true; /* half of previous max_size increment has been used */ if (ci->i_max_size > ci->i_reported_size && (size << 1) >= ci->i_max_size + ci->i_reported_size) return true; return false; } /* * Swiss army knife function to examine currently used and wanted * versus held caps. Release, flush, ack revoked caps to mds as * appropriate. * * CHECK_CAPS_AUTHONLY - we should only check the auth cap * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without * further delay. */ void ceph_check_caps(struct ceph_inode_info *ci, int flags, struct ceph_mds_session *session) { struct inode *inode = &ci->netfs.inode; struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); struct ceph_cap *cap; u64 flush_tid, oldest_flush_tid; int file_wanted, used, cap_used; int issued, implemented, want, retain, revoking, flushing = 0; int mds = -1; /* keep track of how far we've gone through i_caps list to avoid an infinite loop on retry */ struct rb_node *p; bool queue_invalidate = false; bool tried_invalidate = false; bool queue_writeback = false; if (session) ceph_get_mds_session(session); spin_lock(&ci->i_ceph_lock); if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE) { /* Don't send messages until we get async create reply */ spin_unlock(&ci->i_ceph_lock); ceph_put_mds_session(session); return; } if (ci->i_ceph_flags & CEPH_I_FLUSH) flags |= CHECK_CAPS_FLUSH; retry: /* Caps wanted by virtue of active open files. */ file_wanted = __ceph_caps_file_wanted(ci); /* Caps which have active references against them */ used = __ceph_caps_used(ci); /* * "issued" represents the current caps that the MDS wants us to have. * "implemented" is the set that we have been granted, and includes the * ones that have not yet been returned to the MDS (the "revoking" set, * usually because they have outstanding references). */ issued = __ceph_caps_issued(ci, &implemented); revoking = implemented & ~issued; want = file_wanted; /* The ones we currently want to retain (may be adjusted below) */ retain = file_wanted | used | CEPH_CAP_PIN; if (!mdsc->stopping && inode->i_nlink > 0) { if (file_wanted) { retain |= CEPH_CAP_ANY; /* be greedy */ } else if (S_ISDIR(inode->i_mode) && (issued & CEPH_CAP_FILE_SHARED) && __ceph_dir_is_complete(ci)) { /* * If a directory is complete, we want to keep * the exclusive cap. So that MDS does not end up * revoking the shared cap on every create/unlink * operation. */ if (IS_RDONLY(inode)) { want = CEPH_CAP_ANY_SHARED; } else { want |= CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL; } retain |= want; } else { retain |= CEPH_CAP_ANY_SHARED; /* * keep RD only if we didn't have the file open RW, * because then the mds would revoke it anyway to * journal max_size=0. */ if (ci->i_max_size == 0) retain |= CEPH_CAP_ANY_RD; } } dout("check_caps %llx.%llx file_want %s used %s dirty %s flushing %s" " issued %s revoking %s retain %s %s%s%s\n", ceph_vinop(inode), ceph_cap_string(file_wanted), ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), ceph_cap_string(ci->i_flushing_caps), ceph_cap_string(issued), ceph_cap_string(revoking), ceph_cap_string(retain), (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "", (flags & CHECK_CAPS_NOINVAL) ? " NOINVAL" : ""); /* * If we no longer need to hold onto old our caps, and we may * have cached pages, but don't want them, then try to invalidate. * If we fail, it's because pages are locked.... try again later. */ if ((!(flags & CHECK_CAPS_NOINVAL) || mdsc->stopping) && S_ISREG(inode->i_mode) && !(ci->i_wb_ref || ci->i_wrbuffer_ref) && /* no dirty pages... */ inode->i_data.nrpages && /* have cached pages */ (revoking & (CEPH_CAP_FILE_CACHE| CEPH_CAP_FILE_LAZYIO)) && /* or revoking cache */ !tried_invalidate) { dout("check_caps trying to invalidate on %llx.%llx\n", ceph_vinop(inode)); if (try_nonblocking_invalidate(inode) < 0) { dout("check_caps queuing invalidate\n"); queue_invalidate = true; ci->i_rdcache_revoking = ci->i_rdcache_gen; } tried_invalidate = true; goto retry; } for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { int mflags = 0; struct cap_msg_args arg; cap = rb_entry(p, struct ceph_cap, ci_node); /* avoid looping forever */ if (mds >= cap->mds || ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) continue; /* * If we have an auth cap, we don't need to consider any * overlapping caps as used. */ cap_used = used; if (ci->i_auth_cap && cap != ci->i_auth_cap) cap_used &= ~ci->i_auth_cap->issued; revoking = cap->implemented & ~cap->issued; dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", cap->mds, cap, ceph_cap_string(cap_used), ceph_cap_string(cap->issued), ceph_cap_string(cap->implemented), ceph_cap_string(revoking)); if (cap == ci->i_auth_cap && (cap->issued & CEPH_CAP_FILE_WR)) { /* request larger max_size from MDS? */ if (ci->i_wanted_max_size > ci->i_max_size && ci->i_wanted_max_size > ci->i_requested_max_size) { dout("requesting new max_size\n"); goto ack; } /* approaching file_max? */ if (__ceph_should_report_size(ci)) { dout("i_size approaching max_size\n"); goto ack; } } /* flush anything dirty? */ if (cap == ci->i_auth_cap) { if ((flags & CHECK_CAPS_FLUSH) && ci->i_dirty_caps) { dout("flushing dirty caps\n"); goto ack; } if (ci->i_ceph_flags & CEPH_I_FLUSH_SNAPS) { dout("flushing snap caps\n"); goto ack; } } /* completed revocation? going down and there are no caps? */ if (revoking) { if ((revoking & cap_used) == 0) { dout("completed revocation of %s\n", ceph_cap_string(cap->implemented & ~cap->issued)); goto ack; } /* * If the "i_wrbuffer_ref" was increased by mmap or generic * cache write just before the ceph_check_caps() is called, * the Fb capability revoking will fail this time. Then we * must wait for the BDI's delayed work to flush the dirty * pages and to release the "i_wrbuffer_ref", which will cost * at most 5 seconds. That means the MDS needs to wait at * most 5 seconds to finished the Fb capability's revocation. * * Let's queue a writeback for it. */ if (S_ISREG(inode->i_mode) && ci->i_wrbuffer_ref && (revoking & CEPH_CAP_FILE_BUFFER)) queue_writeback = true; } /* want more caps from mds? */ if (want & ~cap->mds_wanted) { if (want & ~(cap->mds_wanted | cap->issued)) goto ack; if (!__cap_is_valid(cap)) goto ack; } /* things we might delay */ if ((cap->issued & ~retain) == 0) continue; /* nope, all good */ ack: ceph_put_mds_session(session); session = ceph_get_mds_session(cap->session); /* kick flushing and flush snaps before sending normal * cap message */ if (cap == ci->i_auth_cap && (ci->i_ceph_flags & (CEPH_I_KICK_FLUSH | CEPH_I_FLUSH_SNAPS))) { if (ci->i_ceph_flags & CEPH_I_KICK_FLUSH) __kick_flushing_caps(mdsc, session, ci, 0); if (ci->i_ceph_flags & CEPH_I_FLUSH_SNAPS) __ceph_flush_snaps(ci, session); goto retry; } if (cap == ci->i_auth_cap && ci->i_dirty_caps) { flushing = ci->i_dirty_caps; flush_tid = __mark_caps_flushing(inode, session, false, &oldest_flush_tid); if (flags & CHECK_CAPS_FLUSH && list_empty(&session->s_cap_dirty)) mflags |= CEPH_CLIENT_CAPS_SYNC; } else { flushing = 0; flush_tid = 0; spin_lock(&mdsc->cap_dirty_lock); oldest_flush_tid = __get_oldest_flush_tid(mdsc); spin_unlock(&mdsc->cap_dirty_lock); } mds = cap->mds; /* remember mds, so we don't repeat */ __prep_cap(&arg, cap, CEPH_CAP_OP_UPDATE, mflags, cap_used, want, retain, flushing, flush_tid, oldest_flush_tid); spin_unlock(&ci->i_ceph_lock); __send_cap(&arg, ci); spin_lock(&ci->i_ceph_lock); goto retry; /* retake i_ceph_lock and restart our cap scan. */ } /* periodically re-calculate caps wanted by open files */ if (__ceph_is_any_real_caps(ci) && list_empty(&ci->i_cap_delay_list) && (file_wanted & ~CEPH_CAP_PIN) && !(used & (CEPH_CAP_FILE_RD | CEPH_CAP_ANY_FILE_WR))) { __cap_delay_requeue(mdsc, ci); } spin_unlock(&ci->i_ceph_lock); ceph_put_mds_session(session); if (queue_writeback) ceph_queue_writeback(inode); if (queue_invalidate) ceph_queue_invalidate(inode); } /* * Try to flush dirty caps back to the auth mds. */ static int try_flush_caps(struct inode *inode, u64 *ptid) { struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; struct ceph_inode_info *ci = ceph_inode(inode); int flushing = 0; u64 flush_tid = 0, oldest_flush_tid = 0; spin_lock(&ci->i_ceph_lock); retry_locked: if (ci->i_dirty_caps && ci->i_auth_cap) { struct ceph_cap *cap = ci->i_auth_cap; struct cap_msg_args arg; struct ceph_mds_session *session = cap->session; if (session->s_state < CEPH_MDS_SESSION_OPEN) { spin_unlock(&ci->i_ceph_lock); goto out; } if (ci->i_ceph_flags & (CEPH_I_KICK_FLUSH | CEPH_I_FLUSH_SNAPS)) { if (ci->i_ceph_flags & CEPH_I_KICK_FLUSH) __kick_flushing_caps(mdsc, session, ci, 0); if (ci->i_ceph_flags & CEPH_I_FLUSH_SNAPS) __ceph_flush_snaps(ci, session); goto retry_locked; } flushing = ci->i_dirty_caps; flush_tid = __mark_caps_flushing(inode, session, true, &oldest_flush_tid); __prep_cap(&arg, cap, CEPH_CAP_OP_FLUSH, CEPH_CLIENT_CAPS_SYNC, __ceph_caps_used(ci), __ceph_caps_wanted(ci), (cap->issued | cap->implemented), flushing, flush_tid, oldest_flush_tid); spin_unlock(&ci->i_ceph_lock); __send_cap(&arg, ci); } else { if (!list_empty(&ci->i_cap_flush_list)) { struct ceph_cap_flush *cf = list_last_entry(&ci->i_cap_flush_list, struct ceph_cap_flush, i_list); cf->wake = true; flush_tid = cf->tid; } flushing = ci->i_flushing_caps; spin_unlock(&ci->i_ceph_lock); } out: *ptid = flush_tid; return flushing; } /* * Return true if we've flushed caps through the given flush_tid. */ static int caps_are_flushed(struct inode *inode, u64 flush_tid) { struct ceph_inode_info *ci = ceph_inode(inode); int ret = 1; spin_lock(&ci->i_ceph_lock); if (!list_empty(&ci->i_cap_flush_list)) { struct ceph_cap_flush * cf = list_first_entry(&ci->i_cap_flush_list, struct ceph_cap_flush, i_list); if (cf->tid <= flush_tid) ret = 0; } spin_unlock(&ci->i_ceph_lock); return ret; } /* * flush the mdlog and wait for any unsafe requests to complete. */ static int flush_mdlog_and_wait_inode_unsafe_requests(struct inode *inode) { struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_request *req1 = NULL, *req2 = NULL; int ret, err = 0; spin_lock(&ci->i_unsafe_lock); if (S_ISDIR(inode->i_mode) && !list_empty(&ci->i_unsafe_dirops)) { req1 = list_last_entry(&ci->i_unsafe_dirops, struct ceph_mds_request, r_unsafe_dir_item); ceph_mdsc_get_request(req1); } if (!list_empty(&ci->i_unsafe_iops)) { req2 = list_last_entry(&ci->i_unsafe_iops, struct ceph_mds_request, r_unsafe_target_item); ceph_mdsc_get_request(req2); } spin_unlock(&ci->i_unsafe_lock); /* * Trigger to flush the journal logs in all the relevant MDSes * manually, or in the worst case we must wait at most 5 seconds * to wait the journal logs to be flushed by the MDSes periodically. */ if (req1 || req2) { struct ceph_mds_request *req; struct ceph_mds_session **sessions; struct ceph_mds_session *s; unsigned int max_sessions; int i; mutex_lock(&mdsc->mutex); max_sessions = mdsc->max_sessions; sessions = kcalloc(max_sessions, sizeof(s), GFP_KERNEL); if (!sessions) { mutex_unlock(&mdsc->mutex); err = -ENOMEM; goto out; } spin_lock(&ci->i_unsafe_lock); if (req1) { list_for_each_entry(req, &ci->i_unsafe_dirops, r_unsafe_dir_item) { s = req->r_session; if (!s) continue; if (!sessions[s->s_mds]) { s = ceph_get_mds_session(s); sessions[s->s_mds] = s; } } } if (req2) { list_for_each_entry(req, &ci->i_unsafe_iops, r_unsafe_target_item) { s = req->r_session; if (!s) continue; if (!sessions[s->s_mds]) { s = ceph_get_mds_session(s); sessions[s->s_mds] = s; } } } spin_unlock(&ci->i_unsafe_lock); /* the auth MDS */ spin_lock(&ci->i_ceph_lock); if (ci->i_auth_cap) { s = ci->i_auth_cap->session; if (!sessions[s->s_mds]) sessions[s->s_mds] = ceph_get_mds_session(s); } spin_unlock(&ci->i_ceph_lock); mutex_unlock(&mdsc->mutex); /* send flush mdlog request to MDSes */ for (i = 0; i < max_sessions; i++) { s = sessions[i]; if (s) { send_flush_mdlog(s); ceph_put_mds_session(s); } } kfree(sessions); } dout("%s %p wait on tid %llu %llu\n", __func__, inode, req1 ? req1->r_tid : 0ULL, req2 ? req2->r_tid : 0ULL); if (req1) { ret = !wait_for_completion_timeout(&req1->r_safe_completion, ceph_timeout_jiffies(req1->r_timeout)); if (ret) err = -EIO; } if (req2) { ret = !wait_for_completion_timeout(&req2->r_safe_completion, ceph_timeout_jiffies(req2->r_timeout)); if (ret) err = -EIO; } out: if (req1) ceph_mdsc_put_request(req1); if (req2) ceph_mdsc_put_request(req2); return err; } int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; struct ceph_inode_info *ci = ceph_inode(inode); u64 flush_tid; int ret, err; int dirty; dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); ret = file_write_and_wait_range(file, start, end); if (datasync) goto out; ret = ceph_wait_on_async_create(inode); if (ret) goto out; dirty = try_flush_caps(inode, &flush_tid); dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); err = flush_mdlog_and_wait_inode_unsafe_requests(inode); /* * only wait on non-file metadata writeback (the mds * can recover size and mtime, so we don't need to * wait for that) */ if (!err && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { err = wait_event_interruptible(ci->i_cap_wq, caps_are_flushed(inode, flush_tid)); } if (err < 0) ret = err; err = file_check_and_advance_wb_err(file); if (err < 0) ret = err; out: dout("fsync %p%s result=%d\n", inode, datasync ? " datasync" : "", ret); return ret; } /* * Flush any dirty caps back to the mds. If we aren't asked to wait, * queue inode for flush but don't do so immediately, because we can * get by with fewer MDS messages if we wait for data writeback to * complete first. */ int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) { struct ceph_inode_info *ci = ceph_inode(inode); u64 flush_tid; int err = 0; int dirty; int wait = (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync); dout("write_inode %p wait=%d\n", inode, wait); ceph_fscache_unpin_writeback(inode, wbc); if (wait) { err = ceph_wait_on_async_create(inode); if (err) return err; dirty = try_flush_caps(inode, &flush_tid); if (dirty) err = wait_event_interruptible(ci->i_cap_wq, caps_are_flushed(inode, flush_tid)); } else { struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; spin_lock(&ci->i_ceph_lock); if (__ceph_caps_dirty(ci)) __cap_delay_requeue_front(mdsc, ci); spin_unlock(&ci->i_ceph_lock); } return err; } static void __kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_inode_info *ci, u64 oldest_flush_tid) __releases(ci->i_ceph_lock) __acquires(ci->i_ceph_lock) { struct inode *inode = &ci->netfs.inode; struct ceph_cap *cap; struct ceph_cap_flush *cf; int ret; u64 first_tid = 0; u64 last_snap_flush = 0; /* Don't do anything until create reply comes in */ if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE) return; ci->i_ceph_flags &= ~CEPH_I_KICK_FLUSH; list_for_each_entry_reverse(cf, &ci->i_cap_flush_list, i_list) { if (cf->is_capsnap) { last_snap_flush = cf->tid; break; } } list_for_each_entry(cf, &ci->i_cap_flush_list, i_list) { if (cf->tid < first_tid) continue; cap = ci->i_auth_cap; if (!(cap && cap->session == session)) { pr_err("%p auth cap %p not mds%d ???\n", inode, cap, session->s_mds); break; } first_tid = cf->tid + 1; if (!cf->is_capsnap) { struct cap_msg_args arg; dout("kick_flushing_caps %p cap %p tid %llu %s\n", inode, cap, cf->tid, ceph_cap_string(cf->caps)); __prep_cap(&arg, cap, CEPH_CAP_OP_FLUSH, (cf->tid < last_snap_flush ? CEPH_CLIENT_CAPS_PENDING_CAPSNAP : 0), __ceph_caps_used(ci), __ceph_caps_wanted(ci), (cap->issued | cap->implemented), cf->caps, cf->tid, oldest_flush_tid); spin_unlock(&ci->i_ceph_lock); __send_cap(&arg, ci); } else { struct ceph_cap_snap *capsnap = container_of(cf, struct ceph_cap_snap, cap_flush); dout("kick_flushing_caps %p capsnap %p tid %llu %s\n", inode, capsnap, cf->tid, ceph_cap_string(capsnap->dirty)); refcount_inc(&capsnap->nref); spin_unlock(&ci->i_ceph_lock); ret = __send_flush_snap(inode, session, capsnap, cap->mseq, oldest_flush_tid); if (ret < 0) { pr_err("kick_flushing_caps: error sending " "cap flushsnap, ino (%llx.%llx) " "tid %llu follows %llu\n", ceph_vinop(inode), cf->tid, capsnap->follows); } ceph_put_cap_snap(capsnap); } spin_lock(&ci->i_ceph_lock); } } void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_inode_info *ci; struct ceph_cap *cap; u64 oldest_flush_tid; dout("early_kick_flushing_caps mds%d\n", session->s_mds); spin_lock(&mdsc->cap_dirty_lock); oldest_flush_tid = __get_oldest_flush_tid(mdsc); spin_unlock(&mdsc->cap_dirty_lock); list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { spin_lock(&ci->i_ceph_lock); cap = ci->i_auth_cap; if (!(cap && cap->session == session)) { pr_err("%p auth cap %p not mds%d ???\n", &ci->netfs.inode, cap, session->s_mds); spin_unlock(&ci->i_ceph_lock); continue; } /* * if flushing caps were revoked, we re-send the cap flush * in client reconnect stage. This guarantees MDS * processes * the cap flush message before issuing the flushing caps to * other client. */ if ((cap->issued & ci->i_flushing_caps) != ci->i_flushing_caps) { /* encode_caps_cb() also will reset these sequence * numbers. make sure sequence numbers in cap flush * message match later reconnect message */ cap->seq = 0; cap->issue_seq = 0; cap->mseq = 0; __kick_flushing_caps(mdsc, session, ci, oldest_flush_tid); } else { ci->i_ceph_flags |= CEPH_I_KICK_FLUSH; } spin_unlock(&ci->i_ceph_lock); } } void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session) { struct ceph_inode_info *ci; struct ceph_cap *cap; u64 oldest_flush_tid; lockdep_assert_held(&session->s_mutex); dout("kick_flushing_caps mds%d\n", session->s_mds); spin_lock(&mdsc->cap_dirty_lock); oldest_flush_tid = __get_oldest_flush_tid(mdsc); spin_unlock(&mdsc->cap_dirty_lock); list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { spin_lock(&ci->i_ceph_lock); cap = ci->i_auth_cap; if (!(cap && cap->session == session)) { pr_err("%p auth cap %p not mds%d ???\n", &ci->netfs.inode, cap, session->s_mds); spin_unlock(&ci->i_ceph_lock); continue; } if (ci->i_ceph_flags & CEPH_I_KICK_FLUSH) { __kick_flushing_caps(mdsc, session, ci, oldest_flush_tid); } spin_unlock(&ci->i_ceph_lock); } } void ceph_kick_flushing_inode_caps(struct ceph_mds_session *session, struct ceph_inode_info *ci) { struct ceph_mds_client *mdsc = session->s_mdsc; struct ceph_cap *cap = ci->i_auth_cap; lockdep_assert_held(&ci->i_ceph_lock); dout("%s %p flushing %s\n", __func__, &ci->netfs.inode, ceph_cap_string(ci->i_flushing_caps)); if (!list_empty(&ci->i_cap_flush_list)) { u64 oldest_flush_tid; spin_lock(&mdsc->cap_dirty_lock); list_move_tail(&ci->i_flushing_item, &cap->session->s_cap_flushing); oldest_flush_tid = __get_oldest_flush_tid(mdsc); spin_unlock(&mdsc->cap_dirty_lock); __kick_flushing_caps(mdsc, session, ci, oldest_flush_tid); } } /* * Take references to capabilities we hold, so that we don't release * them to the MDS prematurely. */ void ceph_take_cap_refs(struct ceph_inode_info *ci, int got, bool snap_rwsem_locked) { lockdep_assert_held(&ci->i_ceph_lock); if (got & CEPH_CAP_PIN) ci->i_pin_ref++; if (got & CEPH_CAP_FILE_RD) ci->i_rd_ref++; if (got & CEPH_CAP_FILE_CACHE) ci->i_rdcache_ref++; if (got & CEPH_CAP_FILE_EXCL) ci->i_fx_ref++; if (got & CEPH_CAP_FILE_WR) { if (ci->i_wr_ref == 0 && !ci->i_head_snapc) { BUG_ON(!snap_rwsem_locked); ci->i_head_snapc = ceph_get_snap_context( ci->i_snap_realm->cached_context); } ci->i_wr_ref++; } if (got & CEPH_CAP_FILE_BUFFER) { if (ci->i_wb_ref == 0) ihold(&ci->netfs.inode); ci->i_wb_ref++; dout("%s %p wb %d -> %d (?)\n", __func__, &ci->netfs.inode, ci->i_wb_ref-1, ci->i_wb_ref); } } /* * Try to grab cap references. Specify those refs we @want, and the * minimal set we @need. Also include the larger offset we are writing * to (when applicable), and check against max_size here as well. * Note that caller is responsible for ensuring max_size increases are * requested from the MDS. * * Returns 0 if caps were not able to be acquired (yet), 1 if succeed, * or a negative error code. There are 3 speical error codes: * -EAGAIN: need to sleep but non-blocking is specified * -EFBIG: ask caller to call check_max_size() and try again. * -EUCLEAN: ask caller to call ceph_renew_caps() and try again. */ enum { /* first 8 bits are reserved for CEPH_FILE_MODE_FOO */ NON_BLOCKING = (1 << 8), CHECK_FILELOCK = (1 << 9), }; static int try_get_cap_refs(struct inode *inode, int need, int want, loff_t endoff, int flags, int *got) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; int ret = 0; int have, implemented; bool snap_rwsem_locked = false; dout("get_cap_refs %p need %s want %s\n", inode, ceph_cap_string(need), ceph_cap_string(want)); again: spin_lock(&ci->i_ceph_lock); if ((flags & CHECK_FILELOCK) && (ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK)) { dout("try_get_cap_refs %p error filelock\n", inode); ret = -EIO; goto out_unlock; } /* finish pending truncate */ while (ci->i_truncate_pending) { spin_unlock(&ci->i_ceph_lock); if (snap_rwsem_locked) { up_read(&mdsc->snap_rwsem); snap_rwsem_locked = false; } __ceph_do_pending_vmtruncate(inode); spin_lock(&ci->i_ceph_lock); } have = __ceph_caps_issued(ci, &implemented); if (have & need & CEPH_CAP_FILE_WR) { if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { dout("get_cap_refs %p endoff %llu > maxsize %llu\n", inode, endoff, ci->i_max_size); if (endoff > ci->i_requested_max_size) ret = ci->i_auth_cap ? -EFBIG : -EUCLEAN; goto out_unlock; } /* * If a sync write is in progress, we must wait, so that we * can get a final snapshot value for size+mtime. */ if (__ceph_have_pending_cap_snap(ci)) { dout("get_cap_refs %p cap_snap_pending\n", inode); goto out_unlock; } } if ((have & need) == need) { /* * Look at (implemented & ~have & not) so that we keep waiting * on transition from wanted -> needed caps. This is needed * for WRBUFFER|WR -> WR to avoid a new WR sync write from * going before a prior buffered writeback happens. * * For RDCACHE|RD -> RD, there is not need to wait and we can * just exclude the revoking caps and force to sync read. */ int not = want & ~(have & need); int revoking = implemented & ~have; int exclude = revoking & not; dout("get_cap_refs %p have %s but not %s (revoking %s)\n", inode, ceph_cap_string(have), ceph_cap_string(not), ceph_cap_string(revoking)); if (!exclude || !(exclude & CEPH_CAP_FILE_BUFFER)) { if (!snap_rwsem_locked && !ci->i_head_snapc && (need & CEPH_CAP_FILE_WR)) { if (!down_read_trylock(&mdsc->snap_rwsem)) { /* * we can not call down_read() when * task isn't in TASK_RUNNING state */ if (flags & NON_BLOCKING) { ret = -EAGAIN; goto out_unlock; } spin_unlock(&ci->i_ceph_lock); down_read(&mdsc->snap_rwsem); snap_rwsem_locked = true; goto again; } snap_rwsem_locked = true; } if ((have & want) == want) *got = need | (want & ~exclude); else *got = need; ceph_take_cap_refs(ci, *got, true); ret = 1; } } else { int session_readonly = false; int mds_wanted; if (ci->i_auth_cap && (need & (CEPH_CAP_FILE_WR | CEPH_CAP_FILE_EXCL))) { struct ceph_mds_session *s = ci->i_auth_cap->session; spin_lock(&s->s_cap_lock); session_readonly = s->s_readonly; spin_unlock(&s->s_cap_lock); } if (session_readonly) { dout("get_cap_refs %p need %s but mds%d readonly\n", inode, ceph_cap_string(need), ci->i_auth_cap->mds); ret = -EROFS; goto out_unlock; } if (ceph_inode_is_shutdown(inode)) { dout("get_cap_refs %p inode is shutdown\n", inode); ret = -ESTALE; goto out_unlock; } mds_wanted = __ceph_caps_mds_wanted(ci, false); if (need & ~mds_wanted) { dout("get_cap_refs %p need %s > mds_wanted %s\n", inode, ceph_cap_string(need), ceph_cap_string(mds_wanted)); ret = -EUCLEAN; goto out_unlock; } dout("get_cap_refs %p have %s need %s\n", inode, ceph_cap_string(have), ceph_cap_string(need)); } out_unlock: __ceph_touch_fmode(ci, mdsc, flags); spin_unlock(&ci->i_ceph_lock); if (snap_rwsem_locked) up_read(&mdsc->snap_rwsem); if (!ret) ceph_update_cap_mis(&mdsc->metric); else if (ret == 1) ceph_update_cap_hit(&mdsc->metric); dout("get_cap_refs %p ret %d got %s\n", inode, ret, ceph_cap_string(*got)); return ret; } /* * Check the offset we are writing up to against our current * max_size. If necessary, tell the MDS we want to write to * a larger offset. */ static void check_max_size(struct inode *inode, loff_t endoff) { struct ceph_inode_info *ci = ceph_inode(inode); int check = 0; /* do we need to explicitly request a larger max_size? */ spin_lock(&ci->i_ceph_lock); if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { dout("write %p at large endoff %llu, req max_size\n", inode, endoff); ci->i_wanted_max_size = endoff; } /* duplicate ceph_check_caps()'s logic */ if (ci->i_auth_cap && (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && ci->i_wanted_max_size > ci->i_max_size && ci->i_wanted_max_size > ci->i_requested_max_size) check = 1; spin_unlock(&ci->i_ceph_lock); if (check) ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); } static inline int get_used_fmode(int caps) { int fmode = 0; if (caps & CEPH_CAP_FILE_RD) fmode |= CEPH_FILE_MODE_RD; if (caps & CEPH_CAP_FILE_WR) fmode |= CEPH_FILE_MODE_WR; return fmode; } int ceph_try_get_caps(struct inode *inode, int need, int want, bool nonblock, int *got) { int ret, flags; BUG_ON(need & ~CEPH_CAP_FILE_RD); BUG_ON(want & ~(CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO | CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_EXCL | CEPH_CAP_ANY_DIR_OPS)); if (need) { ret = ceph_pool_perm_check(inode, need); if (ret < 0) return ret; } flags = get_used_fmode(need | want); if (nonblock) flags |= NON_BLOCKING; ret = try_get_cap_refs(inode, need, want, 0, flags, got); /* three special error codes */ if (ret == -EAGAIN || ret == -EFBIG || ret == -EUCLEAN) ret = 0; return ret; } /* * Wait for caps, and take cap references. If we can't get a WR cap * due to a small max_size, make sure we check_max_size (and possibly * ask the mds) so we don't get hung up indefinitely. */ int ceph_get_caps(struct file *filp, int need, int want, loff_t endoff, int *got) { struct ceph_file_info *fi = filp->private_data; struct inode *inode = file_inode(filp); struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_fs_client *fsc = ceph_inode_to_client(inode); int ret, _got, flags; ret = ceph_pool_perm_check(inode, need); if (ret < 0) return ret; if ((fi->fmode & CEPH_FILE_MODE_WR) && fi->filp_gen != READ_ONCE(fsc->filp_gen)) return -EBADF; flags = get_used_fmode(need | want); while (true) { flags &= CEPH_FILE_MODE_MASK; if (vfs_inode_has_locks(inode)) flags |= CHECK_FILELOCK; _got = 0; ret = try_get_cap_refs(inode, need, want, endoff, flags, &_got); WARN_ON_ONCE(ret == -EAGAIN); if (!ret) { struct ceph_mds_client *mdsc = fsc->mdsc; struct cap_wait cw; DEFINE_WAIT_FUNC(wait, woken_wake_function); cw.ino = ceph_ino(inode); cw.tgid = current->tgid; cw.need = need; cw.want = want; spin_lock(&mdsc->caps_list_lock); list_add(&cw.list, &mdsc->cap_wait_list); spin_unlock(&mdsc->caps_list_lock); /* make sure used fmode not timeout */ ceph_get_fmode(ci, flags, FMODE_WAIT_BIAS); add_wait_queue(&ci->i_cap_wq, &wait); flags |= NON_BLOCKING; while (!(ret = try_get_cap_refs(inode, need, want, endoff, flags, &_got))) { if (signal_pending(current)) { ret = -ERESTARTSYS; break; } wait_woken(&wait, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); } remove_wait_queue(&ci->i_cap_wq, &wait); ceph_put_fmode(ci, flags, FMODE_WAIT_BIAS); spin_lock(&mdsc->caps_list_lock); list_del(&cw.list); spin_unlock(&mdsc->caps_list_lock); if (ret == -EAGAIN) continue; } if ((fi->fmode & CEPH_FILE_MODE_WR) && fi->filp_gen != READ_ONCE(fsc->filp_gen)) { if (ret >= 0 && _got) ceph_put_cap_refs(ci, _got); return -EBADF; } if (ret < 0) { if (ret == -EFBIG || ret == -EUCLEAN) { int ret2 = ceph_wait_on_async_create(inode); if (ret2 < 0) return ret2; } if (ret == -EFBIG) { check_max_size(inode, endoff); continue; } if (ret == -EUCLEAN) { /* session was killed, try renew caps */ ret = ceph_renew_caps(inode, flags); if (ret == 0) continue; } return ret; } if (S_ISREG(ci->netfs.inode.i_mode) && ceph_has_inline_data(ci) && (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && i_size_read(inode) > 0) { struct page *page = find_get_page(inode->i_mapping, 0); if (page) { bool uptodate = PageUptodate(page); put_page(page); if (uptodate) break; } /* * drop cap refs first because getattr while * holding * caps refs can cause deadlock. */ ceph_put_cap_refs(ci, _got); _got = 0; /* * getattr request will bring inline data into * page cache */ ret = __ceph_do_getattr(inode, NULL, CEPH_STAT_CAP_INLINE_DATA, true); if (ret < 0) return ret; continue; } break; } *got = _got; return 0; } /* * Take cap refs. Caller must already know we hold at least one ref * on the caps in question or we don't know this is safe. */ void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) { spin_lock(&ci->i_ceph_lock); ceph_take_cap_refs(ci, caps, false); spin_unlock(&ci->i_ceph_lock); } /* * drop cap_snap that is not associated with any snapshot. * we don't need to send FLUSHSNAP message for it. */ static int ceph_try_drop_cap_snap(struct ceph_inode_info *ci, struct ceph_cap_snap *capsnap) { if (!capsnap->need_flush && !capsnap->writing && !capsnap->dirty_pages) { dout("dropping cap_snap %p follows %llu\n", capsnap, capsnap->follows); BUG_ON(capsnap->cap_flush.tid > 0); ceph_put_snap_context(capsnap->context); if (!list_is_last(&capsnap->ci_item, &ci->i_cap_snaps)) ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS; list_del(&capsnap->ci_item); ceph_put_cap_snap(capsnap); return 1; } return 0; } enum put_cap_refs_mode { PUT_CAP_REFS_SYNC = 0, PUT_CAP_REFS_NO_CHECK, PUT_CAP_REFS_ASYNC, }; /* * Release cap refs. * * If we released the last ref on any given cap, call ceph_check_caps * to release (or schedule a release). * * If we are releasing a WR cap (from a sync write), finalize any affected * cap_snap, and wake up any waiters. */ static void __ceph_put_cap_refs(struct ceph_inode_info *ci, int had, enum put_cap_refs_mode mode) { struct inode *inode = &ci->netfs.inode; int last = 0, put = 0, flushsnaps = 0, wake = 0; bool check_flushsnaps = false; spin_lock(&ci->i_ceph_lock); if (had & CEPH_CAP_PIN) --ci->i_pin_ref; if (had & CEPH_CAP_FILE_RD) if (--ci->i_rd_ref == 0) last++; if (had & CEPH_CAP_FILE_CACHE) if (--ci->i_rdcache_ref == 0) last++; if (had & CEPH_CAP_FILE_EXCL) if (--ci->i_fx_ref == 0) last++; if (had & CEPH_CAP_FILE_BUFFER) { if (--ci->i_wb_ref == 0) { last++; /* put the ref held by ceph_take_cap_refs() */ put++; check_flushsnaps = true; } dout("put_cap_refs %p wb %d -> %d (?)\n", inode, ci->i_wb_ref+1, ci->i_wb_ref); } if (had & CEPH_CAP_FILE_WR) { if (--ci->i_wr_ref == 0) { last++; check_flushsnaps = true; if (ci->i_wrbuffer_ref_head == 0 && ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { BUG_ON(!ci->i_head_snapc); ceph_put_snap_context(ci->i_head_snapc); ci->i_head_snapc = NULL; } /* see comment in __ceph_remove_cap() */ if (!__ceph_is_any_real_caps(ci) && ci->i_snap_realm) ceph_change_snap_realm(inode, NULL); } } if (check_flushsnaps && __ceph_have_pending_cap_snap(ci)) { struct ceph_cap_snap *capsnap = list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap, ci_item); capsnap->writing = 0; if (ceph_try_drop_cap_snap(ci, capsnap)) /* put the ref held by ceph_queue_cap_snap() */ put++; else if (__ceph_finish_cap_snap(ci, capsnap)) flushsnaps = 1; wake = 1; } spin_unlock(&ci->i_ceph_lock); dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), last ? " last" : "", put ? " put" : ""); switch (mode) { case PUT_CAP_REFS_SYNC: if (last) ceph_check_caps(ci, 0, NULL); else if (flushsnaps) ceph_flush_snaps(ci, NULL); break; case PUT_CAP_REFS_ASYNC: if (last) ceph_queue_check_caps(inode); else if (flushsnaps) ceph_queue_flush_snaps(inode); break; default: break; } if (wake) wake_up_all(&ci->i_cap_wq); while (put-- > 0) iput(inode); } void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) { __ceph_put_cap_refs(ci, had, PUT_CAP_REFS_SYNC); } void ceph_put_cap_refs_async(struct ceph_inode_info *ci, int had) { __ceph_put_cap_refs(ci, had, PUT_CAP_REFS_ASYNC); } void ceph_put_cap_refs_no_check_caps(struct ceph_inode_info *ci, int had) { __ceph_put_cap_refs(ci, had, PUT_CAP_REFS_NO_CHECK); } /* * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap * context. Adjust per-snap dirty page accounting as appropriate. * Once all dirty data for a cap_snap is flushed, flush snapped file * metadata back to the MDS. If we dropped the last ref, call * ceph_check_caps. */ void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, struct ceph_snap_context *snapc) { struct inode *inode = &ci->netfs.inode; struct ceph_cap_snap *capsnap = NULL, *iter; int put = 0; bool last = false; bool flush_snaps = false; bool complete_capsnap = false; spin_lock(&ci->i_ceph_lock); ci->i_wrbuffer_ref -= nr; if (ci->i_wrbuffer_ref == 0) { last = true; put++; } if (ci->i_head_snapc == snapc) { ci->i_wrbuffer_ref_head -= nr; if (ci->i_wrbuffer_ref_head == 0 && ci->i_wr_ref == 0 && ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { BUG_ON(!ci->i_head_snapc); ceph_put_snap_context(ci->i_head_snapc); ci->i_head_snapc = NULL; } dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", inode, ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, last ? " LAST" : ""); } else { list_for_each_entry(iter, &ci->i_cap_snaps, ci_item) { if (iter->context == snapc) { capsnap = iter; break; } } if (!capsnap) { /* * The capsnap should already be removed when removing * auth cap in the case of a forced unmount. */ WARN_ON_ONCE(ci->i_auth_cap); goto unlock; } capsnap->dirty_pages -= nr; if (capsnap->dirty_pages == 0) { complete_capsnap = true; if (!capsnap->writing) { if (ceph_try_drop_cap_snap(ci, capsnap)) { put++; } else { ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS; flush_snaps = true; } } } dout("put_wrbuffer_cap_refs on %p cap_snap %p " " snap %lld %d/%d -> %d/%d %s%s\n", inode, capsnap, capsnap->context->seq, ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, ci->i_wrbuffer_ref, capsnap->dirty_pages, last ? " (wrbuffer last)" : "", complete_capsnap ? " (complete capsnap)" : ""); } unlock: spin_unlock(&ci->i_ceph_lock); if (last) { ceph_check_caps(ci, 0, NULL); } else if (flush_snaps) { ceph_flush_snaps(ci, NULL); } if (complete_capsnap) wake_up_all(&ci->i_cap_wq); while (put-- > 0) { iput(inode); } } /* * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. */ static void invalidate_aliases(struct inode *inode) { struct dentry *dn, *prev = NULL; dout("invalidate_aliases inode %p\n", inode); d_prune_aliases(inode); /* * For non-directory inode, d_find_alias() only returns * hashed dentry. After calling d_invalidate(), the * dentry becomes unhashed. * * For directory inode, d_find_alias() can return * unhashed dentry. But directory inode should have * one alias at most. */ while ((dn = d_find_alias(inode))) { if (dn == prev) { dput(dn); break; } d_invalidate(dn); if (prev) dput(prev); prev = dn; } if (prev) dput(prev); } struct cap_extra_info { struct ceph_string *pool_ns; /* inline data */ u64 inline_version; void *inline_data; u32 inline_len; /* dirstat */ bool dirstat_valid; u64 nfiles; u64 nsubdirs; u64 change_attr; /* currently issued */ int issued; struct timespec64 btime; }; /* * Handle a cap GRANT message from the MDS. (Note that a GRANT may * actually be a revocation if it specifies a smaller cap set.) * * caller holds s_mutex and i_ceph_lock, we drop both. */ static void handle_cap_grant(struct inode *inode, struct ceph_mds_session *session, struct ceph_cap *cap, struct ceph_mds_caps *grant, struct ceph_buffer *xattr_buf, struct cap_extra_info *extra_info) __releases(ci->i_ceph_lock) __releases(session->s_mdsc->snap_rwsem) { struct ceph_inode_info *ci = ceph_inode(inode); int seq = le32_to_cpu(grant->seq); int newcaps = le32_to_cpu(grant->caps); int used, wanted, dirty; u64 size = le64_to_cpu(grant->size); u64 max_size = le64_to_cpu(grant->max_size); unsigned char check_caps = 0; bool was_stale = cap->cap_gen < atomic_read(&session->s_cap_gen); bool wake = false; bool writeback = false; bool queue_trunc = false; bool queue_invalidate = false; bool deleted_inode = false; bool fill_inline = false; dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", inode, cap, session->s_mds, seq, ceph_cap_string(newcaps)); dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, i_size_read(inode)); /* * If CACHE is being revoked, and we have no dirty buffers, * try to invalidate (once). (If there are dirty buffers, we * will invalidate _after_ writeback.) */ if (S_ISREG(inode->i_mode) && /* don't invalidate readdir cache */ ((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && !(ci->i_wrbuffer_ref || ci->i_wb_ref)) { if (try_nonblocking_invalidate(inode)) { /* there were locked pages.. invalidate later in a separate thread. */ if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { queue_invalidate = true; ci->i_rdcache_revoking = ci->i_rdcache_gen; } } } if (was_stale) cap->issued = cap->implemented = CEPH_CAP_PIN; /* * auth mds of the inode changed. we received the cap export message, * but still haven't received the cap import message. handle_cap_export * updated the new auth MDS' cap. * * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message * that was sent before the cap import message. So don't remove caps. */ if (ceph_seq_cmp(seq, cap->seq) <= 0) { WARN_ON(cap != ci->i_auth_cap); WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id)); seq = cap->seq; newcaps |= cap->issued; } /* side effects now are allowed */ cap->cap_gen = atomic_read(&session->s_cap_gen); cap->seq = seq; __check_cap_issue(ci, cap, newcaps); inode_set_max_iversion_raw(inode, extra_info->change_attr); if ((newcaps & CEPH_CAP_AUTH_SHARED) && (extra_info->issued & CEPH_CAP_AUTH_EXCL) == 0) { umode_t mode = le32_to_cpu(grant->mode); if (inode_wrong_type(inode, mode)) pr_warn_once("inode type changed! (ino %llx.%llx is 0%o, mds says 0%o)\n", ceph_vinop(inode), inode->i_mode, mode); else inode->i_mode = mode; inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); ci->i_btime = extra_info->btime; dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, from_kuid(&init_user_ns, inode->i_uid), from_kgid(&init_user_ns, inode->i_gid)); } if ((newcaps & CEPH_CAP_LINK_SHARED) && (extra_info->issued & CEPH_CAP_LINK_EXCL) == 0) { set_nlink(inode, le32_to_cpu(grant->nlink)); if (inode->i_nlink == 0) deleted_inode = true; } if ((extra_info->issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { int len = le32_to_cpu(grant->xattr_len); u64 version = le64_to_cpu(grant->xattr_version); if (version > ci->i_xattrs.version) { dout(" got new xattrs v%llu on %p len %d\n", version, inode, len); if (ci->i_xattrs.blob) ceph_buffer_put(ci->i_xattrs.blob); ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); ci->i_xattrs.version = version; ceph_forget_all_cached_acls(inode); ceph_security_invalidate_secctx(inode); } } if (newcaps & CEPH_CAP_ANY_RD) { struct timespec64 mtime, atime, ctime; /* ctime/mtime/atime? */ ceph_decode_timespec64(&mtime, &grant->mtime); ceph_decode_timespec64(&atime, &grant->atime); ceph_decode_timespec64(&ctime, &grant->ctime); ceph_fill_file_time(inode, extra_info->issued, le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, &atime); } if ((newcaps & CEPH_CAP_FILE_SHARED) && extra_info->dirstat_valid) { ci->i_files = extra_info->nfiles; ci->i_subdirs = extra_info->nsubdirs; } if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) { /* file layout may have changed */ s64 old_pool = ci->i_layout.pool_id; struct ceph_string *old_ns; ceph_file_layout_from_legacy(&ci->i_layout, &grant->layout); old_ns = rcu_dereference_protected(ci->i_layout.pool_ns, lockdep_is_held(&ci->i_ceph_lock)); rcu_assign_pointer(ci->i_layout.pool_ns, extra_info->pool_ns); if (ci->i_layout.pool_id != old_pool || extra_info->pool_ns != old_ns) ci->i_ceph_flags &= ~CEPH_I_POOL_PERM; extra_info->pool_ns = old_ns; /* size/truncate_seq? */ queue_trunc = ceph_fill_file_size(inode, extra_info->issued, le32_to_cpu(grant->truncate_seq), le64_to_cpu(grant->truncate_size), size); } if (ci->i_auth_cap == cap && (newcaps & CEPH_CAP_ANY_FILE_WR)) { if (max_size != ci->i_max_size) { dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); ci->i_max_size = max_size; if (max_size >= ci->i_wanted_max_size) { ci->i_wanted_max_size = 0; /* reset */ ci->i_requested_max_size = 0; } wake = true; } } /* check cap bits */ wanted = __ceph_caps_wanted(ci); used = __ceph_caps_used(ci); dirty = __ceph_caps_dirty(ci); dout(" my wanted = %s, used = %s, dirty %s\n", ceph_cap_string(wanted), ceph_cap_string(used), ceph_cap_string(dirty)); if ((was_stale || le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) && (wanted & ~(cap->mds_wanted | newcaps))) { /* * If mds is importing cap, prior cap messages that update * 'wanted' may get dropped by mds (migrate seq mismatch). * * We don't send cap message to update 'wanted' if what we * want are already issued. If mds revokes caps, cap message * that releases caps also tells mds what we want. But if * caps got revoked by mds forcedly (session stale). We may * haven't told mds what we want. */ check_caps = 1; } /* revocation, grant, or no-op? */ if (cap->issued & ~newcaps) { int revoking = cap->issued & ~newcaps; dout("revocation: %s -> %s (revoking %s)\n", ceph_cap_string(cap->issued), ceph_cap_string(newcaps), ceph_cap_string(revoking)); if (S_ISREG(inode->i_mode) && (revoking & used & CEPH_CAP_FILE_BUFFER)) writeback = true; /* initiate writeback; will delay ack */ else if (queue_invalidate && revoking == CEPH_CAP_FILE_CACHE && (newcaps & CEPH_CAP_FILE_LAZYIO) == 0) ; /* do nothing yet, invalidation will be queued */ else if (cap == ci->i_auth_cap) check_caps = 1; /* check auth cap only */ else check_caps = 2; /* check all caps */ /* If there is new caps, try to wake up the waiters */ if (~cap->issued & newcaps) wake = true; cap->issued = newcaps; cap->implemented |= newcaps; } else if (cap->issued == newcaps) { dout("caps unchanged: %s -> %s\n", ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); } else { dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); /* non-auth MDS is revoking the newly grant caps ? */ if (cap == ci->i_auth_cap && __ceph_caps_revoking_other(ci, cap, newcaps)) check_caps = 2; cap->issued = newcaps; cap->implemented |= newcaps; /* add bits only, to * avoid stepping on a * pending revocation */ wake = true; } BUG_ON(cap->issued & ~cap->implemented); if (extra_info->inline_version > 0 && extra_info->inline_version >= ci->i_inline_version) { ci->i_inline_version = extra_info->inline_version; if (ci->i_inline_version != CEPH_INLINE_NONE && (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO))) fill_inline = true; } if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) { if (ci->i_auth_cap == cap) { if (newcaps & ~extra_info->issued) wake = true; if (ci->i_requested_max_size > max_size || !(le32_to_cpu(grant->wanted) & CEPH_CAP_ANY_FILE_WR)) { /* re-request max_size if necessary */ ci->i_requested_max_size = 0; wake = true; } ceph_kick_flushing_inode_caps(session, ci); } up_read(&session->s_mdsc->snap_rwsem); } spin_unlock(&ci->i_ceph_lock); if (fill_inline) ceph_fill_inline_data(inode, NULL, extra_info->inline_data, extra_info->inline_len); if (queue_trunc) ceph_queue_vmtruncate(inode); if (writeback) /* * queue inode for writeback: we can't actually call * filemap_write_and_wait, etc. from message handler * context. */ ceph_queue_writeback(inode); if (queue_invalidate) ceph_queue_invalidate(inode); if (deleted_inode) invalidate_aliases(inode); if (wake) wake_up_all(&ci->i_cap_wq); mutex_unlock(&session->s_mutex); if (check_caps == 1) ceph_check_caps(ci, CHECK_CAPS_AUTHONLY | CHECK_CAPS_NOINVAL, session); else if (check_caps == 2) ceph_check_caps(ci, CHECK_CAPS_NOINVAL, session); } /* * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the * MDS has been safely committed. */ static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, struct ceph_mds_caps *m, struct ceph_mds_session *session, struct ceph_cap *cap) __releases(ci->i_ceph_lock) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; struct ceph_cap_flush *cf, *tmp_cf; LIST_HEAD(to_remove); unsigned seq = le32_to_cpu(m->seq); int dirty = le32_to_cpu(m->dirty); int cleaned = 0; bool drop = false; bool wake_ci = false; bool wake_mdsc = false; list_for_each_entry_safe(cf, tmp_cf, &ci->i_cap_flush_list, i_list) { /* Is this the one that was flushed? */ if (cf->tid == flush_tid) cleaned = cf->caps; /* Is this a capsnap? */ if (cf->is_capsnap) continue; if (cf->tid <= flush_tid) { /* * An earlier or current tid. The FLUSH_ACK should * represent a superset of this flush's caps. */ wake_ci |= __detach_cap_flush_from_ci(ci, cf); list_add_tail(&cf->i_list, &to_remove); } else { /* * This is a later one. Any caps in it are still dirty * so don't count them as cleaned. */ cleaned &= ~cf->caps; if (!cleaned) break; } } dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," " flushing %s -> %s\n", inode, session->s_mds, seq, ceph_cap_string(dirty), ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), ceph_cap_string(ci->i_flushing_caps & ~cleaned)); if (list_empty(&to_remove) && !cleaned) goto out; ci->i_flushing_caps &= ~cleaned; spin_lock(&mdsc->cap_dirty_lock); list_for_each_entry(cf, &to_remove, i_list) wake_mdsc |= __detach_cap_flush_from_mdsc(mdsc, cf); if (ci->i_flushing_caps == 0) { if (list_empty(&ci->i_cap_flush_list)) { list_del_init(&ci->i_flushing_item); if (!list_empty(&session->s_cap_flushing)) { dout(" mds%d still flushing cap on %p\n", session->s_mds, &list_first_entry(&session->s_cap_flushing, struct ceph_inode_info, i_flushing_item)->netfs.inode); } } mdsc->num_cap_flushing--; dout(" inode %p now !flushing\n", inode); if (ci->i_dirty_caps == 0) { dout(" inode %p now clean\n", inode); BUG_ON(!list_empty(&ci->i_dirty_item)); drop = true; if (ci->i_wr_ref == 0 && ci->i_wrbuffer_ref_head == 0) { BUG_ON(!ci->i_head_snapc); ceph_put_snap_context(ci->i_head_snapc); ci->i_head_snapc = NULL; } } else { BUG_ON(list_empty(&ci->i_dirty_item)); } } spin_unlock(&mdsc->cap_dirty_lock); out: spin_unlock(&ci->i_ceph_lock); while (!list_empty(&to_remove)) { cf = list_first_entry(&to_remove, struct ceph_cap_flush, i_list); list_del_init(&cf->i_list); if (!cf->is_capsnap) ceph_free_cap_flush(cf); } if (wake_ci) wake_up_all(&ci->i_cap_wq); if (wake_mdsc) wake_up_all(&mdsc->cap_flushing_wq); if (drop) iput(inode); } void __ceph_remove_capsnap(struct inode *inode, struct ceph_cap_snap *capsnap, bool *wake_ci, bool *wake_mdsc) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; bool ret; lockdep_assert_held(&ci->i_ceph_lock); dout("removing capsnap %p, inode %p ci %p\n", capsnap, inode, ci); list_del_init(&capsnap->ci_item); ret = __detach_cap_flush_from_ci(ci, &capsnap->cap_flush); if (wake_ci) *wake_ci = ret; spin_lock(&mdsc->cap_dirty_lock); if (list_empty(&ci->i_cap_flush_list)) list_del_init(&ci->i_flushing_item); ret = __detach_cap_flush_from_mdsc(mdsc, &capsnap->cap_flush); if (wake_mdsc) *wake_mdsc = ret; spin_unlock(&mdsc->cap_dirty_lock); } void ceph_remove_capsnap(struct inode *inode, struct ceph_cap_snap *capsnap, bool *wake_ci, bool *wake_mdsc) { struct ceph_inode_info *ci = ceph_inode(inode); lockdep_assert_held(&ci->i_ceph_lock); WARN_ON_ONCE(capsnap->dirty_pages || capsnap->writing); __ceph_remove_capsnap(inode, capsnap, wake_ci, wake_mdsc); } /* * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can * throw away our cap_snap. * * Caller hold s_mutex. */ static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, struct ceph_mds_caps *m, struct ceph_mds_session *session) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; u64 follows = le64_to_cpu(m->snap_follows); struct ceph_cap_snap *capsnap = NULL, *iter; bool wake_ci = false; bool wake_mdsc = false; dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", inode, ci, session->s_mds, follows); spin_lock(&ci->i_ceph_lock); list_for_each_entry(iter, &ci->i_cap_snaps, ci_item) { if (iter->follows == follows) { if (iter->cap_flush.tid != flush_tid) { dout(" cap_snap %p follows %lld tid %lld !=" " %lld\n", iter, follows, flush_tid, iter->cap_flush.tid); break; } capsnap = iter; break; } else { dout(" skipping cap_snap %p follows %lld\n", iter, iter->follows); } } if (capsnap) ceph_remove_capsnap(inode, capsnap, &wake_ci, &wake_mdsc); spin_unlock(&ci->i_ceph_lock); if (capsnap) { ceph_put_snap_context(capsnap->context); ceph_put_cap_snap(capsnap); if (wake_ci) wake_up_all(&ci->i_cap_wq); if (wake_mdsc) wake_up_all(&mdsc->cap_flushing_wq); iput(inode); } } /* * Handle TRUNC from MDS, indicating file truncation. * * caller hold s_mutex. */ static bool handle_cap_trunc(struct inode *inode, struct ceph_mds_caps *trunc, struct ceph_mds_session *session) { struct ceph_inode_info *ci = ceph_inode(inode); int mds = session->s_mds; int seq = le32_to_cpu(trunc->seq); u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); u64 truncate_size = le64_to_cpu(trunc->truncate_size); u64 size = le64_to_cpu(trunc->size); int implemented = 0; int dirty = __ceph_caps_dirty(ci); int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); bool queue_trunc = false; lockdep_assert_held(&ci->i_ceph_lock); issued |= implemented | dirty; dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", inode, mds, seq, truncate_size, truncate_seq); queue_trunc = ceph_fill_file_size(inode, issued, truncate_seq, truncate_size, size); return queue_trunc; } /* * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a * different one. If we are the most recent migration we've seen (as * indicated by mseq), make note of the migrating cap bits for the * duration (until we see the corresponding IMPORT). * * caller holds s_mutex */ static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, struct ceph_mds_cap_peer *ph, struct ceph_mds_session *session) { struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; struct ceph_mds_session *tsession = NULL; struct ceph_cap *cap, *tcap, *new_cap = NULL; struct ceph_inode_info *ci = ceph_inode(inode); u64 t_cap_id; unsigned mseq = le32_to_cpu(ex->migrate_seq); unsigned t_seq, t_mseq; int target, issued; int mds = session->s_mds; if (ph) { t_cap_id = le64_to_cpu(ph->cap_id); t_seq = le32_to_cpu(ph->seq); t_mseq = le32_to_cpu(ph->mseq); target = le32_to_cpu(ph->mds); } else { t_cap_id = t_seq = t_mseq = 0; target = -1; } dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n", inode, ci, mds, mseq, target); retry: down_read(&mdsc->snap_rwsem); spin_lock(&ci->i_ceph_lock); cap = __get_cap_for_mds(ci, mds); if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id)) goto out_unlock; if (target < 0) { ceph_remove_cap(cap, false); goto out_unlock; } /* * now we know we haven't received the cap import message yet * because the exported cap still exist. */ issued = cap->issued; if (issued != cap->implemented) pr_err_ratelimited("handle_cap_export: issued != implemented: " "ino (%llx.%llx) mds%d seq %d mseq %d " "issued %s implemented %s\n", ceph_vinop(inode), mds, cap->seq, cap->mseq, ceph_cap_string(issued), ceph_cap_string(cap->implemented)); tcap = __get_cap_for_mds(ci, target); if (tcap) { /* already have caps from the target */ if (tcap->cap_id == t_cap_id && ceph_seq_cmp(tcap->seq, t_seq) < 0) { dout(" updating import cap %p mds%d\n", tcap, target); tcap->cap_id = t_cap_id; tcap->seq = t_seq - 1; tcap->issue_seq = t_seq - 1; tcap->issued |= issued; tcap->implemented |= issued; if (cap == ci->i_auth_cap) { ci->i_auth_cap = tcap; change_auth_cap_ses(ci, tcap->session); } } ceph_remove_cap(cap, false); goto out_unlock; } else if (tsession) { /* add placeholder for the export tagert */ int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0; tcap = new_cap; ceph_add_cap(inode, tsession, t_cap_id, issued, 0, t_seq - 1, t_mseq, (u64)-1, flag, &new_cap); if (!list_empty(&ci->i_cap_flush_list) && ci->i_auth_cap == tcap) { spin_lock(&mdsc->cap_dirty_lock); list_move_tail(&ci->i_flushing_item, &tcap->session->s_cap_flushing); spin_unlock(&mdsc->cap_dirty_lock); } ceph_remove_cap(cap, false); goto out_unlock; } spin_unlock(&ci->i_ceph_lock); up_read(&mdsc->snap_rwsem); mutex_unlock(&session->s_mutex); /* open target session */ tsession = ceph_mdsc_open_export_target_session(mdsc, target); if (!IS_ERR(tsession)) { if (mds > target) { mutex_lock(&session->s_mutex); mutex_lock_nested(&tsession->s_mutex, SINGLE_DEPTH_NESTING); } else { mutex_lock(&tsession->s_mutex); mutex_lock_nested(&session->s_mutex, SINGLE_DEPTH_NESTING); } new_cap = ceph_get_cap(mdsc, NULL); } else { WARN_ON(1); tsession = NULL; target = -1; mutex_lock(&session->s_mutex); } goto retry; out_unlock: spin_unlock(&ci->i_ceph_lock); up_read(&mdsc->snap_rwsem); mutex_unlock(&session->s_mutex); if (tsession) { mutex_unlock(&tsession->s_mutex); ceph_put_mds_session(tsession); } if (new_cap) ceph_put_cap(mdsc, new_cap); } /* * Handle cap IMPORT. * * caller holds s_mutex. acquires i_ceph_lock */ static void handle_cap_import(struct ceph_mds_client *mdsc, struct inode *inode, struct ceph_mds_caps *im, struct ceph_mds_cap_peer *ph, struct ceph_mds_session *session, struct ceph_cap **target_cap, int *old_issued) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_cap *cap, *ocap, *new_cap = NULL; int mds = session->s_mds; int issued; unsigned caps = le32_to_cpu(im->caps); unsigned wanted = le32_to_cpu(im->wanted); unsigned seq = le32_to_cpu(im->seq); unsigned mseq = le32_to_cpu(im->migrate_seq); u64 realmino = le64_to_cpu(im->realm); u64 cap_id = le64_to_cpu(im->cap_id); u64 p_cap_id; int peer; if (ph) { p_cap_id = le64_to_cpu(ph->cap_id); peer = le32_to_cpu(ph->mds); } else { p_cap_id = 0; peer = -1; } dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n", inode, ci, mds, mseq, peer); retry: cap = __get_cap_for_mds(ci, mds); if (!cap) { if (!new_cap) { spin_unlock(&ci->i_ceph_lock); new_cap = ceph_get_cap(mdsc, NULL); spin_lock(&ci->i_ceph_lock); goto retry; } cap = new_cap; } else { if (new_cap) { ceph_put_cap(mdsc, new_cap); new_cap = NULL; } } __ceph_caps_issued(ci, &issued); issued |= __ceph_caps_dirty(ci); ceph_add_cap(inode, session, cap_id, caps, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, &new_cap); ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL; if (ocap && ocap->cap_id == p_cap_id) { dout(" remove export cap %p mds%d flags %d\n", ocap, peer, ph->flags); if ((ph->flags & CEPH_CAP_FLAG_AUTH) && (ocap->seq != le32_to_cpu(ph->seq) || ocap->mseq != le32_to_cpu(ph->mseq))) { pr_err_ratelimited("handle_cap_import: " "mismatched seq/mseq: ino (%llx.%llx) " "mds%d seq %d mseq %d importer mds%d " "has peer seq %d mseq %d\n", ceph_vinop(inode), peer, ocap->seq, ocap->mseq, mds, le32_to_cpu(ph->seq), le32_to_cpu(ph->mseq)); } ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE)); } *old_issued = issued; *target_cap = cap; } /* * Handle a caps message from the MDS. * * Identify the appropriate session, inode, and call the right handler * based on the cap op. */ void ceph_handle_caps(struct ceph_mds_session *session, struct ceph_msg *msg) { struct ceph_mds_client *mdsc = session->s_mdsc; struct inode *inode; struct ceph_inode_info *ci; struct ceph_cap *cap; struct ceph_mds_caps *h; struct ceph_mds_cap_peer *peer = NULL; struct ceph_snap_realm *realm = NULL; int op; int msg_version = le16_to_cpu(msg->hdr.version); u32 seq, mseq; struct ceph_vino vino; void *snaptrace; size_t snaptrace_len; void *p, *end; struct cap_extra_info extra_info = {}; bool queue_trunc; bool close_sessions = false; dout("handle_caps from mds%d\n", session->s_mds); /* decode */ end = msg->front.iov_base + msg->front.iov_len; if (msg->front.iov_len < sizeof(*h)) goto bad; h = msg->front.iov_base; op = le32_to_cpu(h->op); vino.ino = le64_to_cpu(h->ino); vino.snap = CEPH_NOSNAP; seq = le32_to_cpu(h->seq); mseq = le32_to_cpu(h->migrate_seq); snaptrace = h + 1; snaptrace_len = le32_to_cpu(h->snap_trace_len); p = snaptrace + snaptrace_len; if (msg_version >= 2) { u32 flock_len; ceph_decode_32_safe(&p, end, flock_len, bad); if (p + flock_len > end) goto bad; p += flock_len; } if (msg_version >= 3) { if (op == CEPH_CAP_OP_IMPORT) { if (p + sizeof(*peer) > end) goto bad; peer = p; p += sizeof(*peer); } else if (op == CEPH_CAP_OP_EXPORT) { /* recorded in unused fields */ peer = (void *)&h->size; } } if (msg_version >= 4) { ceph_decode_64_safe(&p, end, extra_info.inline_version, bad); ceph_decode_32_safe(&p, end, extra_info.inline_len, bad); if (p + extra_info.inline_len > end) goto bad; extra_info.inline_data = p; p += extra_info.inline_len; } if (msg_version >= 5) { struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc; u32 epoch_barrier; ceph_decode_32_safe(&p, end, epoch_barrier, bad); ceph_osdc_update_epoch_barrier(osdc, epoch_barrier); } if (msg_version >= 8) { u32 pool_ns_len; /* version >= 6 */ ceph_decode_skip_64(&p, end, bad); // flush_tid /* version >= 7 */ ceph_decode_skip_32(&p, end, bad); // caller_uid ceph_decode_skip_32(&p, end, bad); // caller_gid /* version >= 8 */ ceph_decode_32_safe(&p, end, pool_ns_len, bad); if (pool_ns_len > 0) { ceph_decode_need(&p, end, pool_ns_len, bad); extra_info.pool_ns = ceph_find_or_create_string(p, pool_ns_len); p += pool_ns_len; } } if (msg_version >= 9) { struct ceph_timespec *btime; if (p + sizeof(*btime) > end) goto bad; btime = p; ceph_decode_timespec64(&extra_info.btime, btime); p += sizeof(*btime); ceph_decode_64_safe(&p, end, extra_info.change_attr, bad); } if (msg_version >= 11) { /* version >= 10 */ ceph_decode_skip_32(&p, end, bad); // flags /* version >= 11 */ extra_info.dirstat_valid = true; ceph_decode_64_safe(&p, end, extra_info.nfiles, bad); ceph_decode_64_safe(&p, end, extra_info.nsubdirs, bad); } /* lookup ino */ inode = ceph_find_inode(mdsc->fsc->sb, vino); dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, vino.snap, inode); mutex_lock(&session->s_mutex); inc_session_sequence(session); dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, (unsigned)seq); if (!inode) { dout(" i don't have ino %llx\n", vino.ino); if (op == CEPH_CAP_OP_IMPORT) { cap = ceph_get_cap(mdsc, NULL); cap->cap_ino = vino.ino; cap->queue_release = 1; cap->cap_id = le64_to_cpu(h->cap_id); cap->mseq = mseq; cap->seq = seq; cap->issue_seq = seq; spin_lock(&session->s_cap_lock); __ceph_queue_cap_release(session, cap); spin_unlock(&session->s_cap_lock); } goto flush_cap_releases; } ci = ceph_inode(inode); /* these will work even if we don't have a cap yet */ switch (op) { case CEPH_CAP_OP_FLUSHSNAP_ACK: handle_cap_flushsnap_ack(inode, le64_to_cpu(msg->hdr.tid), h, session); goto done; case CEPH_CAP_OP_EXPORT: handle_cap_export(inode, h, peer, session); goto done_unlocked; case CEPH_CAP_OP_IMPORT: realm = NULL; if (snaptrace_len) { down_write(&mdsc->snap_rwsem); if (ceph_update_snap_trace(mdsc, snaptrace, snaptrace + snaptrace_len, false, &realm)) { up_write(&mdsc->snap_rwsem); close_sessions = true; goto done; } downgrade_write(&mdsc->snap_rwsem); } else { down_read(&mdsc->snap_rwsem); } spin_lock(&ci->i_ceph_lock); handle_cap_import(mdsc, inode, h, peer, session, &cap, &extra_info.issued); handle_cap_grant(inode, session, cap, h, msg->middle, &extra_info); if (realm) ceph_put_snap_realm(mdsc, realm); goto done_unlocked; } /* the rest require a cap */ spin_lock(&ci->i_ceph_lock); cap = __get_cap_for_mds(ceph_inode(inode), session->s_mds); if (!cap) { dout(" no cap on %p ino %llx.%llx from mds%d\n", inode, ceph_ino(inode), ceph_snap(inode), session->s_mds); spin_unlock(&ci->i_ceph_lock); goto flush_cap_releases; } /* note that each of these drops i_ceph_lock for us */ switch (op) { case CEPH_CAP_OP_REVOKE: case CEPH_CAP_OP_GRANT: __ceph_caps_issued(ci, &extra_info.issued); extra_info.issued |= __ceph_caps_dirty(ci); handle_cap_grant(inode, session, cap, h, msg->middle, &extra_info); goto done_unlocked; case CEPH_CAP_OP_FLUSH_ACK: handle_cap_flush_ack(inode, le64_to_cpu(msg->hdr.tid), h, session, cap); break; case CEPH_CAP_OP_TRUNC: queue_trunc = handle_cap_trunc(inode, h, session); spin_unlock(&ci->i_ceph_lock); if (queue_trunc) ceph_queue_vmtruncate(inode); break; default: spin_unlock(&ci->i_ceph_lock); pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, ceph_cap_op_name(op)); } done: mutex_unlock(&session->s_mutex); done_unlocked: iput(inode); out: ceph_put_string(extra_info.pool_ns); /* Defer closing the sessions after s_mutex lock being released */ if (close_sessions) ceph_mdsc_close_sessions(mdsc); return; flush_cap_releases: /* * send any cap release message to try to move things * along for the mds (who clearly thinks we still have this * cap). */ ceph_flush_cap_releases(mdsc, session); goto done; bad: pr_err("ceph_handle_caps: corrupt message\n"); ceph_msg_dump(msg); goto out; } /* * Delayed work handler to process end of delayed cap release LRU list. * * If new caps are added to the list while processing it, these won't get * processed in this run. In this case, the ci->i_hold_caps_max will be * returned so that the work can be scheduled accordingly. */ unsigned long ceph_check_delayed_caps(struct ceph_mds_client *mdsc) { struct inode *inode; struct ceph_inode_info *ci; struct ceph_mount_options *opt = mdsc->fsc->mount_options; unsigned long delay_max = opt->caps_wanted_delay_max * HZ; unsigned long loop_start = jiffies; unsigned long delay = 0; dout("check_delayed_caps\n"); spin_lock(&mdsc->cap_delay_lock); while (!list_empty(&mdsc->cap_delay_list)) { ci = list_first_entry(&mdsc->cap_delay_list, struct ceph_inode_info, i_cap_delay_list); if (time_before(loop_start, ci->i_hold_caps_max - delay_max)) { dout("%s caps added recently. Exiting loop", __func__); delay = ci->i_hold_caps_max; break; } if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && time_before(jiffies, ci->i_hold_caps_max)) break; list_del_init(&ci->i_cap_delay_list); inode = igrab(&ci->netfs.inode); if (inode) { spin_unlock(&mdsc->cap_delay_lock); dout("check_delayed_caps on %p\n", inode); ceph_check_caps(ci, 0, NULL); iput(inode); spin_lock(&mdsc->cap_delay_lock); } } spin_unlock(&mdsc->cap_delay_lock); return delay; } /* * Flush all dirty caps to the mds */ static void flush_dirty_session_caps(struct ceph_mds_session *s) { struct ceph_mds_client *mdsc = s->s_mdsc; struct ceph_inode_info *ci; struct inode *inode; dout("flush_dirty_caps\n"); spin_lock(&mdsc->cap_dirty_lock); while (!list_empty(&s->s_cap_dirty)) { ci = list_first_entry(&s->s_cap_dirty, struct ceph_inode_info, i_dirty_item); inode = &ci->netfs.inode; ihold(inode); dout("flush_dirty_caps %llx.%llx\n", ceph_vinop(inode)); spin_unlock(&mdsc->cap_dirty_lock); ceph_wait_on_async_create(inode); ceph_check_caps(ci, CHECK_CAPS_FLUSH, NULL); iput(inode); spin_lock(&mdsc->cap_dirty_lock); } spin_unlock(&mdsc->cap_dirty_lock); dout("flush_dirty_caps done\n"); } void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) { ceph_mdsc_iterate_sessions(mdsc, flush_dirty_session_caps, true); } void __ceph_touch_fmode(struct ceph_inode_info *ci, struct ceph_mds_client *mdsc, int fmode) { unsigned long now = jiffies; if (fmode & CEPH_FILE_MODE_RD) ci->i_last_rd = now; if (fmode & CEPH_FILE_MODE_WR) ci->i_last_wr = now; /* queue periodic check */ if (fmode && __ceph_is_any_real_caps(ci) && list_empty(&ci->i_cap_delay_list)) __cap_delay_requeue(mdsc, ci); } void ceph_get_fmode(struct ceph_inode_info *ci, int fmode, int count) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(ci->netfs.inode.i_sb); int bits = (fmode << 1) | 1; bool already_opened = false; int i; if (count == 1) atomic64_inc(&mdsc->metric.opened_files); spin_lock(&ci->i_ceph_lock); for (i = 0; i < CEPH_FILE_MODE_BITS; i++) { /* * If any of the mode ref is larger than 0, * that means it has been already opened by * others. Just skip checking the PIN ref. */ if (i && ci->i_nr_by_mode[i]) already_opened = true; if (bits & (1 << i)) ci->i_nr_by_mode[i] += count; } if (!already_opened) percpu_counter_inc(&mdsc->metric.opened_inodes); spin_unlock(&ci->i_ceph_lock); } /* * Drop open file reference. If we were the last open file, * we may need to release capabilities to the MDS (or schedule * their delayed release). */ void ceph_put_fmode(struct ceph_inode_info *ci, int fmode, int count) { struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(ci->netfs.inode.i_sb); int bits = (fmode << 1) | 1; bool is_closed = true; int i; if (count == 1) atomic64_dec(&mdsc->metric.opened_files); spin_lock(&ci->i_ceph_lock); for (i = 0; i < CEPH_FILE_MODE_BITS; i++) { if (bits & (1 << i)) { BUG_ON(ci->i_nr_by_mode[i] < count); ci->i_nr_by_mode[i] -= count; } /* * If any of the mode ref is not 0 after * decreased, that means it is still opened * by others. Just skip checking the PIN ref. */ if (i && ci->i_nr_by_mode[i]) is_closed = false; } if (is_closed) percpu_counter_dec(&mdsc->metric.opened_inodes); spin_unlock(&ci->i_ceph_lock); } /* * For a soon-to-be unlinked file, drop the LINK caps. If it * looks like the link count will hit 0, drop any other caps (other * than PIN) we don't specifically want (due to the file still being * open). */ int ceph_drop_caps_for_unlink(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); int drop = CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL; spin_lock(&ci->i_ceph_lock); if (inode->i_nlink == 1) { drop |= ~(__ceph_caps_wanted(ci) | CEPH_CAP_PIN); if (__ceph_caps_dirty(ci)) { struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; __cap_delay_requeue_front(mdsc, ci); } } spin_unlock(&ci->i_ceph_lock); return drop; } /* * Helpers for embedding cap and dentry lease releases into mds * requests. * * @force is used by dentry_release (below) to force inclusion of a * record for the directory inode, even when there aren't any caps to * drop. */ int ceph_encode_inode_release(void **p, struct inode *inode, int mds, int drop, int unless, int force) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_cap *cap; struct ceph_mds_request_release *rel = *p; int used, dirty; int ret = 0; spin_lock(&ci->i_ceph_lock); used = __ceph_caps_used(ci); dirty = __ceph_caps_dirty(ci); dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), ceph_cap_string(unless)); /* only drop unused, clean caps */ drop &= ~(used | dirty); cap = __get_cap_for_mds(ci, mds); if (cap && __cap_is_valid(cap)) { unless &= cap->issued; if (unless) { if (unless & CEPH_CAP_AUTH_EXCL) drop &= ~CEPH_CAP_AUTH_SHARED; if (unless & CEPH_CAP_LINK_EXCL) drop &= ~CEPH_CAP_LINK_SHARED; if (unless & CEPH_CAP_XATTR_EXCL) drop &= ~CEPH_CAP_XATTR_SHARED; if (unless & CEPH_CAP_FILE_EXCL) drop &= ~CEPH_CAP_FILE_SHARED; } if (force || (cap->issued & drop)) { if (cap->issued & drop) { int wanted = __ceph_caps_wanted(ci); dout("encode_inode_release %p cap %p " "%s -> %s, wanted %s -> %s\n", inode, cap, ceph_cap_string(cap->issued), ceph_cap_string(cap->issued & ~drop), ceph_cap_string(cap->mds_wanted), ceph_cap_string(wanted)); cap->issued &= ~drop; cap->implemented &= ~drop; cap->mds_wanted = wanted; if (cap == ci->i_auth_cap && !(wanted & CEPH_CAP_ANY_FILE_WR)) ci->i_requested_max_size = 0; } else { dout("encode_inode_release %p cap %p %s" " (force)\n", inode, cap, ceph_cap_string(cap->issued)); } rel->ino = cpu_to_le64(ceph_ino(inode)); rel->cap_id = cpu_to_le64(cap->cap_id); rel->seq = cpu_to_le32(cap->seq); rel->issue_seq = cpu_to_le32(cap->issue_seq); rel->mseq = cpu_to_le32(cap->mseq); rel->caps = cpu_to_le32(cap->implemented); rel->wanted = cpu_to_le32(cap->mds_wanted); rel->dname_len = 0; rel->dname_seq = 0; *p += sizeof(*rel); ret = 1; } else { dout("encode_inode_release %p cap %p %s (noop)\n", inode, cap, ceph_cap_string(cap->issued)); } } spin_unlock(&ci->i_ceph_lock); return ret; } int ceph_encode_dentry_release(void **p, struct dentry *dentry, struct inode *dir, int mds, int drop, int unless) { struct dentry *parent = NULL; struct ceph_mds_request_release *rel = *p; struct ceph_dentry_info *di = ceph_dentry(dentry); int force = 0; int ret; /* * force an record for the directory caps if we have a dentry lease. * this is racy (can't take i_ceph_lock and d_lock together), but it * doesn't have to be perfect; the mds will revoke anything we don't * release. */ spin_lock(&dentry->d_lock); if (di->lease_session && di->lease_session->s_mds == mds) force = 1; if (!dir) { parent = dget(dentry->d_parent); dir = d_inode(parent); } spin_unlock(&dentry->d_lock); ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); dput(parent); spin_lock(&dentry->d_lock); if (ret && di->lease_session && di->lease_session->s_mds == mds) { dout("encode_dentry_release %p mds%d seq %d\n", dentry, mds, (int)di->lease_seq); rel->dname_len = cpu_to_le32(dentry->d_name.len); memcpy(*p, dentry->d_name.name, dentry->d_name.len); *p += dentry->d_name.len; rel->dname_seq = cpu_to_le32(di->lease_seq); __ceph_mdsc_drop_dentry_lease(dentry); } spin_unlock(&dentry->d_lock); return ret; } static int remove_capsnaps(struct ceph_mds_client *mdsc, struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_cap_snap *capsnap; int capsnap_release = 0; lockdep_assert_held(&ci->i_ceph_lock); dout("removing capsnaps, ci is %p, inode is %p\n", ci, inode); while (!list_empty(&ci->i_cap_snaps)) { capsnap = list_first_entry(&ci->i_cap_snaps, struct ceph_cap_snap, ci_item); __ceph_remove_capsnap(inode, capsnap, NULL, NULL); ceph_put_snap_context(capsnap->context); ceph_put_cap_snap(capsnap); capsnap_release++; } wake_up_all(&ci->i_cap_wq); wake_up_all(&mdsc->cap_flushing_wq); return capsnap_release; } int ceph_purge_inode_cap(struct inode *inode, struct ceph_cap *cap, bool *invalidate) { struct ceph_fs_client *fsc = ceph_inode_to_client(inode); struct ceph_mds_client *mdsc = fsc->mdsc; struct ceph_inode_info *ci = ceph_inode(inode); bool is_auth; bool dirty_dropped = false; int iputs = 0; lockdep_assert_held(&ci->i_ceph_lock); dout("removing cap %p, ci is %p, inode is %p\n", cap, ci, &ci->netfs.inode); is_auth = (cap == ci->i_auth_cap); __ceph_remove_cap(cap, false); if (is_auth) { struct ceph_cap_flush *cf; if (ceph_inode_is_shutdown(inode)) { if (inode->i_data.nrpages > 0) *invalidate = true; if (ci->i_wrbuffer_ref > 0) mapping_set_error(&inode->i_data, -EIO); } spin_lock(&mdsc->cap_dirty_lock); /* trash all of the cap flushes for this inode */ while (!list_empty(&ci->i_cap_flush_list)) { cf = list_first_entry(&ci->i_cap_flush_list, struct ceph_cap_flush, i_list); list_del_init(&cf->g_list); list_del_init(&cf->i_list); if (!cf->is_capsnap) ceph_free_cap_flush(cf); } if (!list_empty(&ci->i_dirty_item)) { pr_warn_ratelimited( " dropping dirty %s state for %p %lld\n", ceph_cap_string(ci->i_dirty_caps), inode, ceph_ino(inode)); ci->i_dirty_caps = 0; list_del_init(&ci->i_dirty_item); dirty_dropped = true; } if (!list_empty(&ci->i_flushing_item)) { pr_warn_ratelimited( " dropping dirty+flushing %s state for %p %lld\n", ceph_cap_string(ci->i_flushing_caps), inode, ceph_ino(inode)); ci->i_flushing_caps = 0; list_del_init(&ci->i_flushing_item); mdsc->num_cap_flushing--; dirty_dropped = true; } spin_unlock(&mdsc->cap_dirty_lock); if (dirty_dropped) { mapping_set_error(inode->i_mapping, -EIO); if (ci->i_wrbuffer_ref_head == 0 && ci->i_wr_ref == 0 && ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { ceph_put_snap_context(ci->i_head_snapc); ci->i_head_snapc = NULL; } } if (atomic_read(&ci->i_filelock_ref) > 0) { /* make further file lock syscall return -EIO */ ci->i_ceph_flags |= CEPH_I_ERROR_FILELOCK; pr_warn_ratelimited(" dropping file locks for %p %lld\n", inode, ceph_ino(inode)); } if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) { cf = ci->i_prealloc_cap_flush; ci->i_prealloc_cap_flush = NULL; if (!cf->is_capsnap) ceph_free_cap_flush(cf); } if (!list_empty(&ci->i_cap_snaps)) iputs = remove_capsnaps(mdsc, inode); } if (dirty_dropped) ++iputs; return iputs; }