// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/pipe.c * * Copyright (C) 1991, 1992, 1999 Linus Torvalds */ #include <linux/mm.h> #include <linux/file.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/log2.h> #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/magic.h> #include <linux/pipe_fs_i.h> #include <linux/uio.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/audit.h> #include <linux/syscalls.h> #include <linux/fcntl.h> #include <linux/memcontrol.h> #include <linux/watch_queue.h> #include <linux/sysctl.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include "internal.h" /* * New pipe buffers will be restricted to this size while the user is exceeding * their pipe buffer quota. The general pipe use case needs at least two * buffers: one for data yet to be read, and one for new data. If this is less * than two, then a write to a non-empty pipe may block even if the pipe is not * full. This can occur with GNU make jobserver or similar uses of pipes as * semaphores: multiple processes may be waiting to write tokens back to the * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. * * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their * own risk, namely: pipe writes to non-full pipes may block until the pipe is * emptied. */ #define PIPE_MIN_DEF_BUFFERS 2 /* * The max size that a non-root user is allowed to grow the pipe. Can * be set by root in /proc/sys/fs/pipe-max-size */ static unsigned int pipe_max_size = 1048576; /* Maximum allocatable pages per user. Hard limit is unset by default, soft * matches default values. */ static unsigned long pipe_user_pages_hard; static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; /* * We use head and tail indices that aren't masked off, except at the point of * dereference, but rather they're allowed to wrap naturally. This means there * isn't a dead spot in the buffer, but the ring has to be a power of two and * <= 2^31. * -- David Howells 2019-09-23. * * Reads with count = 0 should always return 0. * -- Julian Bradfield 1999-06-07. * * FIFOs and Pipes now generate SIGIO for both readers and writers. * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 * * pipe_read & write cleanup * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 */ static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) { if (pipe->files) mutex_lock_nested(&pipe->mutex, subclass); } void pipe_lock(struct pipe_inode_info *pipe) { /* * pipe_lock() nests non-pipe inode locks (for writing to a file) */ pipe_lock_nested(pipe, I_MUTEX_PARENT); } EXPORT_SYMBOL(pipe_lock); void pipe_unlock(struct pipe_inode_info *pipe) { if (pipe->files) mutex_unlock(&pipe->mutex); } EXPORT_SYMBOL(pipe_unlock); static inline void __pipe_lock(struct pipe_inode_info *pipe) { mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); } static inline void __pipe_unlock(struct pipe_inode_info *pipe) { mutex_unlock(&pipe->mutex); } void pipe_double_lock(struct pipe_inode_info *pipe1, struct pipe_inode_info *pipe2) { BUG_ON(pipe1 == pipe2); if (pipe1 < pipe2) { pipe_lock_nested(pipe1, I_MUTEX_PARENT); pipe_lock_nested(pipe2, I_MUTEX_CHILD); } else { pipe_lock_nested(pipe2, I_MUTEX_PARENT); pipe_lock_nested(pipe1, I_MUTEX_CHILD); } } static void anon_pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { struct page *page = buf->page; /* * If nobody else uses this page, and we don't already have a * temporary page, let's keep track of it as a one-deep * allocation cache. (Otherwise just release our reference to it) */ if (page_count(page) == 1 && !pipe->tmp_page) pipe->tmp_page = page; else put_page(page); } static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { struct page *page = buf->page; if (page_count(page) != 1) return false; memcg_kmem_uncharge_page(page, 0); __SetPageLocked(page); return true; } /** * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to attempt to steal * * Description: * This function attempts to steal the &struct page attached to * @buf. If successful, this function returns 0 and returns with * the page locked. The caller may then reuse the page for whatever * he wishes; the typical use is insertion into a different file * page cache. */ bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { struct page *page = buf->page; /* * A reference of one is golden, that means that the owner of this * page is the only one holding a reference to it. lock the page * and return OK. */ if (page_count(page) == 1) { lock_page(page); return true; } return false; } EXPORT_SYMBOL(generic_pipe_buf_try_steal); /** * generic_pipe_buf_get - get a reference to a &struct pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to get a reference to * * Description: * This function grabs an extra reference to @buf. It's used in * the tee() system call, when we duplicate the buffers in one * pipe into another. */ bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { return try_get_page(buf->page); } EXPORT_SYMBOL(generic_pipe_buf_get); /** * generic_pipe_buf_release - put a reference to a &struct pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to put a reference to * * Description: * This function releases a reference to @buf. */ void generic_pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { put_page(buf->page); } EXPORT_SYMBOL(generic_pipe_buf_release); static const struct pipe_buf_operations anon_pipe_buf_ops = { .release = anon_pipe_buf_release, .try_steal = anon_pipe_buf_try_steal, .get = generic_pipe_buf_get, }; /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ static inline bool pipe_readable(const struct pipe_inode_info *pipe) { unsigned int head = READ_ONCE(pipe->head); unsigned int tail = READ_ONCE(pipe->tail); unsigned int writers = READ_ONCE(pipe->writers); return !pipe_empty(head, tail) || !writers; } static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, struct pipe_buffer *buf, unsigned int tail) { pipe_buf_release(pipe, buf); /* * If the pipe has a watch_queue, we need additional protection * by the spinlock because notifications get posted with only * this spinlock, no mutex */ if (pipe_has_watch_queue(pipe)) { spin_lock_irq(&pipe->rd_wait.lock); #ifdef CONFIG_WATCH_QUEUE if (buf->flags & PIPE_BUF_FLAG_LOSS) pipe->note_loss = true; #endif pipe->tail = ++tail; spin_unlock_irq(&pipe->rd_wait.lock); return tail; } /* * Without a watch_queue, we can simply increment the tail * without the spinlock - the mutex is enough. */ pipe->tail = ++tail; return tail; } static ssize_t pipe_read(struct kiocb *iocb, struct iov_iter *to) { size_t total_len = iov_iter_count(to); struct file *filp = iocb->ki_filp; struct pipe_inode_info *pipe = filp->private_data; bool was_full, wake_next_reader = false; ssize_t ret; /* Null read succeeds. */ if (unlikely(total_len == 0)) return 0; ret = 0; __pipe_lock(pipe); /* * We only wake up writers if the pipe was full when we started * reading in order to avoid unnecessary wakeups. * * But when we do wake up writers, we do so using a sync wakeup * (WF_SYNC), because we want them to get going and generate more * data for us. */ was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); for (;;) { /* Read ->head with a barrier vs post_one_notification() */ unsigned int head = smp_load_acquire(&pipe->head); unsigned int tail = pipe->tail; unsigned int mask = pipe->ring_size - 1; #ifdef CONFIG_WATCH_QUEUE if (pipe->note_loss) { struct watch_notification n; if (total_len < 8) { if (ret == 0) ret = -ENOBUFS; break; } n.type = WATCH_TYPE_META; n.subtype = WATCH_META_LOSS_NOTIFICATION; n.info = watch_sizeof(n); if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { if (ret == 0) ret = -EFAULT; break; } ret += sizeof(n); total_len -= sizeof(n); pipe->note_loss = false; } #endif if (!pipe_empty(head, tail)) { struct pipe_buffer *buf = &pipe->bufs[tail & mask]; size_t chars = buf->len; size_t written; int error; if (chars > total_len) { if (buf->flags & PIPE_BUF_FLAG_WHOLE) { if (ret == 0) ret = -ENOBUFS; break; } chars = total_len; } error = pipe_buf_confirm(pipe, buf); if (error) { if (!ret) ret = error; break; } written = copy_page_to_iter(buf->page, buf->offset, chars, to); if (unlikely(written < chars)) { if (!ret) ret = -EFAULT; break; } ret += chars; buf->offset += chars; buf->len -= chars; /* Was it a packet buffer? Clean up and exit */ if (buf->flags & PIPE_BUF_FLAG_PACKET) { total_len = chars; buf->len = 0; } if (!buf->len) tail = pipe_update_tail(pipe, buf, tail); total_len -= chars; if (!total_len) break; /* common path: read succeeded */ if (!pipe_empty(head, tail)) /* More to do? */ continue; } if (!pipe->writers) break; if (ret) break; if ((filp->f_flags & O_NONBLOCK) || (iocb->ki_flags & IOCB_NOWAIT)) { ret = -EAGAIN; break; } __pipe_unlock(pipe); /* * We only get here if we didn't actually read anything. * * However, we could have seen (and removed) a zero-sized * pipe buffer, and might have made space in the buffers * that way. * * You can't make zero-sized pipe buffers by doing an empty * write (not even in packet mode), but they can happen if * the writer gets an EFAULT when trying to fill a buffer * that already got allocated and inserted in the buffer * array. * * So we still need to wake up any pending writers in the * _very_ unlikely case that the pipe was full, but we got * no data. */ if (unlikely(was_full)) wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); /* * But because we didn't read anything, at this point we can * just return directly with -ERESTARTSYS if we're interrupted, * since we've done any required wakeups and there's no need * to mark anything accessed. And we've dropped the lock. */ if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) return -ERESTARTSYS; __pipe_lock(pipe); was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); wake_next_reader = true; } if (pipe_empty(pipe->head, pipe->tail)) wake_next_reader = false; __pipe_unlock(pipe); if (was_full) wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); if (wake_next_reader) wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); if (ret > 0) file_accessed(filp); return ret; } static inline int is_packetized(struct file *file) { return (file->f_flags & O_DIRECT) != 0; } /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ static inline bool pipe_writable(const struct pipe_inode_info *pipe) { unsigned int head = READ_ONCE(pipe->head); unsigned int tail = READ_ONCE(pipe->tail); unsigned int max_usage = READ_ONCE(pipe->max_usage); return !pipe_full(head, tail, max_usage) || !READ_ONCE(pipe->readers); } static ssize_t pipe_write(struct kiocb *iocb, struct iov_iter *from) { struct file *filp = iocb->ki_filp; struct pipe_inode_info *pipe = filp->private_data; unsigned int head; ssize_t ret = 0; size_t total_len = iov_iter_count(from); ssize_t chars; bool was_empty = false; bool wake_next_writer = false; /* Null write succeeds. */ if (unlikely(total_len == 0)) return 0; __pipe_lock(pipe); if (!pipe->readers) { send_sig(SIGPIPE, current, 0); ret = -EPIPE; goto out; } if (pipe_has_watch_queue(pipe)) { ret = -EXDEV; goto out; } /* * If it wasn't empty we try to merge new data into * the last buffer. * * That naturally merges small writes, but it also * page-aligns the rest of the writes for large writes * spanning multiple pages. */ head = pipe->head; was_empty = pipe_empty(head, pipe->tail); chars = total_len & (PAGE_SIZE-1); if (chars && !was_empty) { unsigned int mask = pipe->ring_size - 1; struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; int offset = buf->offset + buf->len; if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && offset + chars <= PAGE_SIZE) { ret = pipe_buf_confirm(pipe, buf); if (ret) goto out; ret = copy_page_from_iter(buf->page, offset, chars, from); if (unlikely(ret < chars)) { ret = -EFAULT; goto out; } buf->len += ret; if (!iov_iter_count(from)) goto out; } } for (;;) { if (!pipe->readers) { send_sig(SIGPIPE, current, 0); if (!ret) ret = -EPIPE; break; } head = pipe->head; if (!pipe_full(head, pipe->tail, pipe->max_usage)) { unsigned int mask = pipe->ring_size - 1; struct pipe_buffer *buf; struct page *page = pipe->tmp_page; int copied; if (!page) { page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); if (unlikely(!page)) { ret = ret ? : -ENOMEM; break; } pipe->tmp_page = page; } /* Allocate a slot in the ring in advance and attach an * empty buffer. If we fault or otherwise fail to use * it, either the reader will consume it or it'll still * be there for the next write. */ pipe->head = head + 1; /* Insert it into the buffer array */ buf = &pipe->bufs[head & mask]; buf->page = page; buf->ops = &anon_pipe_buf_ops; buf->offset = 0; buf->len = 0; if (is_packetized(filp)) buf->flags = PIPE_BUF_FLAG_PACKET; else buf->flags = PIPE_BUF_FLAG_CAN_MERGE; pipe->tmp_page = NULL; copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { if (!ret) ret = -EFAULT; break; } ret += copied; buf->len = copied; if (!iov_iter_count(from)) break; } if (!pipe_full(head, pipe->tail, pipe->max_usage)) continue; /* Wait for buffer space to become available. */ if ((filp->f_flags & O_NONBLOCK) || (iocb->ki_flags & IOCB_NOWAIT)) { if (!ret) ret = -EAGAIN; break; } if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } /* * We're going to release the pipe lock and wait for more * space. We wake up any readers if necessary, and then * after waiting we need to re-check whether the pipe * become empty while we dropped the lock. */ __pipe_unlock(pipe); if (was_empty) wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); __pipe_lock(pipe); was_empty = pipe_empty(pipe->head, pipe->tail); wake_next_writer = true; } out: if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) wake_next_writer = false; __pipe_unlock(pipe); /* * If we do do a wakeup event, we do a 'sync' wakeup, because we * want the reader to start processing things asap, rather than * leave the data pending. * * This is particularly important for small writes, because of * how (for example) the GNU make jobserver uses small writes to * wake up pending jobs * * Epoll nonsensically wants a wakeup whether the pipe * was already empty or not. */ if (was_empty || pipe->poll_usage) wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); if (wake_next_writer) wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { int err = file_update_time(filp); if (err) ret = err; sb_end_write(file_inode(filp)->i_sb); } return ret; } static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct pipe_inode_info *pipe = filp->private_data; unsigned int count, head, tail, mask; switch (cmd) { case FIONREAD: __pipe_lock(pipe); count = 0; head = pipe->head; tail = pipe->tail; mask = pipe->ring_size - 1; while (tail != head) { count += pipe->bufs[tail & mask].len; tail++; } __pipe_unlock(pipe); return put_user(count, (int __user *)arg); #ifdef CONFIG_WATCH_QUEUE case IOC_WATCH_QUEUE_SET_SIZE: { int ret; __pipe_lock(pipe); ret = watch_queue_set_size(pipe, arg); __pipe_unlock(pipe); return ret; } case IOC_WATCH_QUEUE_SET_FILTER: return watch_queue_set_filter( pipe, (struct watch_notification_filter __user *)arg); #endif default: return -ENOIOCTLCMD; } } /* No kernel lock held - fine */ static __poll_t pipe_poll(struct file *filp, poll_table *wait) { __poll_t mask; struct pipe_inode_info *pipe = filp->private_data; unsigned int head, tail; /* Epoll has some historical nasty semantics, this enables them */ WRITE_ONCE(pipe->poll_usage, true); /* * Reading pipe state only -- no need for acquiring the semaphore. * * But because this is racy, the code has to add the * entry to the poll table _first_ .. */ if (filp->f_mode & FMODE_READ) poll_wait(filp, &pipe->rd_wait, wait); if (filp->f_mode & FMODE_WRITE) poll_wait(filp, &pipe->wr_wait, wait); /* * .. and only then can you do the racy tests. That way, * if something changes and you got it wrong, the poll * table entry will wake you up and fix it. */ head = READ_ONCE(pipe->head); tail = READ_ONCE(pipe->tail); mask = 0; if (filp->f_mode & FMODE_READ) { if (!pipe_empty(head, tail)) mask |= EPOLLIN | EPOLLRDNORM; if (!pipe->writers && filp->f_version != pipe->w_counter) mask |= EPOLLHUP; } if (filp->f_mode & FMODE_WRITE) { if (!pipe_full(head, tail, pipe->max_usage)) mask |= EPOLLOUT | EPOLLWRNORM; /* * Most Unices do not set EPOLLERR for FIFOs but on Linux they * behave exactly like pipes for poll(). */ if (!pipe->readers) mask |= EPOLLERR; } return mask; } static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) { int kill = 0; spin_lock(&inode->i_lock); if (!--pipe->files) { inode->i_pipe = NULL; kill = 1; } spin_unlock(&inode->i_lock); if (kill) free_pipe_info(pipe); } static int pipe_release(struct inode *inode, struct file *file) { struct pipe_inode_info *pipe = file->private_data; __pipe_lock(pipe); if (file->f_mode & FMODE_READ) pipe->readers--; if (file->f_mode & FMODE_WRITE) pipe->writers--; /* Was that the last reader or writer, but not the other side? */ if (!pipe->readers != !pipe->writers) { wake_up_interruptible_all(&pipe->rd_wait); wake_up_interruptible_all(&pipe->wr_wait); kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); } __pipe_unlock(pipe); put_pipe_info(inode, pipe); return 0; } static int pipe_fasync(int fd, struct file *filp, int on) { struct pipe_inode_info *pipe = filp->private_data; int retval = 0; __pipe_lock(pipe); if (filp->f_mode & FMODE_READ) retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); if (retval < 0 && (filp->f_mode & FMODE_READ)) /* this can happen only if on == T */ fasync_helper(-1, filp, 0, &pipe->fasync_readers); } __pipe_unlock(pipe); return retval; } unsigned long account_pipe_buffers(struct user_struct *user, unsigned long old, unsigned long new) { return atomic_long_add_return(new - old, &user->pipe_bufs); } bool too_many_pipe_buffers_soft(unsigned long user_bufs) { unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); return soft_limit && user_bufs > soft_limit; } bool too_many_pipe_buffers_hard(unsigned long user_bufs) { unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); return hard_limit && user_bufs > hard_limit; } bool pipe_is_unprivileged_user(void) { return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); } struct pipe_inode_info *alloc_pipe_info(void) { struct pipe_inode_info *pipe; unsigned long pipe_bufs = PIPE_DEF_BUFFERS; struct user_struct *user = get_current_user(); unsigned long user_bufs; unsigned int max_size = READ_ONCE(pipe_max_size); pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); if (pipe == NULL) goto out_free_uid; if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) pipe_bufs = max_size >> PAGE_SHIFT; user_bufs = account_pipe_buffers(user, 0, pipe_bufs); if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); pipe_bufs = PIPE_MIN_DEF_BUFFERS; } if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) goto out_revert_acct; pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), GFP_KERNEL_ACCOUNT); if (pipe->bufs) { init_waitqueue_head(&pipe->rd_wait); init_waitqueue_head(&pipe->wr_wait); pipe->r_counter = pipe->w_counter = 1; pipe->max_usage = pipe_bufs; pipe->ring_size = pipe_bufs; pipe->nr_accounted = pipe_bufs; pipe->user = user; mutex_init(&pipe->mutex); return pipe; } out_revert_acct: (void) account_pipe_buffers(user, pipe_bufs, 0); kfree(pipe); out_free_uid: free_uid(user); return NULL; } void free_pipe_info(struct pipe_inode_info *pipe) { unsigned int i; #ifdef CONFIG_WATCH_QUEUE if (pipe->watch_queue) watch_queue_clear(pipe->watch_queue); #endif (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); free_uid(pipe->user); for (i = 0; i < pipe->ring_size; i++) { struct pipe_buffer *buf = pipe->bufs + i; if (buf->ops) pipe_buf_release(pipe, buf); } #ifdef CONFIG_WATCH_QUEUE if (pipe->watch_queue) put_watch_queue(pipe->watch_queue); #endif if (pipe->tmp_page) __free_page(pipe->tmp_page); kfree(pipe->bufs); kfree(pipe); } static struct vfsmount *pipe_mnt __ro_after_init; /* * pipefs_dname() is called from d_path(). */ static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) { return dynamic_dname(buffer, buflen, "pipe:[%lu]", d_inode(dentry)->i_ino); } static const struct dentry_operations pipefs_dentry_operations = { .d_dname = pipefs_dname, }; static struct inode * get_pipe_inode(void) { struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); struct pipe_inode_info *pipe; if (!inode) goto fail_inode; inode->i_ino = get_next_ino(); pipe = alloc_pipe_info(); if (!pipe) goto fail_iput; inode->i_pipe = pipe; pipe->files = 2; pipe->readers = pipe->writers = 1; inode->i_fop = &pipefifo_fops; /* * Mark the inode dirty from the very beginning, * that way it will never be moved to the dirty * list because "mark_inode_dirty()" will think * that it already _is_ on the dirty list. */ inode->i_state = I_DIRTY; inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); simple_inode_init_ts(inode); return inode; fail_iput: iput(inode); fail_inode: return NULL; } int create_pipe_files(struct file **res, int flags) { struct inode *inode = get_pipe_inode(); struct file *f; int error; if (!inode) return -ENFILE; if (flags & O_NOTIFICATION_PIPE) { error = watch_queue_init(inode->i_pipe); if (error) { free_pipe_info(inode->i_pipe); iput(inode); return error; } } f = alloc_file_pseudo(inode, pipe_mnt, "", O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), &pipefifo_fops); if (IS_ERR(f)) { free_pipe_info(inode->i_pipe); iput(inode); return PTR_ERR(f); } f->private_data = inode->i_pipe; res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), &pipefifo_fops); if (IS_ERR(res[0])) { put_pipe_info(inode, inode->i_pipe); fput(f); return PTR_ERR(res[0]); } res[0]->private_data = inode->i_pipe; res[1] = f; stream_open(inode, res[0]); stream_open(inode, res[1]); return 0; } static int __do_pipe_flags(int *fd, struct file **files, int flags) { int error; int fdw, fdr; if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) return -EINVAL; error = create_pipe_files(files, flags); if (error) return error; error = get_unused_fd_flags(flags); if (error < 0) goto err_read_pipe; fdr = error; error = get_unused_fd_flags(flags); if (error < 0) goto err_fdr; fdw = error; audit_fd_pair(fdr, fdw); fd[0] = fdr; fd[1] = fdw; /* pipe groks IOCB_NOWAIT */ files[0]->f_mode |= FMODE_NOWAIT; files[1]->f_mode |= FMODE_NOWAIT; return 0; err_fdr: put_unused_fd(fdr); err_read_pipe: fput(files[0]); fput(files[1]); return error; } int do_pipe_flags(int *fd, int flags) { struct file *files[2]; int error = __do_pipe_flags(fd, files, flags); if (!error) { fd_install(fd[0], files[0]); fd_install(fd[1], files[1]); } return error; } /* * sys_pipe() is the normal C calling standard for creating * a pipe. It's not the way Unix traditionally does this, though. */ static int do_pipe2(int __user *fildes, int flags) { struct file *files[2]; int fd[2]; int error; error = __do_pipe_flags(fd, files, flags); if (!error) { if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { fput(files[0]); fput(files[1]); put_unused_fd(fd[0]); put_unused_fd(fd[1]); error = -EFAULT; } else { fd_install(fd[0], files[0]); fd_install(fd[1], files[1]); } } return error; } SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) { return do_pipe2(fildes, flags); } SYSCALL_DEFINE1(pipe, int __user *, fildes) { return do_pipe2(fildes, 0); } /* * This is the stupid "wait for pipe to be readable or writable" * model. * * See pipe_read/write() for the proper kind of exclusive wait, * but that requires that we wake up any other readers/writers * if we then do not end up reading everything (ie the whole * "wake_next_reader/writer" logic in pipe_read/write()). */ void pipe_wait_readable(struct pipe_inode_info *pipe) { pipe_unlock(pipe); wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); pipe_lock(pipe); } void pipe_wait_writable(struct pipe_inode_info *pipe) { pipe_unlock(pipe); wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); pipe_lock(pipe); } /* * This depends on both the wait (here) and the wakeup (wake_up_partner) * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot * race with the count check and waitqueue prep. * * Normally in order to avoid races, you'd do the prepare_to_wait() first, * then check the condition you're waiting for, and only then sleep. But * because of the pipe lock, we can check the condition before being on * the wait queue. * * We use the 'rd_wait' waitqueue for pipe partner waiting. */ static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) { DEFINE_WAIT(rdwait); int cur = *cnt; while (cur == *cnt) { prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); pipe_unlock(pipe); schedule(); finish_wait(&pipe->rd_wait, &rdwait); pipe_lock(pipe); if (signal_pending(current)) break; } return cur == *cnt ? -ERESTARTSYS : 0; } static void wake_up_partner(struct pipe_inode_info *pipe) { wake_up_interruptible_all(&pipe->rd_wait); } static int fifo_open(struct inode *inode, struct file *filp) { struct pipe_inode_info *pipe; bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; int ret; filp->f_version = 0; spin_lock(&inode->i_lock); if (inode->i_pipe) { pipe = inode->i_pipe; pipe->files++; spin_unlock(&inode->i_lock); } else { spin_unlock(&inode->i_lock); pipe = alloc_pipe_info(); if (!pipe) return -ENOMEM; pipe->files = 1; spin_lock(&inode->i_lock); if (unlikely(inode->i_pipe)) { inode->i_pipe->files++; spin_unlock(&inode->i_lock); free_pipe_info(pipe); pipe = inode->i_pipe; } else { inode->i_pipe = pipe; spin_unlock(&inode->i_lock); } } filp->private_data = pipe; /* OK, we have a pipe and it's pinned down */ __pipe_lock(pipe); /* We can only do regular read/write on fifos */ stream_open(inode, filp); switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { case FMODE_READ: /* * O_RDONLY * POSIX.1 says that O_NONBLOCK means return with the FIFO * opened, even when there is no process writing the FIFO. */ pipe->r_counter++; if (pipe->readers++ == 0) wake_up_partner(pipe); if (!is_pipe && !pipe->writers) { if ((filp->f_flags & O_NONBLOCK)) { /* suppress EPOLLHUP until we have * seen a writer */ filp->f_version = pipe->w_counter; } else { if (wait_for_partner(pipe, &pipe->w_counter)) goto err_rd; } } break; case FMODE_WRITE: /* * O_WRONLY * POSIX.1 says that O_NONBLOCK means return -1 with * errno=ENXIO when there is no process reading the FIFO. */ ret = -ENXIO; if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) goto err; pipe->w_counter++; if (!pipe->writers++) wake_up_partner(pipe); if (!is_pipe && !pipe->readers) { if (wait_for_partner(pipe, &pipe->r_counter)) goto err_wr; } break; case FMODE_READ | FMODE_WRITE: /* * O_RDWR * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. * This implementation will NEVER block on a O_RDWR open, since * the process can at least talk to itself. */ pipe->readers++; pipe->writers++; pipe->r_counter++; pipe->w_counter++; if (pipe->readers == 1 || pipe->writers == 1) wake_up_partner(pipe); break; default: ret = -EINVAL; goto err; } /* Ok! */ __pipe_unlock(pipe); return 0; err_rd: if (!--pipe->readers) wake_up_interruptible(&pipe->wr_wait); ret = -ERESTARTSYS; goto err; err_wr: if (!--pipe->writers) wake_up_interruptible_all(&pipe->rd_wait); ret = -ERESTARTSYS; goto err; err: __pipe_unlock(pipe); put_pipe_info(inode, pipe); return ret; } const struct file_operations pipefifo_fops = { .open = fifo_open, .llseek = no_llseek, .read_iter = pipe_read, .write_iter = pipe_write, .poll = pipe_poll, .unlocked_ioctl = pipe_ioctl, .release = pipe_release, .fasync = pipe_fasync, .splice_write = iter_file_splice_write, }; /* * Currently we rely on the pipe array holding a power-of-2 number * of pages. Returns 0 on error. */ unsigned int round_pipe_size(unsigned int size) { if (size > (1U << 31)) return 0; /* Minimum pipe size, as required by POSIX */ if (size < PAGE_SIZE) return PAGE_SIZE; return roundup_pow_of_two(size); } /* * Resize the pipe ring to a number of slots. * * Note the pipe can be reduced in capacity, but only if the current * occupancy doesn't exceed nr_slots; if it does, EBUSY will be * returned instead. */ int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) { struct pipe_buffer *bufs; unsigned int head, tail, mask, n; bufs = kcalloc(nr_slots, sizeof(*bufs), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); if (unlikely(!bufs)) return -ENOMEM; spin_lock_irq(&pipe->rd_wait.lock); mask = pipe->ring_size - 1; head = pipe->head; tail = pipe->tail; n = pipe_occupancy(head, tail); if (nr_slots < n) { spin_unlock_irq(&pipe->rd_wait.lock); kfree(bufs); return -EBUSY; } /* * The pipe array wraps around, so just start the new one at zero * and adjust the indices. */ if (n > 0) { unsigned int h = head & mask; unsigned int t = tail & mask; if (h > t) { memcpy(bufs, pipe->bufs + t, n * sizeof(struct pipe_buffer)); } else { unsigned int tsize = pipe->ring_size - t; if (h > 0) memcpy(bufs + tsize, pipe->bufs, h * sizeof(struct pipe_buffer)); memcpy(bufs, pipe->bufs + t, tsize * sizeof(struct pipe_buffer)); } } head = n; tail = 0; kfree(pipe->bufs); pipe->bufs = bufs; pipe->ring_size = nr_slots; if (pipe->max_usage > nr_slots) pipe->max_usage = nr_slots; pipe->tail = tail; pipe->head = head; spin_unlock_irq(&pipe->rd_wait.lock); /* This might have made more room for writers */ wake_up_interruptible(&pipe->wr_wait); return 0; } /* * Allocate a new array of pipe buffers and copy the info over. Returns the * pipe size if successful, or return -ERROR on error. */ static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) { unsigned long user_bufs; unsigned int nr_slots, size; long ret = 0; if (pipe_has_watch_queue(pipe)) return -EBUSY; size = round_pipe_size(arg); nr_slots = size >> PAGE_SHIFT; if (!nr_slots) return -EINVAL; /* * If trying to increase the pipe capacity, check that an * unprivileged user is not trying to exceed various limits * (soft limit check here, hard limit check just below). * Decreasing the pipe capacity is always permitted, even * if the user is currently over a limit. */ if (nr_slots > pipe->max_usage && size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) return -EPERM; user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); if (nr_slots > pipe->max_usage && (too_many_pipe_buffers_hard(user_bufs) || too_many_pipe_buffers_soft(user_bufs)) && pipe_is_unprivileged_user()) { ret = -EPERM; goto out_revert_acct; } ret = pipe_resize_ring(pipe, nr_slots); if (ret < 0) goto out_revert_acct; pipe->max_usage = nr_slots; pipe->nr_accounted = nr_slots; return pipe->max_usage * PAGE_SIZE; out_revert_acct: (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); return ret; } /* * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is * not enough to verify that this is a pipe. */ struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) { struct pipe_inode_info *pipe = file->private_data; if (file->f_op != &pipefifo_fops || !pipe) return NULL; if (for_splice && pipe_has_watch_queue(pipe)) return NULL; return pipe; } long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) { struct pipe_inode_info *pipe; long ret; pipe = get_pipe_info(file, false); if (!pipe) return -EBADF; __pipe_lock(pipe); switch (cmd) { case F_SETPIPE_SZ: ret = pipe_set_size(pipe, arg); break; case F_GETPIPE_SZ: ret = pipe->max_usage * PAGE_SIZE; break; default: ret = -EINVAL; break; } __pipe_unlock(pipe); return ret; } static const struct super_operations pipefs_ops = { .destroy_inode = free_inode_nonrcu, .statfs = simple_statfs, }; /* * pipefs should _never_ be mounted by userland - too much of security hassle, * no real gain from having the whole whorehouse mounted. So we don't need * any operations on the root directory. However, we need a non-trivial * d_name - pipe: will go nicely and kill the special-casing in procfs. */ static int pipefs_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); if (!ctx) return -ENOMEM; ctx->ops = &pipefs_ops; ctx->dops = &pipefs_dentry_operations; return 0; } static struct file_system_type pipe_fs_type = { .name = "pipefs", .init_fs_context = pipefs_init_fs_context, .kill_sb = kill_anon_super, }; #ifdef CONFIG_SYSCTL static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, unsigned int *valp, int write, void *data) { if (write) { unsigned int val; val = round_pipe_size(*lvalp); if (val == 0) return -EINVAL; *valp = val; } else { unsigned int val = *valp; *lvalp = (unsigned long) val; } return 0; } static int proc_dopipe_max_size(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { return do_proc_douintvec(table, write, buffer, lenp, ppos, do_proc_dopipe_max_size_conv, NULL); } static struct ctl_table fs_pipe_sysctls[] = { { .procname = "pipe-max-size", .data = &pipe_max_size, .maxlen = sizeof(pipe_max_size), .mode = 0644, .proc_handler = proc_dopipe_max_size, }, { .procname = "pipe-user-pages-hard", .data = &pipe_user_pages_hard, .maxlen = sizeof(pipe_user_pages_hard), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "pipe-user-pages-soft", .data = &pipe_user_pages_soft, .maxlen = sizeof(pipe_user_pages_soft), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { } }; #endif static int __init init_pipe_fs(void) { int err = register_filesystem(&pipe_fs_type); if (!err) { pipe_mnt = kern_mount(&pipe_fs_type); if (IS_ERR(pipe_mnt)) { err = PTR_ERR(pipe_mnt); unregister_filesystem(&pipe_fs_type); } } #ifdef CONFIG_SYSCTL register_sysctl_init("fs", fs_pipe_sysctls); #endif return err; } fs_initcall(init_pipe_fs);