// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_inode_item.h" #include /* * Add a locked inode to the transaction. * * The inode must be locked, and it cannot be associated with any transaction. * If lock_flags is non-zero the inode will be unlocked on transaction commit. */ void xfs_trans_ijoin( struct xfs_trans *tp, struct xfs_inode *ip, uint lock_flags) { struct xfs_inode_log_item *iip; ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); if (ip->i_itemp == NULL) xfs_inode_item_init(ip, ip->i_mount); iip = ip->i_itemp; ASSERT(iip->ili_lock_flags == 0); iip->ili_lock_flags = lock_flags; ASSERT(!xfs_iflags_test(ip, XFS_ISTALE)); /* * Get a log_item_desc to point at the new item. */ xfs_trans_add_item(tp, &iip->ili_item); } /* * Transactional inode timestamp update. Requires the inode to be locked and * joined to the transaction supplied. Relies on the transaction subsystem to * track dirty state and update/writeback the inode accordingly. */ void xfs_trans_ichgtime( struct xfs_trans *tp, struct xfs_inode *ip, int flags) { struct inode *inode = VFS_I(ip); struct timespec64 tv; ASSERT(tp); ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); tv = current_time(inode); if (flags & XFS_ICHGTIME_MOD) inode->i_mtime = tv; if (flags & XFS_ICHGTIME_CHG) inode->i_ctime = tv; if (flags & XFS_ICHGTIME_CREATE) ip->i_crtime = tv; } /* * This is called to mark the fields indicated in fieldmask as needing to be * logged when the transaction is committed. The inode must already be * associated with the given transaction. * * The values for fieldmask are defined in xfs_inode_item.h. We always log all * of the core inode if any of it has changed, and we always log all of the * inline data/extents/b-tree root if any of them has changed. * * Grab and pin the cluster buffer associated with this inode to avoid RMW * cycles at inode writeback time. Avoid the need to add error handling to every * xfs_trans_log_inode() call by shutting down on read error. This will cause * transactions to fail and everything to error out, just like if we return a * read error in a dirty transaction and cancel it. */ void xfs_trans_log_inode( struct xfs_trans *tp, struct xfs_inode *ip, uint flags) { struct xfs_inode_log_item *iip = ip->i_itemp; struct inode *inode = VFS_I(ip); uint iversion_flags = 0; ASSERT(iip); ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); ASSERT(!xfs_iflags_test(ip, XFS_ISTALE)); tp->t_flags |= XFS_TRANS_DIRTY; /* * Don't bother with i_lock for the I_DIRTY_TIME check here, as races * don't matter - we either will need an extra transaction in 24 hours * to log the timestamps, or will clear already cleared fields in the * worst case. */ if (inode->i_state & I_DIRTY_TIME) { spin_lock(&inode->i_lock); inode->i_state &= ~I_DIRTY_TIME; spin_unlock(&inode->i_lock); } /* * First time we log the inode in a transaction, bump the inode change * counter if it is configured for this to occur. While we have the * inode locked exclusively for metadata modification, we can usually * avoid setting XFS_ILOG_CORE if no one has queried the value since * the last time it was incremented. If we have XFS_ILOG_CORE already * set however, then go ahead and bump the i_version counter * unconditionally. */ if (!test_and_set_bit(XFS_LI_DIRTY, &iip->ili_item.li_flags)) { if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, flags & XFS_ILOG_CORE)) iversion_flags = XFS_ILOG_CORE; } /* * If we're updating the inode core or the timestamps and it's possible * to upgrade this inode to bigtime format, do so now. */ if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) && xfs_sb_version_hasbigtime(&ip->i_mount->m_sb) && !xfs_inode_has_bigtime(ip)) { ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME; flags |= XFS_ILOG_CORE; } /* * Record the specific change for fdatasync optimisation. This allows * fdatasync to skip log forces for inodes that are only timestamp * dirty. */ spin_lock(&iip->ili_lock); iip->ili_fsync_fields |= flags; if (!iip->ili_item.li_buf) { struct xfs_buf *bp; int error; /* * We hold the ILOCK here, so this inode is not going to be * flushed while we are here. Further, because there is no * buffer attached to the item, we know that there is no IO in * progress, so nothing will clear the ili_fields while we read * in the buffer. Hence we can safely drop the spin lock and * read the buffer knowing that the state will not change from * here. */ spin_unlock(&iip->ili_lock); error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp); if (error) { xfs_force_shutdown(ip->i_mount, SHUTDOWN_META_IO_ERROR); return; } /* * We need an explicit buffer reference for the log item but * don't want the buffer to remain attached to the transaction. * Hold the buffer but release the transaction reference once * we've attached the inode log item to the buffer log item * list. */ xfs_buf_hold(bp); spin_lock(&iip->ili_lock); iip->ili_item.li_buf = bp; bp->b_flags |= _XBF_INODES; list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list); xfs_trans_brelse(tp, bp); } /* * Always OR in the bits from the ili_last_fields field. This is to * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines * in the eventual clearing of the ili_fields bits. See the big comment * in xfs_iflush() for an explanation of this coordination mechanism. */ iip->ili_fields |= (flags | iip->ili_last_fields | iversion_flags); spin_unlock(&iip->ili_lock); } int xfs_trans_roll_inode( struct xfs_trans **tpp, struct xfs_inode *ip) { int error; xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); error = xfs_trans_roll(tpp); if (!error) xfs_trans_ijoin(*tpp, ip, 0); return error; }