/* SPDX-License-Identifier: GPL-2.0-only */ /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #ifndef _LINUX_BPF_H #define _LINUX_BPF_H 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct bpf_verifier_env; struct bpf_verifier_log; struct perf_event; struct bpf_prog; struct bpf_prog_aux; struct bpf_map; struct sock; struct seq_file; struct btf; struct btf_type; struct exception_table_entry; struct seq_operations; struct bpf_iter_aux_info; struct bpf_local_storage; struct bpf_local_storage_map; struct kobject; struct mem_cgroup; struct module; struct bpf_func_state; extern struct idr btf_idr; extern spinlock_t btf_idr_lock; extern struct kobject *btf_kobj; typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, struct bpf_iter_aux_info *aux); typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); struct bpf_iter_seq_info { const struct seq_operations *seq_ops; bpf_iter_init_seq_priv_t init_seq_private; bpf_iter_fini_seq_priv_t fini_seq_private; u32 seq_priv_size; }; /* map is generic key/value storage optionally accessible by eBPF programs */ struct bpf_map_ops { /* funcs callable from userspace (via syscall) */ int (*map_alloc_check)(union bpf_attr *attr); struct bpf_map *(*map_alloc)(union bpf_attr *attr); void (*map_release)(struct bpf_map *map, struct file *map_file); void (*map_free)(struct bpf_map *map); int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); void (*map_release_uref)(struct bpf_map *map); void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, void *value, u64 flags); int (*map_lookup_and_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); int (*map_update_batch)(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); /* funcs callable from userspace and from eBPF programs */ void *(*map_lookup_elem)(struct bpf_map *map, void *key); int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); int (*map_delete_elem)(struct bpf_map *map, void *key); int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); int (*map_pop_elem)(struct bpf_map *map, void *value); int (*map_peek_elem)(struct bpf_map *map, void *value); /* funcs called by prog_array and perf_event_array map */ void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, int fd); void (*map_fd_put_ptr)(void *ptr); int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); u32 (*map_fd_sys_lookup_elem)(void *ptr); void (*map_seq_show_elem)(struct bpf_map *map, void *key, struct seq_file *m); int (*map_check_btf)(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type); /* Prog poke tracking helpers. */ int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, struct bpf_prog *new); /* Direct value access helpers. */ int (*map_direct_value_addr)(const struct bpf_map *map, u64 *imm, u32 off); int (*map_direct_value_meta)(const struct bpf_map *map, u64 imm, u32 *off); int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, struct poll_table_struct *pts); /* Functions called by bpf_local_storage maps */ int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, void *owner, u32 size); void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, void *owner, u32 size); struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); /* Misc helpers.*/ int (*map_redirect)(struct bpf_map *map, u32 ifindex, u64 flags); /* map_meta_equal must be implemented for maps that can be * used as an inner map. It is a runtime check to ensure * an inner map can be inserted to an outer map. * * Some properties of the inner map has been used during the * verification time. When inserting an inner map at the runtime, * map_meta_equal has to ensure the inserting map has the same * properties that the verifier has used earlier. */ bool (*map_meta_equal)(const struct bpf_map *meta0, const struct bpf_map *meta1); int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, struct bpf_func_state *caller, struct bpf_func_state *callee); int (*map_for_each_callback)(struct bpf_map *map, bpf_callback_t callback_fn, void *callback_ctx, u64 flags); /* BTF name and id of struct allocated by map_alloc */ const char * const map_btf_name; int *map_btf_id; /* bpf_iter info used to open a seq_file */ const struct bpf_iter_seq_info *iter_seq_info; }; struct bpf_map { /* The first two cachelines with read-mostly members of which some * are also accessed in fast-path (e.g. ops, max_entries). */ const struct bpf_map_ops *ops ____cacheline_aligned; struct bpf_map *inner_map_meta; #ifdef CONFIG_SECURITY void *security; #endif enum bpf_map_type map_type; u32 key_size; u32 value_size; u32 max_entries; u64 map_extra; /* any per-map-type extra fields */ u32 map_flags; int spin_lock_off; /* >=0 valid offset, <0 error */ int timer_off; /* >=0 valid offset, <0 error */ u32 id; int numa_node; u32 btf_key_type_id; u32 btf_value_type_id; u32 btf_vmlinux_value_type_id; struct btf *btf; #ifdef CONFIG_MEMCG_KMEM struct mem_cgroup *memcg; #endif char name[BPF_OBJ_NAME_LEN]; bool bypass_spec_v1; bool frozen; /* write-once; write-protected by freeze_mutex */ /* 14 bytes hole */ /* The 3rd and 4th cacheline with misc members to avoid false sharing * particularly with refcounting. */ atomic64_t refcnt ____cacheline_aligned; atomic64_t usercnt; struct work_struct work; struct mutex freeze_mutex; atomic64_t writecnt; }; static inline bool map_value_has_spin_lock(const struct bpf_map *map) { return map->spin_lock_off >= 0; } static inline bool map_value_has_timer(const struct bpf_map *map) { return map->timer_off >= 0; } static inline void check_and_init_map_value(struct bpf_map *map, void *dst) { if (unlikely(map_value_has_spin_lock(map))) memset(dst + map->spin_lock_off, 0, sizeof(struct bpf_spin_lock)); if (unlikely(map_value_has_timer(map))) memset(dst + map->timer_off, 0, sizeof(struct bpf_timer)); } /* copy everything but bpf_spin_lock and bpf_timer. There could be one of each. */ static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) { u32 s_off = 0, s_sz = 0, t_off = 0, t_sz = 0; if (unlikely(map_value_has_spin_lock(map))) { s_off = map->spin_lock_off; s_sz = sizeof(struct bpf_spin_lock); } if (unlikely(map_value_has_timer(map))) { t_off = map->timer_off; t_sz = sizeof(struct bpf_timer); } if (unlikely(s_sz || t_sz)) { if (s_off < t_off || !s_sz) { swap(s_off, t_off); swap(s_sz, t_sz); } memcpy(dst, src, t_off); memcpy(dst + t_off + t_sz, src + t_off + t_sz, s_off - t_off - t_sz); memcpy(dst + s_off + s_sz, src + s_off + s_sz, map->value_size - s_off - s_sz); } else { memcpy(dst, src, map->value_size); } } void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, bool lock_src); void bpf_timer_cancel_and_free(void *timer); int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); struct bpf_offload_dev; struct bpf_offloaded_map; struct bpf_map_dev_ops { int (*map_get_next_key)(struct bpf_offloaded_map *map, void *key, void *next_key); int (*map_lookup_elem)(struct bpf_offloaded_map *map, void *key, void *value); int (*map_update_elem)(struct bpf_offloaded_map *map, void *key, void *value, u64 flags); int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); }; struct bpf_offloaded_map { struct bpf_map map; struct net_device *netdev; const struct bpf_map_dev_ops *dev_ops; void *dev_priv; struct list_head offloads; }; static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) { return container_of(map, struct bpf_offloaded_map, map); } static inline bool bpf_map_offload_neutral(const struct bpf_map *map) { return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; } static inline bool bpf_map_support_seq_show(const struct bpf_map *map) { return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && map->ops->map_seq_show_elem; } int map_check_no_btf(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type); bool bpf_map_meta_equal(const struct bpf_map *meta0, const struct bpf_map *meta1); extern const struct bpf_map_ops bpf_map_offload_ops; /* bpf_type_flag contains a set of flags that are applicable to the values of * arg_type, ret_type and reg_type. For example, a pointer value may be null, * or a memory is read-only. We classify types into two categories: base types * and extended types. Extended types are base types combined with a type flag. * * Currently there are no more than 32 base types in arg_type, ret_type and * reg_types. */ #define BPF_BASE_TYPE_BITS 8 enum bpf_type_flag { /* PTR may be NULL. */ PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), /* MEM is read-only. When applied on bpf_arg, it indicates the arg is * compatible with both mutable and immutable memory. */ MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), /* MEM was "allocated" from a different helper, and cannot be mixed * with regular non-MEM_ALLOC'ed MEM types. */ MEM_ALLOC = BIT(2 + BPF_BASE_TYPE_BITS), __BPF_TYPE_LAST_FLAG = MEM_ALLOC, }; /* Max number of base types. */ #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) /* Max number of all types. */ #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) /* function argument constraints */ enum bpf_arg_type { ARG_DONTCARE = 0, /* unused argument in helper function */ /* the following constraints used to prototype * bpf_map_lookup/update/delete_elem() functions */ ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ ARG_PTR_TO_UNINIT_MAP_VALUE, /* pointer to valid memory used to store a map value */ /* the following constraints used to prototype bpf_memcmp() and other * functions that access data on eBPF program stack */ ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ ARG_PTR_TO_UNINIT_MEM, /* pointer to memory does not need to be initialized, * helper function must fill all bytes or clear * them in error case. */ ARG_CONST_SIZE, /* number of bytes accessed from memory */ ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ ARG_PTR_TO_CTX, /* pointer to context */ ARG_ANYTHING, /* any (initialized) argument is ok */ ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ ARG_PTR_TO_INT, /* pointer to int */ ARG_PTR_TO_LONG, /* pointer to long */ ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ ARG_PTR_TO_ALLOC_MEM, /* pointer to dynamically allocated memory */ ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ ARG_PTR_TO_STACK, /* pointer to stack */ ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ __BPF_ARG_TYPE_MAX, /* Extended arg_types. */ ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, ARG_PTR_TO_ALLOC_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_ALLOC_MEM, ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, /* This must be the last entry. Its purpose is to ensure the enum is * wide enough to hold the higher bits reserved for bpf_type_flag. */ __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, }; static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); /* type of values returned from helper functions */ enum bpf_return_type { RET_INTEGER, /* function returns integer */ RET_VOID, /* function doesn't return anything */ RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ RET_PTR_TO_ALLOC_MEM, /* returns a pointer to dynamically allocated memory */ RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ __BPF_RET_TYPE_MAX, /* Extended ret_types. */ RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, RET_PTR_TO_ALLOC_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_ALLOC | RET_PTR_TO_ALLOC_MEM, RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, /* This must be the last entry. Its purpose is to ensure the enum is * wide enough to hold the higher bits reserved for bpf_type_flag. */ __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, }; static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL * instructions after verifying */ struct bpf_func_proto { u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); bool gpl_only; bool pkt_access; enum bpf_return_type ret_type; union { struct { enum bpf_arg_type arg1_type; enum bpf_arg_type arg2_type; enum bpf_arg_type arg3_type; enum bpf_arg_type arg4_type; enum bpf_arg_type arg5_type; }; enum bpf_arg_type arg_type[5]; }; union { struct { u32 *arg1_btf_id; u32 *arg2_btf_id; u32 *arg3_btf_id; u32 *arg4_btf_id; u32 *arg5_btf_id; }; u32 *arg_btf_id[5]; }; int *ret_btf_id; /* return value btf_id */ bool (*allowed)(const struct bpf_prog *prog); }; /* bpf_context is intentionally undefined structure. Pointer to bpf_context is * the first argument to eBPF programs. * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' */ struct bpf_context; enum bpf_access_type { BPF_READ = 1, BPF_WRITE = 2 }; /* types of values stored in eBPF registers */ /* Pointer types represent: * pointer * pointer + imm * pointer + (u16) var * pointer + (u16) var + imm * if (range > 0) then [ptr, ptr + range - off) is safe to access * if (id > 0) means that some 'var' was added * if (off > 0) means that 'imm' was added */ enum bpf_reg_type { NOT_INIT = 0, /* nothing was written into register */ SCALAR_VALUE, /* reg doesn't contain a valid pointer */ PTR_TO_CTX, /* reg points to bpf_context */ CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ PTR_TO_MAP_VALUE, /* reg points to map element value */ PTR_TO_MAP_KEY, /* reg points to a map element key */ PTR_TO_STACK, /* reg == frame_pointer + offset */ PTR_TO_PACKET_META, /* skb->data - meta_len */ PTR_TO_PACKET, /* reg points to skb->data */ PTR_TO_PACKET_END, /* skb->data + headlen */ PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ PTR_TO_SOCKET, /* reg points to struct bpf_sock */ PTR_TO_SOCK_COMMON, /* reg points to sock_common */ PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ /* PTR_TO_BTF_ID points to a kernel struct that does not need * to be null checked by the BPF program. This does not imply the * pointer is _not_ null and in practice this can easily be a null * pointer when reading pointer chains. The assumption is program * context will handle null pointer dereference typically via fault * handling. The verifier must keep this in mind and can make no * assumptions about null or non-null when doing branch analysis. * Further, when passed into helpers the helpers can not, without * additional context, assume the value is non-null. */ PTR_TO_BTF_ID, /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not * been checked for null. Used primarily to inform the verifier * an explicit null check is required for this struct. */ PTR_TO_MEM, /* reg points to valid memory region */ PTR_TO_BUF, /* reg points to a read/write buffer */ PTR_TO_PERCPU_BTF_ID, /* reg points to a percpu kernel variable */ PTR_TO_FUNC, /* reg points to a bpf program function */ __BPF_REG_TYPE_MAX, /* Extended reg_types. */ PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, /* This must be the last entry. Its purpose is to ensure the enum is * wide enough to hold the higher bits reserved for bpf_type_flag. */ __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, }; static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); /* The information passed from prog-specific *_is_valid_access * back to the verifier. */ struct bpf_insn_access_aux { enum bpf_reg_type reg_type; union { int ctx_field_size; struct { struct btf *btf; u32 btf_id; }; }; struct bpf_verifier_log *log; /* for verbose logs */ }; static inline void bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) { aux->ctx_field_size = size; } static inline bool bpf_pseudo_func(const struct bpf_insn *insn) { return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && insn->src_reg == BPF_PSEUDO_FUNC; } struct bpf_prog_ops { int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); }; struct bpf_verifier_ops { /* return eBPF function prototype for verification */ const struct bpf_func_proto * (*get_func_proto)(enum bpf_func_id func_id, const struct bpf_prog *prog); /* return true if 'size' wide access at offset 'off' within bpf_context * with 'type' (read or write) is allowed */ bool (*is_valid_access)(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info); int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, const struct bpf_prog *prog); int (*gen_ld_abs)(const struct bpf_insn *orig, struct bpf_insn *insn_buf); u32 (*convert_ctx_access)(enum bpf_access_type type, const struct bpf_insn *src, struct bpf_insn *dst, struct bpf_prog *prog, u32 *target_size); int (*btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int off, int size, enum bpf_access_type atype, u32 *next_btf_id); bool (*check_kfunc_call)(u32 kfunc_btf_id, struct module *owner); }; struct bpf_prog_offload_ops { /* verifier basic callbacks */ int (*insn_hook)(struct bpf_verifier_env *env, int insn_idx, int prev_insn_idx); int (*finalize)(struct bpf_verifier_env *env); /* verifier optimization callbacks (called after .finalize) */ int (*replace_insn)(struct bpf_verifier_env *env, u32 off, struct bpf_insn *insn); int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); /* program management callbacks */ int (*prepare)(struct bpf_prog *prog); int (*translate)(struct bpf_prog *prog); void (*destroy)(struct bpf_prog *prog); }; struct bpf_prog_offload { struct bpf_prog *prog; struct net_device *netdev; struct bpf_offload_dev *offdev; void *dev_priv; struct list_head offloads; bool dev_state; bool opt_failed; void *jited_image; u32 jited_len; }; enum bpf_cgroup_storage_type { BPF_CGROUP_STORAGE_SHARED, BPF_CGROUP_STORAGE_PERCPU, __BPF_CGROUP_STORAGE_MAX }; #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX /* The longest tracepoint has 12 args. * See include/trace/bpf_probe.h */ #define MAX_BPF_FUNC_ARGS 12 /* The maximum number of arguments passed through registers * a single function may have. */ #define MAX_BPF_FUNC_REG_ARGS 5 struct btf_func_model { u8 ret_size; u8 nr_args; u8 arg_size[MAX_BPF_FUNC_ARGS]; }; /* Restore arguments before returning from trampoline to let original function * continue executing. This flag is used for fentry progs when there are no * fexit progs. */ #define BPF_TRAMP_F_RESTORE_REGS BIT(0) /* Call original function after fentry progs, but before fexit progs. * Makes sense for fentry/fexit, normal calls and indirect calls. */ #define BPF_TRAMP_F_CALL_ORIG BIT(1) /* Skip current frame and return to parent. Makes sense for fentry/fexit * programs only. Should not be used with normal calls and indirect calls. */ #define BPF_TRAMP_F_SKIP_FRAME BIT(2) /* Store IP address of the caller on the trampoline stack, * so it's available for trampoline's programs. */ #define BPF_TRAMP_F_IP_ARG BIT(3) /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 * bytes on x86. Pick a number to fit into BPF_IMAGE_SIZE / 2 */ #define BPF_MAX_TRAMP_PROGS 38 struct bpf_tramp_progs { struct bpf_prog *progs[BPF_MAX_TRAMP_PROGS]; int nr_progs; }; /* Different use cases for BPF trampoline: * 1. replace nop at the function entry (kprobe equivalent) * flags = BPF_TRAMP_F_RESTORE_REGS * fentry = a set of programs to run before returning from trampoline * * 2. replace nop at the function entry (kprobe + kretprobe equivalent) * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME * orig_call = fentry_ip + MCOUNT_INSN_SIZE * fentry = a set of program to run before calling original function * fexit = a set of program to run after original function * * 3. replace direct call instruction anywhere in the function body * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) * With flags = 0 * fentry = a set of programs to run before returning from trampoline * With flags = BPF_TRAMP_F_CALL_ORIG * orig_call = original callback addr or direct function addr * fentry = a set of program to run before calling original function * fexit = a set of program to run after original function */ struct bpf_tramp_image; int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, const struct btf_func_model *m, u32 flags, struct bpf_tramp_progs *tprogs, void *orig_call); /* these two functions are called from generated trampoline */ u64 notrace __bpf_prog_enter(struct bpf_prog *prog); void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start); u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog); void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start); void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); struct bpf_ksym { unsigned long start; unsigned long end; char name[KSYM_NAME_LEN]; struct list_head lnode; struct latch_tree_node tnode; bool prog; }; enum bpf_tramp_prog_type { BPF_TRAMP_FENTRY, BPF_TRAMP_FEXIT, BPF_TRAMP_MODIFY_RETURN, BPF_TRAMP_MAX, BPF_TRAMP_REPLACE, /* more than MAX */ }; struct bpf_tramp_image { void *image; struct bpf_ksym ksym; struct percpu_ref pcref; void *ip_after_call; void *ip_epilogue; union { struct rcu_head rcu; struct work_struct work; }; }; struct bpf_trampoline { /* hlist for trampoline_table */ struct hlist_node hlist; /* serializes access to fields of this trampoline */ struct mutex mutex; refcount_t refcnt; u64 key; struct { struct btf_func_model model; void *addr; bool ftrace_managed; } func; /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF * program by replacing one of its functions. func.addr is the address * of the function it replaced. */ struct bpf_prog *extension_prog; /* list of BPF programs using this trampoline */ struct hlist_head progs_hlist[BPF_TRAMP_MAX]; /* Number of attached programs. A counter per kind. */ int progs_cnt[BPF_TRAMP_MAX]; /* Executable image of trampoline */ struct bpf_tramp_image *cur_image; u64 selector; struct module *mod; }; struct bpf_attach_target_info { struct btf_func_model fmodel; long tgt_addr; const char *tgt_name; const struct btf_type *tgt_type; }; #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ struct bpf_dispatcher_prog { struct bpf_prog *prog; refcount_t users; }; struct bpf_dispatcher { /* dispatcher mutex */ struct mutex mutex; void *func; struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; int num_progs; void *image; u32 image_off; struct bpf_ksym ksym; }; static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func( const void *ctx, const struct bpf_insn *insnsi, unsigned int (*bpf_func)(const void *, const struct bpf_insn *)) { return bpf_func(ctx, insnsi); } #ifdef CONFIG_BPF_JIT int bpf_trampoline_link_prog(struct bpf_prog *prog, struct bpf_trampoline *tr); int bpf_trampoline_unlink_prog(struct bpf_prog *prog, struct bpf_trampoline *tr); struct bpf_trampoline *bpf_trampoline_get(u64 key, struct bpf_attach_target_info *tgt_info); void bpf_trampoline_put(struct bpf_trampoline *tr); int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs); #define BPF_DISPATCHER_INIT(_name) { \ .mutex = __MUTEX_INITIALIZER(_name.mutex), \ .func = &_name##_func, \ .progs = {}, \ .num_progs = 0, \ .image = NULL, \ .image_off = 0, \ .ksym = { \ .name = #_name, \ .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ }, \ } #define DEFINE_BPF_DISPATCHER(name) \ noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \ const void *ctx, \ const struct bpf_insn *insnsi, \ unsigned int (*bpf_func)(const void *, \ const struct bpf_insn *)) \ { \ return bpf_func(ctx, insnsi); \ } \ EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ struct bpf_dispatcher bpf_dispatcher_##name = \ BPF_DISPATCHER_INIT(bpf_dispatcher_##name); #define DECLARE_BPF_DISPATCHER(name) \ unsigned int bpf_dispatcher_##name##_func( \ const void *ctx, \ const struct bpf_insn *insnsi, \ unsigned int (*bpf_func)(const void *, \ const struct bpf_insn *)); \ extern struct bpf_dispatcher bpf_dispatcher_##name; #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, struct bpf_prog *to); /* Called only from JIT-enabled code, so there's no need for stubs. */ void *bpf_jit_alloc_exec_page(void); void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym); void bpf_image_ksym_del(struct bpf_ksym *ksym); void bpf_ksym_add(struct bpf_ksym *ksym); void bpf_ksym_del(struct bpf_ksym *ksym); int bpf_jit_charge_modmem(u32 pages); void bpf_jit_uncharge_modmem(u32 pages); bool bpf_prog_has_trampoline(const struct bpf_prog *prog); #else static inline int bpf_trampoline_link_prog(struct bpf_prog *prog, struct bpf_trampoline *tr) { return -ENOTSUPP; } static inline int bpf_trampoline_unlink_prog(struct bpf_prog *prog, struct bpf_trampoline *tr) { return -ENOTSUPP; } static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, struct bpf_attach_target_info *tgt_info) { return ERR_PTR(-EOPNOTSUPP); } static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} #define DEFINE_BPF_DISPATCHER(name) #define DECLARE_BPF_DISPATCHER(name) #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func #define BPF_DISPATCHER_PTR(name) NULL static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, struct bpf_prog *to) {} static inline bool is_bpf_image_address(unsigned long address) { return false; } static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) { return false; } #endif struct bpf_func_info_aux { u16 linkage; bool unreliable; }; enum bpf_jit_poke_reason { BPF_POKE_REASON_TAIL_CALL, }; /* Descriptor of pokes pointing /into/ the JITed image. */ struct bpf_jit_poke_descriptor { void *tailcall_target; void *tailcall_bypass; void *bypass_addr; void *aux; union { struct { struct bpf_map *map; u32 key; } tail_call; }; bool tailcall_target_stable; u8 adj_off; u16 reason; u32 insn_idx; }; /* reg_type info for ctx arguments */ struct bpf_ctx_arg_aux { u32 offset; enum bpf_reg_type reg_type; u32 btf_id; }; struct btf_mod_pair { struct btf *btf; struct module *module; }; struct bpf_kfunc_desc_tab; struct bpf_prog_aux { atomic64_t refcnt; u32 used_map_cnt; u32 used_btf_cnt; u32 max_ctx_offset; u32 max_pkt_offset; u32 max_tp_access; u32 stack_depth; u32 id; u32 func_cnt; /* used by non-func prog as the number of func progs */ u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ u32 attach_btf_id; /* in-kernel BTF type id to attach to */ u32 ctx_arg_info_size; u32 max_rdonly_access; u32 max_rdwr_access; struct btf *attach_btf; const struct bpf_ctx_arg_aux *ctx_arg_info; struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ struct bpf_prog *dst_prog; struct bpf_trampoline *dst_trampoline; enum bpf_prog_type saved_dst_prog_type; enum bpf_attach_type saved_dst_attach_type; bool verifier_zext; /* Zero extensions has been inserted by verifier. */ bool offload_requested; bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ bool func_proto_unreliable; bool sleepable; bool tail_call_reachable; struct hlist_node tramp_hlist; /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ const struct btf_type *attach_func_proto; /* function name for valid attach_btf_id */ const char *attach_func_name; struct bpf_prog **func; void *jit_data; /* JIT specific data. arch dependent */ struct bpf_jit_poke_descriptor *poke_tab; struct bpf_kfunc_desc_tab *kfunc_tab; struct bpf_kfunc_btf_tab *kfunc_btf_tab; u32 size_poke_tab; struct bpf_ksym ksym; const struct bpf_prog_ops *ops; struct bpf_map **used_maps; struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ struct btf_mod_pair *used_btfs; struct bpf_prog *prog; struct user_struct *user; u64 load_time; /* ns since boottime */ u32 verified_insns; struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; char name[BPF_OBJ_NAME_LEN]; #ifdef CONFIG_SECURITY void *security; #endif struct bpf_prog_offload *offload; struct btf *btf; struct bpf_func_info *func_info; struct bpf_func_info_aux *func_info_aux; /* bpf_line_info loaded from userspace. linfo->insn_off * has the xlated insn offset. * Both the main and sub prog share the same linfo. * The subprog can access its first linfo by * using the linfo_idx. */ struct bpf_line_info *linfo; /* jited_linfo is the jited addr of the linfo. It has a * one to one mapping to linfo: * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. * Both the main and sub prog share the same jited_linfo. * The subprog can access its first jited_linfo by * using the linfo_idx. */ void **jited_linfo; u32 func_info_cnt; u32 nr_linfo; /* subprog can use linfo_idx to access its first linfo and * jited_linfo. * main prog always has linfo_idx == 0 */ u32 linfo_idx; u32 num_exentries; struct exception_table_entry *extable; union { struct work_struct work; struct rcu_head rcu; }; }; struct bpf_array_aux { /* 'Ownership' of prog array is claimed by the first program that * is going to use this map or by the first program which FD is * stored in the map to make sure that all callers and callees have * the same prog type and JITed flag. */ struct { spinlock_t lock; enum bpf_prog_type type; bool jited; } owner; /* Programs with direct jumps into programs part of this array. */ struct list_head poke_progs; struct bpf_map *map; struct mutex poke_mutex; struct work_struct work; }; struct bpf_link { atomic64_t refcnt; u32 id; enum bpf_link_type type; const struct bpf_link_ops *ops; struct bpf_prog *prog; struct work_struct work; }; struct bpf_link_ops { void (*release)(struct bpf_link *link); void (*dealloc)(struct bpf_link *link); int (*detach)(struct bpf_link *link); int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, struct bpf_prog *old_prog); void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); int (*fill_link_info)(const struct bpf_link *link, struct bpf_link_info *info); }; struct bpf_link_primer { struct bpf_link *link; struct file *file; int fd; u32 id; }; struct bpf_struct_ops_value; struct btf_member; #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 struct bpf_struct_ops { const struct bpf_verifier_ops *verifier_ops; int (*init)(struct btf *btf); int (*check_member)(const struct btf_type *t, const struct btf_member *member); int (*init_member)(const struct btf_type *t, const struct btf_member *member, void *kdata, const void *udata); int (*reg)(void *kdata); void (*unreg)(void *kdata); const struct btf_type *type; const struct btf_type *value_type; const char *name; struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; u32 type_id; u32 value_id; }; #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id); void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log); bool bpf_struct_ops_get(const void *kdata); void bpf_struct_ops_put(const void *kdata); int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, void *value); int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_progs *tprogs, struct bpf_prog *prog, const struct btf_func_model *model, void *image, void *image_end); static inline bool bpf_try_module_get(const void *data, struct module *owner) { if (owner == BPF_MODULE_OWNER) return bpf_struct_ops_get(data); else return try_module_get(owner); } static inline void bpf_module_put(const void *data, struct module *owner) { if (owner == BPF_MODULE_OWNER) bpf_struct_ops_put(data); else module_put(owner); } #ifdef CONFIG_NET /* Define it here to avoid the use of forward declaration */ struct bpf_dummy_ops_state { int val; }; struct bpf_dummy_ops { int (*test_1)(struct bpf_dummy_ops_state *cb); int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, char a3, unsigned long a4); }; int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); #endif #else static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id) { return NULL; } static inline void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log) { } static inline bool bpf_try_module_get(const void *data, struct module *owner) { return try_module_get(owner); } static inline void bpf_module_put(const void *data, struct module *owner) { module_put(owner); } static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, void *value) { return -EINVAL; } #endif struct bpf_array { struct bpf_map map; u32 elem_size; u32 index_mask; struct bpf_array_aux *aux; union { char value[0] __aligned(8); void *ptrs[0] __aligned(8); void __percpu *pptrs[0] __aligned(8); }; }; #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ #define MAX_TAIL_CALL_CNT 33 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ BPF_F_RDONLY_PROG | \ BPF_F_WRONLY | \ BPF_F_WRONLY_PROG) #define BPF_MAP_CAN_READ BIT(0) #define BPF_MAP_CAN_WRITE BIT(1) static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) { u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is * not possible. */ if (access_flags & BPF_F_RDONLY_PROG) return BPF_MAP_CAN_READ; else if (access_flags & BPF_F_WRONLY_PROG) return BPF_MAP_CAN_WRITE; else return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; } static inline bool bpf_map_flags_access_ok(u32 access_flags) { return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); } struct bpf_event_entry { struct perf_event *event; struct file *perf_file; struct file *map_file; struct rcu_head rcu; }; bool bpf_prog_array_compatible(struct bpf_array *array, const struct bpf_prog *fp); int bpf_prog_calc_tag(struct bpf_prog *fp); const struct bpf_func_proto *bpf_get_trace_printk_proto(void); const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, unsigned long off, unsigned long len); typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, const struct bpf_insn *src, struct bpf_insn *dst, struct bpf_prog *prog, u32 *target_size); u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); /* an array of programs to be executed under rcu_lock. * * Typical usage: * ret = BPF_PROG_RUN_ARRAY(&bpf_prog_array, ctx, bpf_prog_run); * * the structure returned by bpf_prog_array_alloc() should be populated * with program pointers and the last pointer must be NULL. * The user has to keep refcnt on the program and make sure the program * is removed from the array before bpf_prog_put(). * The 'struct bpf_prog_array *' should only be replaced with xchg() * since other cpus are walking the array of pointers in parallel. */ struct bpf_prog_array_item { struct bpf_prog *prog; union { struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; u64 bpf_cookie; }; }; struct bpf_prog_array { struct rcu_head rcu; struct bpf_prog_array_item items[]; }; struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); void bpf_prog_array_free(struct bpf_prog_array *progs); int bpf_prog_array_length(struct bpf_prog_array *progs); bool bpf_prog_array_is_empty(struct bpf_prog_array *array); int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, __u32 __user *prog_ids, u32 cnt); void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, struct bpf_prog *old_prog); int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, struct bpf_prog *prog); int bpf_prog_array_copy_info(struct bpf_prog_array *array, u32 *prog_ids, u32 request_cnt, u32 *prog_cnt); int bpf_prog_array_copy(struct bpf_prog_array *old_array, struct bpf_prog *exclude_prog, struct bpf_prog *include_prog, u64 bpf_cookie, struct bpf_prog_array **new_array); struct bpf_run_ctx {}; struct bpf_cg_run_ctx { struct bpf_run_ctx run_ctx; const struct bpf_prog_array_item *prog_item; }; struct bpf_trace_run_ctx { struct bpf_run_ctx run_ctx; u64 bpf_cookie; }; static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) { struct bpf_run_ctx *old_ctx = NULL; #ifdef CONFIG_BPF_SYSCALL old_ctx = current->bpf_ctx; current->bpf_ctx = new_ctx; #endif return old_ctx; } static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) { #ifdef CONFIG_BPF_SYSCALL current->bpf_ctx = old_ctx; #endif } /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) /* BPF program asks to set CN on the packet. */ #define BPF_RET_SET_CN (1 << 0) typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); static __always_inline u32 BPF_PROG_RUN_ARRAY_CG_FLAGS(const struct bpf_prog_array __rcu *array_rcu, const void *ctx, bpf_prog_run_fn run_prog, u32 *ret_flags) { const struct bpf_prog_array_item *item; const struct bpf_prog *prog; const struct bpf_prog_array *array; struct bpf_run_ctx *old_run_ctx; struct bpf_cg_run_ctx run_ctx; u32 ret = 1; u32 func_ret; migrate_disable(); rcu_read_lock(); array = rcu_dereference(array_rcu); item = &array->items[0]; old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); while ((prog = READ_ONCE(item->prog))) { run_ctx.prog_item = item; func_ret = run_prog(prog, ctx); ret &= (func_ret & 1); *(ret_flags) |= (func_ret >> 1); item++; } bpf_reset_run_ctx(old_run_ctx); rcu_read_unlock(); migrate_enable(); return ret; } static __always_inline u32 BPF_PROG_RUN_ARRAY_CG(const struct bpf_prog_array __rcu *array_rcu, const void *ctx, bpf_prog_run_fn run_prog) { const struct bpf_prog_array_item *item; const struct bpf_prog *prog; const struct bpf_prog_array *array; struct bpf_run_ctx *old_run_ctx; struct bpf_cg_run_ctx run_ctx; u32 ret = 1; migrate_disable(); rcu_read_lock(); array = rcu_dereference(array_rcu); item = &array->items[0]; old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); while ((prog = READ_ONCE(item->prog))) { run_ctx.prog_item = item; ret &= run_prog(prog, ctx); item++; } bpf_reset_run_ctx(old_run_ctx); rcu_read_unlock(); migrate_enable(); return ret; } static __always_inline u32 BPF_PROG_RUN_ARRAY(const struct bpf_prog_array __rcu *array_rcu, const void *ctx, bpf_prog_run_fn run_prog) { const struct bpf_prog_array_item *item; const struct bpf_prog *prog; const struct bpf_prog_array *array; struct bpf_run_ctx *old_run_ctx; struct bpf_trace_run_ctx run_ctx; u32 ret = 1; migrate_disable(); rcu_read_lock(); array = rcu_dereference(array_rcu); if (unlikely(!array)) goto out; old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); item = &array->items[0]; while ((prog = READ_ONCE(item->prog))) { run_ctx.bpf_cookie = item->bpf_cookie; ret &= run_prog(prog, ctx); item++; } bpf_reset_run_ctx(old_run_ctx); out: rcu_read_unlock(); migrate_enable(); return ret; } /* To be used by __cgroup_bpf_run_filter_skb for EGRESS BPF progs * so BPF programs can request cwr for TCP packets. * * Current cgroup skb programs can only return 0 or 1 (0 to drop the * packet. This macro changes the behavior so the low order bit * indicates whether the packet should be dropped (0) or not (1) * and the next bit is a congestion notification bit. This could be * used by TCP to call tcp_enter_cwr() * * Hence, new allowed return values of CGROUP EGRESS BPF programs are: * 0: drop packet * 1: keep packet * 2: drop packet and cn * 3: keep packet and cn * * This macro then converts it to one of the NET_XMIT or an error * code that is then interpreted as drop packet (and no cn): * 0: NET_XMIT_SUCCESS skb should be transmitted * 1: NET_XMIT_DROP skb should be dropped and cn * 2: NET_XMIT_CN skb should be transmitted and cn * 3: -EPERM skb should be dropped */ #define BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(array, ctx, func) \ ({ \ u32 _flags = 0; \ bool _cn; \ u32 _ret; \ _ret = BPF_PROG_RUN_ARRAY_CG_FLAGS(array, ctx, func, &_flags); \ _cn = _flags & BPF_RET_SET_CN; \ if (_ret) \ _ret = (_cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); \ else \ _ret = (_cn ? NET_XMIT_DROP : -EPERM); \ _ret; \ }) #ifdef CONFIG_BPF_SYSCALL DECLARE_PER_CPU(int, bpf_prog_active); extern struct mutex bpf_stats_enabled_mutex; /* * Block execution of BPF programs attached to instrumentation (perf, * kprobes, tracepoints) to prevent deadlocks on map operations as any of * these events can happen inside a region which holds a map bucket lock * and can deadlock on it. */ static inline void bpf_disable_instrumentation(void) { migrate_disable(); this_cpu_inc(bpf_prog_active); } static inline void bpf_enable_instrumentation(void) { this_cpu_dec(bpf_prog_active); migrate_enable(); } extern const struct file_operations bpf_map_fops; extern const struct file_operations bpf_prog_fops; extern const struct file_operations bpf_iter_fops; #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ extern const struct bpf_prog_ops _name ## _prog_ops; \ extern const struct bpf_verifier_ops _name ## _verifier_ops; #define BPF_MAP_TYPE(_id, _ops) \ extern const struct bpf_map_ops _ops; #define BPF_LINK_TYPE(_id, _name) #include #undef BPF_PROG_TYPE #undef BPF_MAP_TYPE #undef BPF_LINK_TYPE extern const struct bpf_prog_ops bpf_offload_prog_ops; extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; extern const struct bpf_verifier_ops xdp_analyzer_ops; struct bpf_prog *bpf_prog_get(u32 ufd); struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, bool attach_drv); void bpf_prog_add(struct bpf_prog *prog, int i); void bpf_prog_sub(struct bpf_prog *prog, int i); void bpf_prog_inc(struct bpf_prog *prog); struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); void bpf_prog_put(struct bpf_prog *prog); void bpf_prog_free_id(struct bpf_prog *prog, bool do_idr_lock); void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock); struct bpf_map *bpf_map_get(u32 ufd); struct bpf_map *bpf_map_get_with_uref(u32 ufd); struct bpf_map *__bpf_map_get(struct fd f); void bpf_map_inc(struct bpf_map *map); void bpf_map_inc_with_uref(struct bpf_map *map); struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); void bpf_map_put_with_uref(struct bpf_map *map); void bpf_map_put(struct bpf_map *map); void *bpf_map_area_alloc(u64 size, int numa_node); void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); void bpf_map_area_free(void *base); bool bpf_map_write_active(const struct bpf_map *map); void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); int generic_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); int generic_map_update_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); int generic_map_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); struct bpf_map *bpf_map_get_curr_or_next(u32 *id); struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); #ifdef CONFIG_MEMCG_KMEM void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, int node); void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, gfp_t flags); #else static inline void * bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, int node) { return kmalloc_node(size, flags, node); } static inline void * bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) { return kzalloc(size, flags); } static inline void __percpu * bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, gfp_t flags) { return __alloc_percpu_gfp(size, align, flags); } #endif extern int sysctl_unprivileged_bpf_disabled; static inline bool bpf_allow_ptr_leaks(void) { return perfmon_capable(); } static inline bool bpf_allow_uninit_stack(void) { return perfmon_capable(); } static inline bool bpf_allow_ptr_to_map_access(void) { return perfmon_capable(); } static inline bool bpf_bypass_spec_v1(void) { return perfmon_capable(); } static inline bool bpf_bypass_spec_v4(void) { return perfmon_capable(); } int bpf_map_new_fd(struct bpf_map *map, int flags); int bpf_prog_new_fd(struct bpf_prog *prog); void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, const struct bpf_link_ops *ops, struct bpf_prog *prog); int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); int bpf_link_settle(struct bpf_link_primer *primer); void bpf_link_cleanup(struct bpf_link_primer *primer); void bpf_link_inc(struct bpf_link *link); void bpf_link_put(struct bpf_link *link); int bpf_link_new_fd(struct bpf_link *link); struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd); struct bpf_link *bpf_link_get_from_fd(u32 ufd); int bpf_obj_pin_user(u32 ufd, const char __user *pathname); int bpf_obj_get_user(const char __user *pathname, int flags); #define BPF_ITER_FUNC_PREFIX "bpf_iter_" #define DEFINE_BPF_ITER_FUNC(target, args...) \ extern int bpf_iter_ ## target(args); \ int __init bpf_iter_ ## target(args) { return 0; } struct bpf_iter_aux_info { struct bpf_map *map; }; typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, union bpf_iter_link_info *linfo, struct bpf_iter_aux_info *aux); typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, struct seq_file *seq); typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info); typedef const struct bpf_func_proto * (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, const struct bpf_prog *prog); enum bpf_iter_feature { BPF_ITER_RESCHED = BIT(0), }; #define BPF_ITER_CTX_ARG_MAX 2 struct bpf_iter_reg { const char *target; bpf_iter_attach_target_t attach_target; bpf_iter_detach_target_t detach_target; bpf_iter_show_fdinfo_t show_fdinfo; bpf_iter_fill_link_info_t fill_link_info; bpf_iter_get_func_proto_t get_func_proto; u32 ctx_arg_info_size; u32 feature; struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; const struct bpf_iter_seq_info *seq_info; }; struct bpf_iter_meta { __bpf_md_ptr(struct seq_file *, seq); u64 session_id; u64 seq_num; }; struct bpf_iter__bpf_map_elem { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct bpf_map *, map); __bpf_md_ptr(void *, key); __bpf_md_ptr(void *, value); }; int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); bool bpf_iter_prog_supported(struct bpf_prog *prog); const struct bpf_func_proto * bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); int bpf_iter_new_fd(struct bpf_link *link); bool bpf_link_is_iter(struct bpf_link *link); struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, struct seq_file *seq); int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info); int map_set_for_each_callback_args(struct bpf_verifier_env *env, struct bpf_func_state *caller, struct bpf_func_state *callee); int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, u64 flags); int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, u64 flags); int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags); int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags); int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); int bpf_get_file_flag(int flags); int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, size_t actual_size); /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and * forced to use 'long' read/writes to try to atomically copy long counters. * Best-effort only. No barriers here, since it _will_ race with concurrent * updates from BPF programs. Called from bpf syscall and mostly used with * size 8 or 16 bytes, so ask compiler to inline it. */ static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) { const long *lsrc = src; long *ldst = dst; size /= sizeof(long); while (size--) *ldst++ = *lsrc++; } /* verify correctness of eBPF program */ int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr); #ifndef CONFIG_BPF_JIT_ALWAYS_ON void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); #endif struct btf *bpf_get_btf_vmlinux(void); /* Map specifics */ struct xdp_frame; struct sk_buff; struct bpf_dtab_netdev; struct bpf_cpu_map_entry; void __dev_flush(void); int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx); int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, struct net_device *dev_rx); int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, struct bpf_map *map, bool exclude_ingress); int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, struct bpf_prog *xdp_prog); int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, struct bpf_prog *xdp_prog, struct bpf_map *map, bool exclude_ingress); void __cpu_map_flush(void); int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, struct net_device *dev_rx); int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, struct sk_buff *skb); /* Return map's numa specified by userspace */ static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) { return (attr->map_flags & BPF_F_NUMA_NODE) ? attr->numa_node : NUMA_NO_NODE; } struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); int array_map_alloc_check(union bpf_attr *attr); int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_tracing(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); bool bpf_prog_test_check_kfunc_call(u32 kfunc_id, struct module *owner); bool btf_ctx_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info); static inline bool bpf_tracing_ctx_access(int off, int size, enum bpf_access_type type) { if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) return false; if (type != BPF_READ) return false; if (off % size != 0) return false; return true; } static inline bool bpf_tracing_btf_ctx_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (!bpf_tracing_ctx_access(off, size, type)) return false; return btf_ctx_access(off, size, type, prog, info); } int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int off, int size, enum bpf_access_type atype, u32 *next_btf_id); bool btf_struct_ids_match(struct bpf_verifier_log *log, const struct btf *btf, u32 id, int off, const struct btf *need_btf, u32 need_type_id); int btf_distill_func_proto(struct bpf_verifier_log *log, struct btf *btf, const struct btf_type *func_proto, const char *func_name, struct btf_func_model *m); struct bpf_reg_state; int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs); int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id, struct bpf_reg_state *regs); int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *reg); int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, struct btf *btf, const struct btf_type *t); struct bpf_prog *bpf_prog_by_id(u32 id); struct bpf_link *bpf_link_by_id(u32 id); const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id); void bpf_task_storage_free(struct task_struct *task); bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); const struct btf_func_model * bpf_jit_find_kfunc_model(const struct bpf_prog *prog, const struct bpf_insn *insn); struct bpf_core_ctx { struct bpf_verifier_log *log; const struct btf *btf; }; int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, int relo_idx, void *insn); #else /* !CONFIG_BPF_SYSCALL */ static inline struct bpf_prog *bpf_prog_get(u32 ufd) { return ERR_PTR(-EOPNOTSUPP); } static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, bool attach_drv) { return ERR_PTR(-EOPNOTSUPP); } static inline void bpf_prog_add(struct bpf_prog *prog, int i) { } static inline void bpf_prog_sub(struct bpf_prog *prog, int i) { } static inline void bpf_prog_put(struct bpf_prog *prog) { } static inline void bpf_prog_inc(struct bpf_prog *prog) { } static inline struct bpf_prog *__must_check bpf_prog_inc_not_zero(struct bpf_prog *prog) { return ERR_PTR(-EOPNOTSUPP); } static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, const struct bpf_link_ops *ops, struct bpf_prog *prog) { } static inline int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer) { return -EOPNOTSUPP; } static inline int bpf_link_settle(struct bpf_link_primer *primer) { return -EOPNOTSUPP; } static inline void bpf_link_cleanup(struct bpf_link_primer *primer) { } static inline void bpf_link_inc(struct bpf_link *link) { } static inline void bpf_link_put(struct bpf_link *link) { } static inline int bpf_obj_get_user(const char __user *pathname, int flags) { return -EOPNOTSUPP; } static inline bool dev_map_can_have_prog(struct bpf_map *map) { return false; } static inline void __dev_flush(void) { } struct xdp_frame; struct bpf_dtab_netdev; struct bpf_cpu_map_entry; static inline int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx) { return 0; } static inline int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, struct net_device *dev_rx) { return 0; } static inline int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, struct bpf_map *map, bool exclude_ingress) { return 0; } struct sk_buff; static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, struct bpf_prog *xdp_prog) { return 0; } static inline int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, struct bpf_prog *xdp_prog, struct bpf_map *map, bool exclude_ingress) { return 0; } static inline void __cpu_map_flush(void) { } static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, struct net_device *dev_rx) { return 0; } static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline bool cpu_map_prog_allowed(struct bpf_map *map) { return false; } static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type) { return ERR_PTR(-EOPNOTSUPP); } static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline bool bpf_prog_test_check_kfunc_call(u32 kfunc_id, struct module *owner) { return false; } static inline void bpf_map_put(struct bpf_map *map) { } static inline struct bpf_prog *bpf_prog_by_id(u32 id) { return ERR_PTR(-ENOTSUPP); } static inline const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id) { return NULL; } static inline void bpf_task_storage_free(struct task_struct *task) { } static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) { return false; } static inline const struct btf_func_model * bpf_jit_find_kfunc_model(const struct bpf_prog *prog, const struct bpf_insn *insn) { return NULL; } #endif /* CONFIG_BPF_SYSCALL */ void __bpf_free_used_btfs(struct bpf_prog_aux *aux, struct btf_mod_pair *used_btfs, u32 len); static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, enum bpf_prog_type type) { return bpf_prog_get_type_dev(ufd, type, false); } void __bpf_free_used_maps(struct bpf_prog_aux *aux, struct bpf_map **used_maps, u32 len); bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); int bpf_prog_offload_compile(struct bpf_prog *prog); void bpf_prog_offload_destroy(struct bpf_prog *prog); int bpf_prog_offload_info_fill(struct bpf_prog_info *info, struct bpf_prog *prog); int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); int bpf_map_offload_update_elem(struct bpf_map *map, void *key, void *value, u64 flags); int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); int bpf_map_offload_get_next_key(struct bpf_map *map, void *key, void *next_key); bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); struct bpf_offload_dev * bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, struct net_device *netdev); void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, struct net_device *netdev); bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr); static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) { return aux->offload_requested; } static inline bool bpf_map_is_dev_bound(struct bpf_map *map) { return unlikely(map->ops == &bpf_map_offload_ops); } struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); void bpf_map_offload_map_free(struct bpf_map *map); int bpf_prog_test_run_syscall(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); void sock_map_unhash(struct sock *sk); void sock_map_close(struct sock *sk, long timeout); #else static inline int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr) { return -EOPNOTSUPP; } static inline bool bpf_prog_is_dev_bound(struct bpf_prog_aux *aux) { return false; } static inline bool bpf_map_is_dev_bound(struct bpf_map *map) { return false; } static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) { return ERR_PTR(-EOPNOTSUPP); } static inline void bpf_map_offload_map_free(struct bpf_map *map) { } static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } #ifdef CONFIG_BPF_SYSCALL static inline int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) { return -EOPNOTSUPP; } static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags) { return -EOPNOTSUPP; } #endif /* CONFIG_BPF_SYSCALL */ #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) void bpf_sk_reuseport_detach(struct sock *sk); int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, void *value); int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags); #else static inline void bpf_sk_reuseport_detach(struct sock *sk) { } #ifdef CONFIG_BPF_SYSCALL static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, void *value) { return -EOPNOTSUPP; } static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return -EOPNOTSUPP; } #endif /* CONFIG_BPF_SYSCALL */ #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ /* verifier prototypes for helper functions called from eBPF programs */ extern const struct bpf_func_proto bpf_map_lookup_elem_proto; extern const struct bpf_func_proto bpf_map_update_elem_proto; extern const struct bpf_func_proto bpf_map_delete_elem_proto; extern const struct bpf_func_proto bpf_map_push_elem_proto; extern const struct bpf_func_proto bpf_map_pop_elem_proto; extern const struct bpf_func_proto bpf_map_peek_elem_proto; extern const struct bpf_func_proto bpf_get_prandom_u32_proto; extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; extern const struct bpf_func_proto bpf_get_numa_node_id_proto; extern const struct bpf_func_proto bpf_tail_call_proto; extern const struct bpf_func_proto bpf_ktime_get_ns_proto; extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; extern const struct bpf_func_proto bpf_get_current_comm_proto; extern const struct bpf_func_proto bpf_get_stackid_proto; extern const struct bpf_func_proto bpf_get_stack_proto; extern const struct bpf_func_proto bpf_get_task_stack_proto; extern const struct bpf_func_proto bpf_get_stackid_proto_pe; extern const struct bpf_func_proto bpf_get_stack_proto_pe; extern const struct bpf_func_proto bpf_sock_map_update_proto; extern const struct bpf_func_proto bpf_sock_hash_update_proto; extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; extern const struct bpf_func_proto bpf_msg_redirect_map_proto; extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; extern const struct bpf_func_proto bpf_sk_redirect_map_proto; extern const struct bpf_func_proto bpf_spin_lock_proto; extern const struct bpf_func_proto bpf_spin_unlock_proto; extern const struct bpf_func_proto bpf_get_local_storage_proto; extern const struct bpf_func_proto bpf_strtol_proto; extern const struct bpf_func_proto bpf_strtoul_proto; extern const struct bpf_func_proto bpf_tcp_sock_proto; extern const struct bpf_func_proto bpf_jiffies64_proto; extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; extern const struct bpf_func_proto bpf_event_output_data_proto; extern const struct bpf_func_proto bpf_ringbuf_output_proto; extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; extern const struct bpf_func_proto bpf_ringbuf_submit_proto; extern const struct bpf_func_proto bpf_ringbuf_discard_proto; extern const struct bpf_func_proto bpf_ringbuf_query_proto; extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; extern const struct bpf_func_proto bpf_copy_from_user_proto; extern const struct bpf_func_proto bpf_snprintf_btf_proto; extern const struct bpf_func_proto bpf_snprintf_proto; extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; extern const struct bpf_func_proto bpf_sock_from_file_proto; extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; extern const struct bpf_func_proto bpf_task_storage_get_proto; extern const struct bpf_func_proto bpf_task_storage_delete_proto; extern const struct bpf_func_proto bpf_for_each_map_elem_proto; extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; extern const struct bpf_func_proto bpf_sk_setsockopt_proto; extern const struct bpf_func_proto bpf_sk_getsockopt_proto; extern const struct bpf_func_proto bpf_kallsyms_lookup_name_proto; extern const struct bpf_func_proto bpf_find_vma_proto; extern const struct bpf_func_proto bpf_loop_proto; extern const struct bpf_func_proto bpf_strncmp_proto; const struct bpf_func_proto *tracing_prog_func_proto( enum bpf_func_id func_id, const struct bpf_prog *prog); /* Shared helpers among cBPF and eBPF. */ void bpf_user_rnd_init_once(void); u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); #if defined(CONFIG_NET) bool bpf_sock_common_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info); bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info); u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size); #else static inline bool bpf_sock_common_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { return false; } static inline bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { return false; } static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { return 0; } #endif #ifdef CONFIG_INET struct sk_reuseport_kern { struct sk_buff *skb; struct sock *sk; struct sock *selected_sk; struct sock *migrating_sk; void *data_end; u32 hash; u32 reuseport_id; bool bind_inany; }; bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info); u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size); bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info); u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size); #else static inline bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { return false; } static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { return 0; } static inline bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { return false; } static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { return 0; } #endif /* CONFIG_INET */ enum bpf_text_poke_type { BPF_MOD_CALL, BPF_MOD_JUMP, }; int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *addr1, void *addr2); struct btf_id_set; bool btf_id_set_contains(const struct btf_id_set *set, u32 id); #define MAX_BPRINTF_VARARGS 12 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, u32 **bin_buf, u32 num_args); void bpf_bprintf_cleanup(void); #endif /* _LINUX_BPF_H */