// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com * Copyright (c) 2016 Facebook */ #include #include #include #include #include #include #include #include #include #include "percpu_freelist.h" #include "bpf_lru_list.h" #include "map_in_map.h" #include #define HTAB_CREATE_FLAG_MASK \ (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) #define BATCH_OPS(_name) \ .map_lookup_batch = \ _name##_map_lookup_batch, \ .map_lookup_and_delete_batch = \ _name##_map_lookup_and_delete_batch, \ .map_update_batch = \ generic_map_update_batch, \ .map_delete_batch = \ generic_map_delete_batch /* * The bucket lock has two protection scopes: * * 1) Serializing concurrent operations from BPF programs on different * CPUs * * 2) Serializing concurrent operations from BPF programs and sys_bpf() * * BPF programs can execute in any context including perf, kprobes and * tracing. As there are almost no limits where perf, kprobes and tracing * can be invoked from the lock operations need to be protected against * deadlocks. Deadlocks can be caused by recursion and by an invocation in * the lock held section when functions which acquire this lock are invoked * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU * variable bpf_prog_active, which prevents BPF programs attached to perf * events, kprobes and tracing to be invoked before the prior invocation * from one of these contexts completed. sys_bpf() uses the same mechanism * by pinning the task to the current CPU and incrementing the recursion * protection across the map operation. * * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain * operations like memory allocations (even with GFP_ATOMIC) from atomic * contexts. This is required because even with GFP_ATOMIC the memory * allocator calls into code paths which acquire locks with long held lock * sections. To ensure the deterministic behaviour these locks are regular * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only * true atomic contexts on an RT kernel are the low level hardware * handling, scheduling, low level interrupt handling, NMIs etc. None of * these contexts should ever do memory allocations. * * As regular device interrupt handlers and soft interrupts are forced into * thread context, the existing code which does * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); * just works. * * In theory the BPF locks could be converted to regular spinlocks as well, * but the bucket locks and percpu_freelist locks can be taken from * arbitrary contexts (perf, kprobes, tracepoints) which are required to be * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, * because there is no memory allocation within the lock held sections. However * after hash map was fully converted to use bpf_mem_alloc, there will be * non-synchronous memory allocation for non-preallocated hash map, so it is * safe to always use raw spinlock for bucket lock. */ struct bucket { struct hlist_nulls_head head; raw_spinlock_t raw_lock; }; #define HASHTAB_MAP_LOCK_COUNT 8 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) struct bpf_htab { struct bpf_map map; struct bpf_mem_alloc ma; struct bpf_mem_alloc pcpu_ma; struct bucket *buckets; void *elems; union { struct pcpu_freelist freelist; struct bpf_lru lru; }; struct htab_elem *__percpu *extra_elems; /* number of elements in non-preallocated hashtable are kept * in either pcount or count */ struct percpu_counter pcount; atomic_t count; bool use_percpu_counter; u32 n_buckets; /* number of hash buckets */ u32 elem_size; /* size of each element in bytes */ u32 hashrnd; struct lock_class_key lockdep_key; int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; }; /* each htab element is struct htab_elem + key + value */ struct htab_elem { union { struct hlist_nulls_node hash_node; struct { void *padding; union { struct pcpu_freelist_node fnode; struct htab_elem *batch_flink; }; }; }; union { /* pointer to per-cpu pointer */ void *ptr_to_pptr; struct bpf_lru_node lru_node; }; u32 hash; char key[] __aligned(8); }; static inline bool htab_is_prealloc(const struct bpf_htab *htab) { return !(htab->map.map_flags & BPF_F_NO_PREALLOC); } static void htab_init_buckets(struct bpf_htab *htab) { unsigned int i; for (i = 0; i < htab->n_buckets; i++) { INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); raw_spin_lock_init(&htab->buckets[i].raw_lock); lockdep_set_class(&htab->buckets[i].raw_lock, &htab->lockdep_key); cond_resched(); } } static inline int htab_lock_bucket(const struct bpf_htab *htab, struct bucket *b, u32 hash, unsigned long *pflags) { unsigned long flags; hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); preempt_disable(); if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { __this_cpu_dec(*(htab->map_locked[hash])); preempt_enable(); return -EBUSY; } raw_spin_lock_irqsave(&b->raw_lock, flags); *pflags = flags; return 0; } static inline void htab_unlock_bucket(const struct bpf_htab *htab, struct bucket *b, u32 hash, unsigned long flags) { hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); raw_spin_unlock_irqrestore(&b->raw_lock, flags); __this_cpu_dec(*(htab->map_locked[hash])); preempt_enable(); } static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); static bool htab_is_lru(const struct bpf_htab *htab) { return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; } static bool htab_is_percpu(const struct bpf_htab *htab) { return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; } static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, void __percpu *pptr) { *(void __percpu **)(l->key + key_size) = pptr; } static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) { return *(void __percpu **)(l->key + key_size); } static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) { return *(void **)(l->key + roundup(map->key_size, 8)); } static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) { return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); } static bool htab_has_extra_elems(struct bpf_htab *htab) { return !htab_is_percpu(htab) && !htab_is_lru(htab); } static void htab_free_prealloced_timers(struct bpf_htab *htab) { u32 num_entries = htab->map.max_entries; int i; if (!map_value_has_timer(&htab->map)) return; if (htab_has_extra_elems(htab)) num_entries += num_possible_cpus(); for (i = 0; i < num_entries; i++) { struct htab_elem *elem; elem = get_htab_elem(htab, i); bpf_timer_cancel_and_free(elem->key + round_up(htab->map.key_size, 8) + htab->map.timer_off); cond_resched(); } } static void htab_free_prealloced_kptrs(struct bpf_htab *htab) { u32 num_entries = htab->map.max_entries; int i; if (!map_value_has_kptrs(&htab->map)) return; if (htab_has_extra_elems(htab)) num_entries += num_possible_cpus(); for (i = 0; i < num_entries; i++) { struct htab_elem *elem; elem = get_htab_elem(htab, i); bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8)); cond_resched(); } } static void htab_free_elems(struct bpf_htab *htab) { int i; if (!htab_is_percpu(htab)) goto free_elems; for (i = 0; i < htab->map.max_entries; i++) { void __percpu *pptr; pptr = htab_elem_get_ptr(get_htab_elem(htab, i), htab->map.key_size); free_percpu(pptr); cond_resched(); } free_elems: bpf_map_area_free(htab->elems); } /* The LRU list has a lock (lru_lock). Each htab bucket has a lock * (bucket_lock). If both locks need to be acquired together, the lock * order is always lru_lock -> bucket_lock and this only happens in * bpf_lru_list.c logic. For example, certain code path of * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), * will acquire lru_lock first followed by acquiring bucket_lock. * * In hashtab.c, to avoid deadlock, lock acquisition of * bucket_lock followed by lru_lock is not allowed. In such cases, * bucket_lock needs to be released first before acquiring lru_lock. */ static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, u32 hash) { struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); struct htab_elem *l; if (node) { l = container_of(node, struct htab_elem, lru_node); memcpy(l->key, key, htab->map.key_size); return l; } return NULL; } static int prealloc_init(struct bpf_htab *htab) { u32 num_entries = htab->map.max_entries; int err = -ENOMEM, i; if (htab_has_extra_elems(htab)) num_entries += num_possible_cpus(); htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, htab->map.numa_node); if (!htab->elems) return -ENOMEM; if (!htab_is_percpu(htab)) goto skip_percpu_elems; for (i = 0; i < num_entries; i++) { u32 size = round_up(htab->map.value_size, 8); void __percpu *pptr; pptr = bpf_map_alloc_percpu(&htab->map, size, 8, GFP_USER | __GFP_NOWARN); if (!pptr) goto free_elems; htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, pptr); cond_resched(); } skip_percpu_elems: if (htab_is_lru(htab)) err = bpf_lru_init(&htab->lru, htab->map.map_flags & BPF_F_NO_COMMON_LRU, offsetof(struct htab_elem, hash) - offsetof(struct htab_elem, lru_node), htab_lru_map_delete_node, htab); else err = pcpu_freelist_init(&htab->freelist); if (err) goto free_elems; if (htab_is_lru(htab)) bpf_lru_populate(&htab->lru, htab->elems, offsetof(struct htab_elem, lru_node), htab->elem_size, num_entries); else pcpu_freelist_populate(&htab->freelist, htab->elems + offsetof(struct htab_elem, fnode), htab->elem_size, num_entries); return 0; free_elems: htab_free_elems(htab); return err; } static void prealloc_destroy(struct bpf_htab *htab) { htab_free_elems(htab); if (htab_is_lru(htab)) bpf_lru_destroy(&htab->lru); else pcpu_freelist_destroy(&htab->freelist); } static int alloc_extra_elems(struct bpf_htab *htab) { struct htab_elem *__percpu *pptr, *l_new; struct pcpu_freelist_node *l; int cpu; pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, GFP_USER | __GFP_NOWARN); if (!pptr) return -ENOMEM; for_each_possible_cpu(cpu) { l = pcpu_freelist_pop(&htab->freelist); /* pop will succeed, since prealloc_init() * preallocated extra num_possible_cpus elements */ l_new = container_of(l, struct htab_elem, fnode); *per_cpu_ptr(pptr, cpu) = l_new; } htab->extra_elems = pptr; return 0; } /* Called from syscall */ static int htab_map_alloc_check(union bpf_attr *attr) { bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); /* percpu_lru means each cpu has its own LRU list. * it is different from BPF_MAP_TYPE_PERCPU_HASH where * the map's value itself is percpu. percpu_lru has * nothing to do with the map's value. */ bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); int numa_node = bpf_map_attr_numa_node(attr); BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != offsetof(struct htab_elem, hash_node.pprev)); if (lru && !bpf_capable()) /* LRU implementation is much complicated than other * maps. Hence, limit to CAP_BPF. */ return -EPERM; if (zero_seed && !capable(CAP_SYS_ADMIN)) /* Guard against local DoS, and discourage production use. */ return -EPERM; if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || !bpf_map_flags_access_ok(attr->map_flags)) return -EINVAL; if (!lru && percpu_lru) return -EINVAL; if (lru && !prealloc) return -ENOTSUPP; if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) return -EINVAL; /* check sanity of attributes. * value_size == 0 may be allowed in the future to use map as a set */ if (attr->max_entries == 0 || attr->key_size == 0 || attr->value_size == 0) return -EINVAL; if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - sizeof(struct htab_elem)) /* if key_size + value_size is bigger, the user space won't be * able to access the elements via bpf syscall. This check * also makes sure that the elem_size doesn't overflow and it's * kmalloc-able later in htab_map_update_elem() */ return -E2BIG; return 0; } static struct bpf_map *htab_map_alloc(union bpf_attr *attr) { bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); /* percpu_lru means each cpu has its own LRU list. * it is different from BPF_MAP_TYPE_PERCPU_HASH where * the map's value itself is percpu. percpu_lru has * nothing to do with the map's value. */ bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); struct bpf_htab *htab; int err, i; htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); if (!htab) return ERR_PTR(-ENOMEM); lockdep_register_key(&htab->lockdep_key); bpf_map_init_from_attr(&htab->map, attr); if (percpu_lru) { /* ensure each CPU's lru list has >=1 elements. * since we are at it, make each lru list has the same * number of elements. */ htab->map.max_entries = roundup(attr->max_entries, num_possible_cpus()); if (htab->map.max_entries < attr->max_entries) htab->map.max_entries = rounddown(attr->max_entries, num_possible_cpus()); } /* hash table size must be power of 2 */ htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); htab->elem_size = sizeof(struct htab_elem) + round_up(htab->map.key_size, 8); if (percpu) htab->elem_size += sizeof(void *); else htab->elem_size += round_up(htab->map.value_size, 8); err = -E2BIG; /* prevent zero size kmalloc and check for u32 overflow */ if (htab->n_buckets == 0 || htab->n_buckets > U32_MAX / sizeof(struct bucket)) goto free_htab; err = -ENOMEM; htab->buckets = bpf_map_area_alloc(htab->n_buckets * sizeof(struct bucket), htab->map.numa_node); if (!htab->buckets) goto free_htab; for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, sizeof(int), sizeof(int), GFP_USER); if (!htab->map_locked[i]) goto free_map_locked; } if (htab->map.map_flags & BPF_F_ZERO_SEED) htab->hashrnd = 0; else htab->hashrnd = get_random_u32(); htab_init_buckets(htab); /* compute_batch_value() computes batch value as num_online_cpus() * 2 * and __percpu_counter_compare() needs * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() * for percpu_counter to be faster than atomic_t. In practice the average bpf * hash map size is 10k, which means that a system with 64 cpus will fill * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore * define our own batch count as 32 then 10k hash map can be filled up to 80%: * 10k - 8k > 32 _batch_ * 64 _cpus_ * and __percpu_counter_compare() will still be fast. At that point hash map * collisions will dominate its performance anyway. Assume that hash map filled * to 50+% isn't going to be O(1) and use the following formula to choose * between percpu_counter and atomic_t. */ #define PERCPU_COUNTER_BATCH 32 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) htab->use_percpu_counter = true; if (htab->use_percpu_counter) { err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); if (err) goto free_map_locked; } if (prealloc) { err = prealloc_init(htab); if (err) goto free_map_locked; if (!percpu && !lru) { /* lru itself can remove the least used element, so * there is no need for an extra elem during map_update. */ err = alloc_extra_elems(htab); if (err) goto free_prealloc; } } else { err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); if (err) goto free_map_locked; if (percpu) { err = bpf_mem_alloc_init(&htab->pcpu_ma, round_up(htab->map.value_size, 8), true); if (err) goto free_map_locked; } } return &htab->map; free_prealloc: prealloc_destroy(htab); free_map_locked: if (htab->use_percpu_counter) percpu_counter_destroy(&htab->pcount); for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) free_percpu(htab->map_locked[i]); bpf_map_area_free(htab->buckets); bpf_mem_alloc_destroy(&htab->pcpu_ma); bpf_mem_alloc_destroy(&htab->ma); free_htab: lockdep_unregister_key(&htab->lockdep_key); bpf_map_area_free(htab); return ERR_PTR(err); } static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) { return jhash(key, key_len, hashrnd); } static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) { return &htab->buckets[hash & (htab->n_buckets - 1)]; } static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) { return &__select_bucket(htab, hash)->head; } /* this lookup function can only be called with bucket lock taken */ static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, void *key, u32 key_size) { struct hlist_nulls_node *n; struct htab_elem *l; hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) if (l->hash == hash && !memcmp(&l->key, key, key_size)) return l; return NULL; } /* can be called without bucket lock. it will repeat the loop in * the unlikely event when elements moved from one bucket into another * while link list is being walked */ static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, u32 hash, void *key, u32 key_size, u32 n_buckets) { struct hlist_nulls_node *n; struct htab_elem *l; again: hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) if (l->hash == hash && !memcmp(&l->key, key, key_size)) return l; if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) goto again; return NULL; } /* Called from syscall or from eBPF program directly, so * arguments have to match bpf_map_lookup_elem() exactly. * The return value is adjusted by BPF instructions * in htab_map_gen_lookup(). */ static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct htab_elem *l; u32 hash, key_size; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); head = select_bucket(htab, hash); l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); return l; } static void *htab_map_lookup_elem(struct bpf_map *map, void *key) { struct htab_elem *l = __htab_map_lookup_elem(map, key); if (l) return l->key + round_up(map->key_size, 8); return NULL; } /* inline bpf_map_lookup_elem() call. * Instead of: * bpf_prog * bpf_map_lookup_elem * map->ops->map_lookup_elem * htab_map_lookup_elem * __htab_map_lookup_elem * do: * bpf_prog * __htab_map_lookup_elem */ static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; const int ret = BPF_REG_0; BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, (void *(*)(struct bpf_map *map, void *key))NULL)); *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, offsetof(struct htab_elem, key) + round_up(map->key_size, 8)); return insn - insn_buf; } static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, void *key, const bool mark) { struct htab_elem *l = __htab_map_lookup_elem(map, key); if (l) { if (mark) bpf_lru_node_set_ref(&l->lru_node); return l->key + round_up(map->key_size, 8); } return NULL; } static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) { return __htab_lru_map_lookup_elem(map, key, true); } static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) { return __htab_lru_map_lookup_elem(map, key, false); } static int htab_lru_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; const int ret = BPF_REG_0; const int ref_reg = BPF_REG_1; BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, (void *(*)(struct bpf_map *map, void *key))NULL)); *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, offsetof(struct htab_elem, lru_node) + offsetof(struct bpf_lru_node, ref)); *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); *insn++ = BPF_ST_MEM(BPF_B, ret, offsetof(struct htab_elem, lru_node) + offsetof(struct bpf_lru_node, ref), 1); *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, offsetof(struct htab_elem, key) + round_up(map->key_size, 8)); return insn - insn_buf; } static void check_and_free_fields(struct bpf_htab *htab, struct htab_elem *elem) { void *map_value = elem->key + round_up(htab->map.key_size, 8); if (map_value_has_timer(&htab->map)) bpf_timer_cancel_and_free(map_value + htab->map.timer_off); if (map_value_has_kptrs(&htab->map)) bpf_map_free_kptrs(&htab->map, map_value); } /* It is called from the bpf_lru_list when the LRU needs to delete * older elements from the htab. */ static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) { struct bpf_htab *htab = arg; struct htab_elem *l = NULL, *tgt_l; struct hlist_nulls_head *head; struct hlist_nulls_node *n; unsigned long flags; struct bucket *b; int ret; tgt_l = container_of(node, struct htab_elem, lru_node); b = __select_bucket(htab, tgt_l->hash); head = &b->head; ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); if (ret) return false; hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) if (l == tgt_l) { hlist_nulls_del_rcu(&l->hash_node); check_and_free_fields(htab, l); break; } htab_unlock_bucket(htab, b, tgt_l->hash, flags); return l == tgt_l; } /* Called from syscall */ static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct htab_elem *l, *next_l; u32 hash, key_size; int i = 0; WARN_ON_ONCE(!rcu_read_lock_held()); key_size = map->key_size; if (!key) goto find_first_elem; hash = htab_map_hash(key, key_size, htab->hashrnd); head = select_bucket(htab, hash); /* lookup the key */ l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); if (!l) goto find_first_elem; /* key was found, get next key in the same bucket */ next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), struct htab_elem, hash_node); if (next_l) { /* if next elem in this hash list is non-zero, just return it */ memcpy(next_key, next_l->key, key_size); return 0; } /* no more elements in this hash list, go to the next bucket */ i = hash & (htab->n_buckets - 1); i++; find_first_elem: /* iterate over buckets */ for (; i < htab->n_buckets; i++) { head = select_bucket(htab, i); /* pick first element in the bucket */ next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), struct htab_elem, hash_node); if (next_l) { /* if it's not empty, just return it */ memcpy(next_key, next_l->key, key_size); return 0; } } /* iterated over all buckets and all elements */ return -ENOENT; } static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) { if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); check_and_free_fields(htab, l); bpf_mem_cache_free(&htab->ma, l); } static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) { struct bpf_map *map = &htab->map; void *ptr; if (map->ops->map_fd_put_ptr) { ptr = fd_htab_map_get_ptr(map, l); map->ops->map_fd_put_ptr(ptr); } } static bool is_map_full(struct bpf_htab *htab) { if (htab->use_percpu_counter) return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, PERCPU_COUNTER_BATCH) >= 0; return atomic_read(&htab->count) >= htab->map.max_entries; } static void inc_elem_count(struct bpf_htab *htab) { if (htab->use_percpu_counter) percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); else atomic_inc(&htab->count); } static void dec_elem_count(struct bpf_htab *htab) { if (htab->use_percpu_counter) percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); else atomic_dec(&htab->count); } static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) { htab_put_fd_value(htab, l); if (htab_is_prealloc(htab)) { check_and_free_fields(htab, l); __pcpu_freelist_push(&htab->freelist, &l->fnode); } else { dec_elem_count(htab); htab_elem_free(htab, l); } } static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, void *value, bool onallcpus) { if (!onallcpus) { /* copy true value_size bytes */ memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); } else { u32 size = round_up(htab->map.value_size, 8); int off = 0, cpu; for_each_possible_cpu(cpu) { bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); off += size; } } } static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, void *value, bool onallcpus) { /* When not setting the initial value on all cpus, zero-fill element * values for other cpus. Otherwise, bpf program has no way to ensure * known initial values for cpus other than current one * (onallcpus=false always when coming from bpf prog). */ if (!onallcpus) { u32 size = round_up(htab->map.value_size, 8); int current_cpu = raw_smp_processor_id(); int cpu; for_each_possible_cpu(cpu) { if (cpu == current_cpu) bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value, size); else memset(per_cpu_ptr(pptr, cpu), 0, size); } } else { pcpu_copy_value(htab, pptr, value, onallcpus); } } static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) { return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && BITS_PER_LONG == 64; } static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, void *value, u32 key_size, u32 hash, bool percpu, bool onallcpus, struct htab_elem *old_elem) { u32 size = htab->map.value_size; bool prealloc = htab_is_prealloc(htab); struct htab_elem *l_new, **pl_new; void __percpu *pptr; if (prealloc) { if (old_elem) { /* if we're updating the existing element, * use per-cpu extra elems to avoid freelist_pop/push */ pl_new = this_cpu_ptr(htab->extra_elems); l_new = *pl_new; htab_put_fd_value(htab, old_elem); *pl_new = old_elem; } else { struct pcpu_freelist_node *l; l = __pcpu_freelist_pop(&htab->freelist); if (!l) return ERR_PTR(-E2BIG); l_new = container_of(l, struct htab_elem, fnode); } } else { if (is_map_full(htab)) if (!old_elem) /* when map is full and update() is replacing * old element, it's ok to allocate, since * old element will be freed immediately. * Otherwise return an error */ return ERR_PTR(-E2BIG); inc_elem_count(htab); l_new = bpf_mem_cache_alloc(&htab->ma); if (!l_new) { l_new = ERR_PTR(-ENOMEM); goto dec_count; } } memcpy(l_new->key, key, key_size); if (percpu) { if (prealloc) { pptr = htab_elem_get_ptr(l_new, key_size); } else { /* alloc_percpu zero-fills */ pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); if (!pptr) { bpf_mem_cache_free(&htab->ma, l_new); l_new = ERR_PTR(-ENOMEM); goto dec_count; } l_new->ptr_to_pptr = pptr; pptr = *(void **)pptr; } pcpu_init_value(htab, pptr, value, onallcpus); if (!prealloc) htab_elem_set_ptr(l_new, key_size, pptr); } else if (fd_htab_map_needs_adjust(htab)) { size = round_up(size, 8); memcpy(l_new->key + round_up(key_size, 8), value, size); } else { copy_map_value(&htab->map, l_new->key + round_up(key_size, 8), value); } l_new->hash = hash; return l_new; dec_count: dec_elem_count(htab); return l_new; } static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, u64 map_flags) { if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) /* elem already exists */ return -EEXIST; if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) /* elem doesn't exist, cannot update it */ return -ENOENT; return 0; } /* Called from syscall or from eBPF program */ static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l_new = NULL, *l_old; struct hlist_nulls_head *head; unsigned long flags; struct bucket *b; u32 key_size, hash; int ret; if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) /* unknown flags */ return -EINVAL; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; if (unlikely(map_flags & BPF_F_LOCK)) { if (unlikely(!map_value_has_spin_lock(map))) return -EINVAL; /* find an element without taking the bucket lock */ l_old = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); ret = check_flags(htab, l_old, map_flags); if (ret) return ret; if (l_old) { /* grab the element lock and update value in place */ copy_map_value_locked(map, l_old->key + round_up(key_size, 8), value, false); return 0; } /* fall through, grab the bucket lock and lookup again. * 99.9% chance that the element won't be found, * but second lookup under lock has to be done. */ } ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l_old = lookup_elem_raw(head, hash, key, key_size); ret = check_flags(htab, l_old, map_flags); if (ret) goto err; if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { /* first lookup without the bucket lock didn't find the element, * but second lookup with the bucket lock found it. * This case is highly unlikely, but has to be dealt with: * grab the element lock in addition to the bucket lock * and update element in place */ copy_map_value_locked(map, l_old->key + round_up(key_size, 8), value, false); ret = 0; goto err; } l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, l_old); if (IS_ERR(l_new)) { /* all pre-allocated elements are in use or memory exhausted */ ret = PTR_ERR(l_new); goto err; } /* add new element to the head of the list, so that * concurrent search will find it before old elem */ hlist_nulls_add_head_rcu(&l_new->hash_node, head); if (l_old) { hlist_nulls_del_rcu(&l_old->hash_node); if (!htab_is_prealloc(htab)) free_htab_elem(htab, l_old); else check_and_free_fields(htab, l_old); } ret = 0; err: htab_unlock_bucket(htab, b, hash, flags); return ret; } static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) { check_and_free_fields(htab, elem); bpf_lru_push_free(&htab->lru, &elem->lru_node); } static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l_new, *l_old = NULL; struct hlist_nulls_head *head; unsigned long flags; struct bucket *b; u32 key_size, hash; int ret; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; /* For LRU, we need to alloc before taking bucket's * spinlock because getting free nodes from LRU may need * to remove older elements from htab and this removal * operation will need a bucket lock. */ l_new = prealloc_lru_pop(htab, key, hash); if (!l_new) return -ENOMEM; copy_map_value(&htab->map, l_new->key + round_up(map->key_size, 8), value); ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l_old = lookup_elem_raw(head, hash, key, key_size); ret = check_flags(htab, l_old, map_flags); if (ret) goto err; /* add new element to the head of the list, so that * concurrent search will find it before old elem */ hlist_nulls_add_head_rcu(&l_new->hash_node, head); if (l_old) { bpf_lru_node_set_ref(&l_new->lru_node); hlist_nulls_del_rcu(&l_old->hash_node); } ret = 0; err: htab_unlock_bucket(htab, b, hash, flags); if (ret) htab_lru_push_free(htab, l_new); else if (l_old) htab_lru_push_free(htab, l_old); return ret; } static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags, bool onallcpus) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l_new = NULL, *l_old; struct hlist_nulls_head *head; unsigned long flags; struct bucket *b; u32 key_size, hash; int ret; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l_old = lookup_elem_raw(head, hash, key, key_size); ret = check_flags(htab, l_old, map_flags); if (ret) goto err; if (l_old) { /* per-cpu hash map can update value in-place */ pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), value, onallcpus); } else { l_new = alloc_htab_elem(htab, key, value, key_size, hash, true, onallcpus, NULL); if (IS_ERR(l_new)) { ret = PTR_ERR(l_new); goto err; } hlist_nulls_add_head_rcu(&l_new->hash_node, head); } ret = 0; err: htab_unlock_bucket(htab, b, hash, flags); return ret; } static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags, bool onallcpus) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l_new = NULL, *l_old; struct hlist_nulls_head *head; unsigned long flags; struct bucket *b; u32 key_size, hash; int ret; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; /* For LRU, we need to alloc before taking bucket's * spinlock because LRU's elem alloc may need * to remove older elem from htab and this removal * operation will need a bucket lock. */ if (map_flags != BPF_EXIST) { l_new = prealloc_lru_pop(htab, key, hash); if (!l_new) return -ENOMEM; } ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l_old = lookup_elem_raw(head, hash, key, key_size); ret = check_flags(htab, l_old, map_flags); if (ret) goto err; if (l_old) { bpf_lru_node_set_ref(&l_old->lru_node); /* per-cpu hash map can update value in-place */ pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), value, onallcpus); } else { pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), value, onallcpus); hlist_nulls_add_head_rcu(&l_new->hash_node, head); l_new = NULL; } ret = 0; err: htab_unlock_bucket(htab, b, hash, flags); if (l_new) bpf_lru_push_free(&htab->lru, &l_new->lru_node); return ret; } static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return __htab_percpu_map_update_elem(map, key, value, map_flags, false); } static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, false); } /* Called from syscall or from eBPF program */ static int htab_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct bucket *b; struct htab_elem *l; unsigned long flags; u32 hash, key_size; int ret; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l = lookup_elem_raw(head, hash, key, key_size); if (l) { hlist_nulls_del_rcu(&l->hash_node); free_htab_elem(htab, l); } else { ret = -ENOENT; } htab_unlock_bucket(htab, b, hash, flags); return ret; } static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct bucket *b; struct htab_elem *l; unsigned long flags; u32 hash, key_size; int ret; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && !rcu_read_lock_bh_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; ret = htab_lock_bucket(htab, b, hash, &flags); if (ret) return ret; l = lookup_elem_raw(head, hash, key, key_size); if (l) hlist_nulls_del_rcu(&l->hash_node); else ret = -ENOENT; htab_unlock_bucket(htab, b, hash, flags); if (l) htab_lru_push_free(htab, l); return ret; } static void delete_all_elements(struct bpf_htab *htab) { int i; /* It's called from a worker thread, so disable migration here, * since bpf_mem_cache_free() relies on that. */ migrate_disable(); for (i = 0; i < htab->n_buckets; i++) { struct hlist_nulls_head *head = select_bucket(htab, i); struct hlist_nulls_node *n; struct htab_elem *l; hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { hlist_nulls_del_rcu(&l->hash_node); htab_elem_free(htab, l); } } migrate_enable(); } static void htab_free_malloced_timers(struct bpf_htab *htab) { int i; rcu_read_lock(); for (i = 0; i < htab->n_buckets; i++) { struct hlist_nulls_head *head = select_bucket(htab, i); struct hlist_nulls_node *n; struct htab_elem *l; hlist_nulls_for_each_entry(l, n, head, hash_node) { /* We don't reset or free kptr on uref dropping to zero, * hence just free timer. */ bpf_timer_cancel_and_free(l->key + round_up(htab->map.key_size, 8) + htab->map.timer_off); } cond_resched_rcu(); } rcu_read_unlock(); } static void htab_map_free_timers(struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); /* We don't reset or free kptr on uref dropping to zero. */ if (!map_value_has_timer(&htab->map)) return; if (!htab_is_prealloc(htab)) htab_free_malloced_timers(htab); else htab_free_prealloced_timers(htab); } /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ static void htab_map_free(struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); int i; /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. * bpf_free_used_maps() is called after bpf prog is no longer executing. * There is no need to synchronize_rcu() here to protect map elements. */ /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it * underneath and is reponsible for waiting for callbacks to finish * during bpf_mem_alloc_destroy(). */ if (!htab_is_prealloc(htab)) { delete_all_elements(htab); } else { htab_free_prealloced_kptrs(htab); prealloc_destroy(htab); } bpf_map_free_kptr_off_tab(map); free_percpu(htab->extra_elems); bpf_map_area_free(htab->buckets); bpf_mem_alloc_destroy(&htab->pcpu_ma); bpf_mem_alloc_destroy(&htab->ma); if (htab->use_percpu_counter) percpu_counter_destroy(&htab->pcount); for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) free_percpu(htab->map_locked[i]); lockdep_unregister_key(&htab->lockdep_key); bpf_map_area_free(htab); } static void htab_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { void *value; rcu_read_lock(); value = htab_map_lookup_elem(map, key); if (!value) { rcu_read_unlock(); return; } btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); seq_puts(m, ": "); btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); seq_puts(m, "\n"); rcu_read_unlock(); } static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, bool is_lru_map, bool is_percpu, u64 flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; unsigned long bflags; struct htab_elem *l; u32 hash, key_size; struct bucket *b; int ret; key_size = map->key_size; hash = htab_map_hash(key, key_size, htab->hashrnd); b = __select_bucket(htab, hash); head = &b->head; ret = htab_lock_bucket(htab, b, hash, &bflags); if (ret) return ret; l = lookup_elem_raw(head, hash, key, key_size); if (!l) { ret = -ENOENT; } else { if (is_percpu) { u32 roundup_value_size = round_up(map->value_size, 8); void __percpu *pptr; int off = 0, cpu; pptr = htab_elem_get_ptr(l, key_size); for_each_possible_cpu(cpu) { bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), roundup_value_size); off += roundup_value_size; } } else { u32 roundup_key_size = round_up(map->key_size, 8); if (flags & BPF_F_LOCK) copy_map_value_locked(map, value, l->key + roundup_key_size, true); else copy_map_value(map, value, l->key + roundup_key_size); /* Zeroing special fields in the temp buffer */ check_and_init_map_value(map, value); } hlist_nulls_del_rcu(&l->hash_node); if (!is_lru_map) free_htab_elem(htab, l); } htab_unlock_bucket(htab, b, hash, bflags); if (is_lru_map && l) htab_lru_push_free(htab, l); return ret; } static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return __htab_map_lookup_and_delete_elem(map, key, value, false, false, flags); } static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return __htab_map_lookup_and_delete_elem(map, key, value, false, true, flags); } static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return __htab_map_lookup_and_delete_elem(map, key, value, true, false, flags); } static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return __htab_map_lookup_and_delete_elem(map, key, value, true, true, flags); } static int __htab_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr, bool do_delete, bool is_lru_map, bool is_percpu) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); u32 bucket_cnt, total, key_size, value_size, roundup_key_size; void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; void __user *uvalues = u64_to_user_ptr(attr->batch.values); void __user *ukeys = u64_to_user_ptr(attr->batch.keys); void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); u32 batch, max_count, size, bucket_size, map_id; struct htab_elem *node_to_free = NULL; u64 elem_map_flags, map_flags; struct hlist_nulls_head *head; struct hlist_nulls_node *n; unsigned long flags = 0; bool locked = false; struct htab_elem *l; struct bucket *b; int ret = 0; elem_map_flags = attr->batch.elem_flags; if ((elem_map_flags & ~BPF_F_LOCK) || ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) return -EINVAL; map_flags = attr->batch.flags; if (map_flags) return -EINVAL; max_count = attr->batch.count; if (!max_count) return 0; if (put_user(0, &uattr->batch.count)) return -EFAULT; batch = 0; if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) return -EFAULT; if (batch >= htab->n_buckets) return -ENOENT; key_size = htab->map.key_size; roundup_key_size = round_up(htab->map.key_size, 8); value_size = htab->map.value_size; size = round_up(value_size, 8); if (is_percpu) value_size = size * num_possible_cpus(); total = 0; /* while experimenting with hash tables with sizes ranging from 10 to * 1000, it was observed that a bucket can have up to 5 entries. */ bucket_size = 5; alloc: /* We cannot do copy_from_user or copy_to_user inside * the rcu_read_lock. Allocate enough space here. */ keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); if (!keys || !values) { ret = -ENOMEM; goto after_loop; } again: bpf_disable_instrumentation(); rcu_read_lock(); again_nocopy: dst_key = keys; dst_val = values; b = &htab->buckets[batch]; head = &b->head; /* do not grab the lock unless need it (bucket_cnt > 0). */ if (locked) { ret = htab_lock_bucket(htab, b, batch, &flags); if (ret) { rcu_read_unlock(); bpf_enable_instrumentation(); goto after_loop; } } bucket_cnt = 0; hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) bucket_cnt++; if (bucket_cnt && !locked) { locked = true; goto again_nocopy; } if (bucket_cnt > (max_count - total)) { if (total == 0) ret = -ENOSPC; /* Note that since bucket_cnt > 0 here, it is implicit * that the locked was grabbed, so release it. */ htab_unlock_bucket(htab, b, batch, flags); rcu_read_unlock(); bpf_enable_instrumentation(); goto after_loop; } if (bucket_cnt > bucket_size) { bucket_size = bucket_cnt; /* Note that since bucket_cnt > 0 here, it is implicit * that the locked was grabbed, so release it. */ htab_unlock_bucket(htab, b, batch, flags); rcu_read_unlock(); bpf_enable_instrumentation(); kvfree(keys); kvfree(values); goto alloc; } /* Next block is only safe to run if you have grabbed the lock */ if (!locked) goto next_batch; hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { memcpy(dst_key, l->key, key_size); if (is_percpu) { int off = 0, cpu; void __percpu *pptr; pptr = htab_elem_get_ptr(l, map->key_size); for_each_possible_cpu(cpu) { bpf_long_memcpy(dst_val + off, per_cpu_ptr(pptr, cpu), size); off += size; } } else { value = l->key + roundup_key_size; if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { struct bpf_map **inner_map = value; /* Actual value is the id of the inner map */ map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); value = &map_id; } if (elem_map_flags & BPF_F_LOCK) copy_map_value_locked(map, dst_val, value, true); else copy_map_value(map, dst_val, value); /* Zeroing special fields in the temp buffer */ check_and_init_map_value(map, dst_val); } if (do_delete) { hlist_nulls_del_rcu(&l->hash_node); /* bpf_lru_push_free() will acquire lru_lock, which * may cause deadlock. See comments in function * prealloc_lru_pop(). Let us do bpf_lru_push_free() * after releasing the bucket lock. */ if (is_lru_map) { l->batch_flink = node_to_free; node_to_free = l; } else { free_htab_elem(htab, l); } } dst_key += key_size; dst_val += value_size; } htab_unlock_bucket(htab, b, batch, flags); locked = false; while (node_to_free) { l = node_to_free; node_to_free = node_to_free->batch_flink; htab_lru_push_free(htab, l); } next_batch: /* If we are not copying data, we can go to next bucket and avoid * unlocking the rcu. */ if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { batch++; goto again_nocopy; } rcu_read_unlock(); bpf_enable_instrumentation(); if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, key_size * bucket_cnt) || copy_to_user(uvalues + total * value_size, values, value_size * bucket_cnt))) { ret = -EFAULT; goto after_loop; } total += bucket_cnt; batch++; if (batch >= htab->n_buckets) { ret = -ENOENT; goto after_loop; } goto again; after_loop: if (ret == -EFAULT) goto out; /* copy # of entries and next batch */ ubatch = u64_to_user_ptr(attr->batch.out_batch); if (copy_to_user(ubatch, &batch, sizeof(batch)) || put_user(total, &uattr->batch.count)) ret = -EFAULT; out: kvfree(keys); kvfree(values); return ret; } static int htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, false, true); } static int htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, false, true); } static int htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, false, false); } static int htab_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, false, false); } static int htab_lru_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, true, true); } static int htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, true, true); } static int htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, true, false); } static int htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr) { return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, true, false); } struct bpf_iter_seq_hash_map_info { struct bpf_map *map; struct bpf_htab *htab; void *percpu_value_buf; // non-zero means percpu hash u32 bucket_id; u32 skip_elems; }; static struct htab_elem * bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, struct htab_elem *prev_elem) { const struct bpf_htab *htab = info->htab; u32 skip_elems = info->skip_elems; u32 bucket_id = info->bucket_id; struct hlist_nulls_head *head; struct hlist_nulls_node *n; struct htab_elem *elem; struct bucket *b; u32 i, count; if (bucket_id >= htab->n_buckets) return NULL; /* try to find next elem in the same bucket */ if (prev_elem) { /* no update/deletion on this bucket, prev_elem should be still valid * and we won't skip elements. */ n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); if (elem) return elem; /* not found, unlock and go to the next bucket */ b = &htab->buckets[bucket_id++]; rcu_read_unlock(); skip_elems = 0; } for (i = bucket_id; i < htab->n_buckets; i++) { b = &htab->buckets[i]; rcu_read_lock(); count = 0; head = &b->head; hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { if (count >= skip_elems) { info->bucket_id = i; info->skip_elems = count; return elem; } count++; } rcu_read_unlock(); skip_elems = 0; } info->bucket_id = i; info->skip_elems = 0; return NULL; } static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) { struct bpf_iter_seq_hash_map_info *info = seq->private; struct htab_elem *elem; elem = bpf_hash_map_seq_find_next(info, NULL); if (!elem) return NULL; if (*pos == 0) ++*pos; return elem; } static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bpf_iter_seq_hash_map_info *info = seq->private; ++*pos; ++info->skip_elems; return bpf_hash_map_seq_find_next(info, v); } static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) { struct bpf_iter_seq_hash_map_info *info = seq->private; u32 roundup_key_size, roundup_value_size; struct bpf_iter__bpf_map_elem ctx = {}; struct bpf_map *map = info->map; struct bpf_iter_meta meta; int ret = 0, off = 0, cpu; struct bpf_prog *prog; void __percpu *pptr; meta.seq = seq; prog = bpf_iter_get_info(&meta, elem == NULL); if (prog) { ctx.meta = &meta; ctx.map = info->map; if (elem) { roundup_key_size = round_up(map->key_size, 8); ctx.key = elem->key; if (!info->percpu_value_buf) { ctx.value = elem->key + roundup_key_size; } else { roundup_value_size = round_up(map->value_size, 8); pptr = htab_elem_get_ptr(elem, map->key_size); for_each_possible_cpu(cpu) { bpf_long_memcpy(info->percpu_value_buf + off, per_cpu_ptr(pptr, cpu), roundup_value_size); off += roundup_value_size; } ctx.value = info->percpu_value_buf; } } ret = bpf_iter_run_prog(prog, &ctx); } return ret; } static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) { return __bpf_hash_map_seq_show(seq, v); } static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) { if (!v) (void)__bpf_hash_map_seq_show(seq, NULL); else rcu_read_unlock(); } static int bpf_iter_init_hash_map(void *priv_data, struct bpf_iter_aux_info *aux) { struct bpf_iter_seq_hash_map_info *seq_info = priv_data; struct bpf_map *map = aux->map; void *value_buf; u32 buf_size; if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { buf_size = round_up(map->value_size, 8) * num_possible_cpus(); value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); if (!value_buf) return -ENOMEM; seq_info->percpu_value_buf = value_buf; } bpf_map_inc_with_uref(map); seq_info->map = map; seq_info->htab = container_of(map, struct bpf_htab, map); return 0; } static void bpf_iter_fini_hash_map(void *priv_data) { struct bpf_iter_seq_hash_map_info *seq_info = priv_data; bpf_map_put_with_uref(seq_info->map); kfree(seq_info->percpu_value_buf); } static const struct seq_operations bpf_hash_map_seq_ops = { .start = bpf_hash_map_seq_start, .next = bpf_hash_map_seq_next, .stop = bpf_hash_map_seq_stop, .show = bpf_hash_map_seq_show, }; static const struct bpf_iter_seq_info iter_seq_info = { .seq_ops = &bpf_hash_map_seq_ops, .init_seq_private = bpf_iter_init_hash_map, .fini_seq_private = bpf_iter_fini_hash_map, .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), }; static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, void *callback_ctx, u64 flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_head *head; struct hlist_nulls_node *n; struct htab_elem *elem; u32 roundup_key_size; int i, num_elems = 0; void __percpu *pptr; struct bucket *b; void *key, *val; bool is_percpu; u64 ret = 0; if (flags != 0) return -EINVAL; is_percpu = htab_is_percpu(htab); roundup_key_size = round_up(map->key_size, 8); /* disable migration so percpu value prepared here will be the * same as the one seen by the bpf program with bpf_map_lookup_elem(). */ if (is_percpu) migrate_disable(); for (i = 0; i < htab->n_buckets; i++) { b = &htab->buckets[i]; rcu_read_lock(); head = &b->head; hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { key = elem->key; if (is_percpu) { /* current cpu value for percpu map */ pptr = htab_elem_get_ptr(elem, map->key_size); val = this_cpu_ptr(pptr); } else { val = elem->key + roundup_key_size; } num_elems++; ret = callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)val, (u64)(long)callback_ctx, 0); /* return value: 0 - continue, 1 - stop and return */ if (ret) { rcu_read_unlock(); goto out; } } rcu_read_unlock(); } out: if (is_percpu) migrate_enable(); return num_elems; } BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) const struct bpf_map_ops htab_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = htab_map_alloc_check, .map_alloc = htab_map_alloc, .map_free = htab_map_free, .map_get_next_key = htab_map_get_next_key, .map_release_uref = htab_map_free_timers, .map_lookup_elem = htab_map_lookup_elem, .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, .map_update_elem = htab_map_update_elem, .map_delete_elem = htab_map_delete_elem, .map_gen_lookup = htab_map_gen_lookup, .map_seq_show_elem = htab_map_seq_show_elem, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_hash_elem, BATCH_OPS(htab), .map_btf_id = &htab_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; const struct bpf_map_ops htab_lru_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = htab_map_alloc_check, .map_alloc = htab_map_alloc, .map_free = htab_map_free, .map_get_next_key = htab_map_get_next_key, .map_release_uref = htab_map_free_timers, .map_lookup_elem = htab_lru_map_lookup_elem, .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, .map_update_elem = htab_lru_map_update_elem, .map_delete_elem = htab_lru_map_delete_elem, .map_gen_lookup = htab_lru_map_gen_lookup, .map_seq_show_elem = htab_map_seq_show_elem, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_hash_elem, BATCH_OPS(htab_lru), .map_btf_id = &htab_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; /* Called from eBPF program */ static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) { struct htab_elem *l = __htab_map_lookup_elem(map, key); if (l) return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); else return NULL; } static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) { struct htab_elem *l; if (cpu >= nr_cpu_ids) return NULL; l = __htab_map_lookup_elem(map, key); if (l) return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); else return NULL; } static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) { struct htab_elem *l = __htab_map_lookup_elem(map, key); if (l) { bpf_lru_node_set_ref(&l->lru_node); return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); } return NULL; } static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) { struct htab_elem *l; if (cpu >= nr_cpu_ids) return NULL; l = __htab_map_lookup_elem(map, key); if (l) { bpf_lru_node_set_ref(&l->lru_node); return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); } return NULL; } int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) { struct htab_elem *l; void __percpu *pptr; int ret = -ENOENT; int cpu, off = 0; u32 size; /* per_cpu areas are zero-filled and bpf programs can only * access 'value_size' of them, so copying rounded areas * will not leak any kernel data */ size = round_up(map->value_size, 8); rcu_read_lock(); l = __htab_map_lookup_elem(map, key); if (!l) goto out; /* We do not mark LRU map element here in order to not mess up * eviction heuristics when user space does a map walk. */ pptr = htab_elem_get_ptr(l, map->key_size); for_each_possible_cpu(cpu) { bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); off += size; } ret = 0; out: rcu_read_unlock(); return ret; } int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); int ret; rcu_read_lock(); if (htab_is_lru(htab)) ret = __htab_lru_percpu_map_update_elem(map, key, value, map_flags, true); else ret = __htab_percpu_map_update_elem(map, key, value, map_flags, true); rcu_read_unlock(); return ret; } static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { struct htab_elem *l; void __percpu *pptr; int cpu; rcu_read_lock(); l = __htab_map_lookup_elem(map, key); if (!l) { rcu_read_unlock(); return; } btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); seq_puts(m, ": {\n"); pptr = htab_elem_get_ptr(l, map->key_size); for_each_possible_cpu(cpu) { seq_printf(m, "\tcpu%d: ", cpu); btf_type_seq_show(map->btf, map->btf_value_type_id, per_cpu_ptr(pptr, cpu), m); seq_puts(m, "\n"); } seq_puts(m, "}\n"); rcu_read_unlock(); } const struct bpf_map_ops htab_percpu_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = htab_map_alloc_check, .map_alloc = htab_map_alloc, .map_free = htab_map_free, .map_get_next_key = htab_map_get_next_key, .map_lookup_elem = htab_percpu_map_lookup_elem, .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, .map_update_elem = htab_percpu_map_update_elem, .map_delete_elem = htab_map_delete_elem, .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, .map_seq_show_elem = htab_percpu_map_seq_show_elem, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_hash_elem, BATCH_OPS(htab_percpu), .map_btf_id = &htab_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; const struct bpf_map_ops htab_lru_percpu_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = htab_map_alloc_check, .map_alloc = htab_map_alloc, .map_free = htab_map_free, .map_get_next_key = htab_map_get_next_key, .map_lookup_elem = htab_lru_percpu_map_lookup_elem, .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, .map_update_elem = htab_lru_percpu_map_update_elem, .map_delete_elem = htab_lru_map_delete_elem, .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, .map_seq_show_elem = htab_percpu_map_seq_show_elem, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_hash_elem, BATCH_OPS(htab_lru_percpu), .map_btf_id = &htab_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; static int fd_htab_map_alloc_check(union bpf_attr *attr) { if (attr->value_size != sizeof(u32)) return -EINVAL; return htab_map_alloc_check(attr); } static void fd_htab_map_free(struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_nulls_node *n; struct hlist_nulls_head *head; struct htab_elem *l; int i; for (i = 0; i < htab->n_buckets; i++) { head = select_bucket(htab, i); hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { void *ptr = fd_htab_map_get_ptr(map, l); map->ops->map_fd_put_ptr(ptr); } } htab_map_free(map); } /* only called from syscall */ int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) { void **ptr; int ret = 0; if (!map->ops->map_fd_sys_lookup_elem) return -ENOTSUPP; rcu_read_lock(); ptr = htab_map_lookup_elem(map, key); if (ptr) *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); else ret = -ENOENT; rcu_read_unlock(); return ret; } /* only called from syscall */ int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags) { void *ptr; int ret; u32 ufd = *(u32 *)value; ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); if (IS_ERR(ptr)) return PTR_ERR(ptr); ret = htab_map_update_elem(map, key, &ptr, map_flags); if (ret) map->ops->map_fd_put_ptr(ptr); return ret; } static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) { struct bpf_map *map, *inner_map_meta; inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); if (IS_ERR(inner_map_meta)) return inner_map_meta; map = htab_map_alloc(attr); if (IS_ERR(map)) { bpf_map_meta_free(inner_map_meta); return map; } map->inner_map_meta = inner_map_meta; return map; } static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_map **inner_map = htab_map_lookup_elem(map, key); if (!inner_map) return NULL; return READ_ONCE(*inner_map); } static int htab_of_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; const int ret = BPF_REG_0; BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, (void *(*)(struct bpf_map *map, void *key))NULL)); *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, offsetof(struct htab_elem, key) + round_up(map->key_size, 8)); *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); return insn - insn_buf; } static void htab_of_map_free(struct bpf_map *map) { bpf_map_meta_free(map->inner_map_meta); fd_htab_map_free(map); } const struct bpf_map_ops htab_of_maps_map_ops = { .map_alloc_check = fd_htab_map_alloc_check, .map_alloc = htab_of_map_alloc, .map_free = htab_of_map_free, .map_get_next_key = htab_map_get_next_key, .map_lookup_elem = htab_of_map_lookup_elem, .map_delete_elem = htab_map_delete_elem, .map_fd_get_ptr = bpf_map_fd_get_ptr, .map_fd_put_ptr = bpf_map_fd_put_ptr, .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, .map_gen_lookup = htab_of_map_gen_lookup, .map_check_btf = map_check_no_btf, BATCH_OPS(htab), .map_btf_id = &htab_map_btf_ids[0], };