// SPDX-License-Identifier: GPL-2.0 /* * linux/kernel/sys.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Move somewhere else to avoid recompiling? */ #include #include #include #include #include "uid16.h" #ifndef SET_UNALIGN_CTL # define SET_UNALIGN_CTL(a, b) (-EINVAL) #endif #ifndef GET_UNALIGN_CTL # define GET_UNALIGN_CTL(a, b) (-EINVAL) #endif #ifndef SET_FPEMU_CTL # define SET_FPEMU_CTL(a, b) (-EINVAL) #endif #ifndef GET_FPEMU_CTL # define GET_FPEMU_CTL(a, b) (-EINVAL) #endif #ifndef SET_FPEXC_CTL # define SET_FPEXC_CTL(a, b) (-EINVAL) #endif #ifndef GET_FPEXC_CTL # define GET_FPEXC_CTL(a, b) (-EINVAL) #endif #ifndef GET_ENDIAN # define GET_ENDIAN(a, b) (-EINVAL) #endif #ifndef SET_ENDIAN # define SET_ENDIAN(a, b) (-EINVAL) #endif #ifndef GET_TSC_CTL # define GET_TSC_CTL(a) (-EINVAL) #endif #ifndef SET_TSC_CTL # define SET_TSC_CTL(a) (-EINVAL) #endif #ifndef GET_FP_MODE # define GET_FP_MODE(a) (-EINVAL) #endif #ifndef SET_FP_MODE # define SET_FP_MODE(a,b) (-EINVAL) #endif #ifndef SVE_SET_VL # define SVE_SET_VL(a) (-EINVAL) #endif #ifndef SVE_GET_VL # define SVE_GET_VL() (-EINVAL) #endif #ifndef PAC_RESET_KEYS # define PAC_RESET_KEYS(a, b) (-EINVAL) #endif #ifndef PAC_SET_ENABLED_KEYS # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL) #endif #ifndef PAC_GET_ENABLED_KEYS # define PAC_GET_ENABLED_KEYS(a) (-EINVAL) #endif #ifndef SET_TAGGED_ADDR_CTRL # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL) #endif #ifndef GET_TAGGED_ADDR_CTRL # define GET_TAGGED_ADDR_CTRL() (-EINVAL) #endif /* * this is where the system-wide overflow UID and GID are defined, for * architectures that now have 32-bit UID/GID but didn't in the past */ int overflowuid = DEFAULT_OVERFLOWUID; int overflowgid = DEFAULT_OVERFLOWGID; EXPORT_SYMBOL(overflowuid); EXPORT_SYMBOL(overflowgid); /* * the same as above, but for filesystems which can only store a 16-bit * UID and GID. as such, this is needed on all architectures */ int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; int fs_overflowgid = DEFAULT_FS_OVERFLOWGID; EXPORT_SYMBOL(fs_overflowuid); EXPORT_SYMBOL(fs_overflowgid); /* * Returns true if current's euid is same as p's uid or euid, * or has CAP_SYS_NICE to p's user_ns. * * Called with rcu_read_lock, creds are safe */ static bool set_one_prio_perm(struct task_struct *p) { const struct cred *cred = current_cred(), *pcred = __task_cred(p); if (uid_eq(pcred->uid, cred->euid) || uid_eq(pcred->euid, cred->euid)) return true; if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) return true; return false; } /* * set the priority of a task * - the caller must hold the RCU read lock */ static int set_one_prio(struct task_struct *p, int niceval, int error) { int no_nice; if (!set_one_prio_perm(p)) { error = -EPERM; goto out; } if (niceval < task_nice(p) && !can_nice(p, niceval)) { error = -EACCES; goto out; } no_nice = security_task_setnice(p, niceval); if (no_nice) { error = no_nice; goto out; } if (error == -ESRCH) error = 0; set_user_nice(p, niceval); out: return error; } SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) { struct task_struct *g, *p; struct user_struct *user; const struct cred *cred = current_cred(); int error = -EINVAL; struct pid *pgrp; kuid_t uid; if (which > PRIO_USER || which < PRIO_PROCESS) goto out; /* normalize: avoid signed division (rounding problems) */ error = -ESRCH; if (niceval < MIN_NICE) niceval = MIN_NICE; if (niceval > MAX_NICE) niceval = MAX_NICE; rcu_read_lock(); read_lock(&tasklist_lock); switch (which) { case PRIO_PROCESS: if (who) p = find_task_by_vpid(who); else p = current; if (p) error = set_one_prio(p, niceval, error); break; case PRIO_PGRP: if (who) pgrp = find_vpid(who); else pgrp = task_pgrp(current); do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { error = set_one_prio(p, niceval, error); } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); break; case PRIO_USER: uid = make_kuid(cred->user_ns, who); user = cred->user; if (!who) uid = cred->uid; else if (!uid_eq(uid, cred->uid)) { user = find_user(uid); if (!user) goto out_unlock; /* No processes for this user */ } do_each_thread(g, p) { if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) error = set_one_prio(p, niceval, error); } while_each_thread(g, p); if (!uid_eq(uid, cred->uid)) free_uid(user); /* For find_user() */ break; } out_unlock: read_unlock(&tasklist_lock); rcu_read_unlock(); out: return error; } /* * Ugh. To avoid negative return values, "getpriority()" will * not return the normal nice-value, but a negated value that * has been offset by 20 (ie it returns 40..1 instead of -20..19) * to stay compatible. */ SYSCALL_DEFINE2(getpriority, int, which, int, who) { struct task_struct *g, *p; struct user_struct *user; const struct cred *cred = current_cred(); long niceval, retval = -ESRCH; struct pid *pgrp; kuid_t uid; if (which > PRIO_USER || which < PRIO_PROCESS) return -EINVAL; rcu_read_lock(); read_lock(&tasklist_lock); switch (which) { case PRIO_PROCESS: if (who) p = find_task_by_vpid(who); else p = current; if (p) { niceval = nice_to_rlimit(task_nice(p)); if (niceval > retval) retval = niceval; } break; case PRIO_PGRP: if (who) pgrp = find_vpid(who); else pgrp = task_pgrp(current); do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { niceval = nice_to_rlimit(task_nice(p)); if (niceval > retval) retval = niceval; } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); break; case PRIO_USER: uid = make_kuid(cred->user_ns, who); user = cred->user; if (!who) uid = cred->uid; else if (!uid_eq(uid, cred->uid)) { user = find_user(uid); if (!user) goto out_unlock; /* No processes for this user */ } do_each_thread(g, p) { if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { niceval = nice_to_rlimit(task_nice(p)); if (niceval > retval) retval = niceval; } } while_each_thread(g, p); if (!uid_eq(uid, cred->uid)) free_uid(user); /* for find_user() */ break; } out_unlock: read_unlock(&tasklist_lock); rcu_read_unlock(); return retval; } /* * Unprivileged users may change the real gid to the effective gid * or vice versa. (BSD-style) * * If you set the real gid at all, or set the effective gid to a value not * equal to the real gid, then the saved gid is set to the new effective gid. * * This makes it possible for a setgid program to completely drop its * privileges, which is often a useful assertion to make when you are doing * a security audit over a program. * * The general idea is that a program which uses just setregid() will be * 100% compatible with BSD. A program which uses just setgid() will be * 100% compatible with POSIX with saved IDs. * * SMP: There are not races, the GIDs are checked only by filesystem * operations (as far as semantic preservation is concerned). */ #ifdef CONFIG_MULTIUSER long __sys_setregid(gid_t rgid, gid_t egid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kgid_t krgid, kegid; krgid = make_kgid(ns, rgid); kegid = make_kgid(ns, egid); if ((rgid != (gid_t) -1) && !gid_valid(krgid)) return -EINVAL; if ((egid != (gid_t) -1) && !gid_valid(kegid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (rgid != (gid_t) -1) { if (gid_eq(old->gid, krgid) || gid_eq(old->egid, krgid) || ns_capable_setid(old->user_ns, CAP_SETGID)) new->gid = krgid; else goto error; } if (egid != (gid_t) -1) { if (gid_eq(old->gid, kegid) || gid_eq(old->egid, kegid) || gid_eq(old->sgid, kegid) || ns_capable_setid(old->user_ns, CAP_SETGID)) new->egid = kegid; else goto error; } if (rgid != (gid_t) -1 || (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) new->sgid = new->egid; new->fsgid = new->egid; retval = security_task_fix_setgid(new, old, LSM_SETID_RE); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) { return __sys_setregid(rgid, egid); } /* * setgid() is implemented like SysV w/ SAVED_IDS * * SMP: Same implicit races as above. */ long __sys_setgid(gid_t gid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kgid_t kgid; kgid = make_kgid(ns, gid); if (!gid_valid(kgid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (ns_capable_setid(old->user_ns, CAP_SETGID)) new->gid = new->egid = new->sgid = new->fsgid = kgid; else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) new->egid = new->fsgid = kgid; else goto error; retval = security_task_fix_setgid(new, old, LSM_SETID_ID); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE1(setgid, gid_t, gid) { return __sys_setgid(gid); } /* * change the user struct in a credentials set to match the new UID */ static int set_user(struct cred *new) { struct user_struct *new_user; new_user = alloc_uid(new->uid); if (!new_user) return -EAGAIN; /* * We don't fail in case of NPROC limit excess here because too many * poorly written programs don't check set*uid() return code, assuming * it never fails if called by root. We may still enforce NPROC limit * for programs doing set*uid()+execve() by harmlessly deferring the * failure to the execve() stage. */ if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) && new_user != INIT_USER) current->flags |= PF_NPROC_EXCEEDED; else current->flags &= ~PF_NPROC_EXCEEDED; free_uid(new->user); new->user = new_user; return 0; } /* * Unprivileged users may change the real uid to the effective uid * or vice versa. (BSD-style) * * If you set the real uid at all, or set the effective uid to a value not * equal to the real uid, then the saved uid is set to the new effective uid. * * This makes it possible for a setuid program to completely drop its * privileges, which is often a useful assertion to make when you are doing * a security audit over a program. * * The general idea is that a program which uses just setreuid() will be * 100% compatible with BSD. A program which uses just setuid() will be * 100% compatible with POSIX with saved IDs. */ long __sys_setreuid(uid_t ruid, uid_t euid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kuid_t kruid, keuid; kruid = make_kuid(ns, ruid); keuid = make_kuid(ns, euid); if ((ruid != (uid_t) -1) && !uid_valid(kruid)) return -EINVAL; if ((euid != (uid_t) -1) && !uid_valid(keuid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (ruid != (uid_t) -1) { new->uid = kruid; if (!uid_eq(old->uid, kruid) && !uid_eq(old->euid, kruid) && !ns_capable_setid(old->user_ns, CAP_SETUID)) goto error; } if (euid != (uid_t) -1) { new->euid = keuid; if (!uid_eq(old->uid, keuid) && !uid_eq(old->euid, keuid) && !uid_eq(old->suid, keuid) && !ns_capable_setid(old->user_ns, CAP_SETUID)) goto error; } if (!uid_eq(new->uid, old->uid)) { retval = set_user(new); if (retval < 0) goto error; } if (ruid != (uid_t) -1 || (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) new->suid = new->euid; new->fsuid = new->euid; retval = security_task_fix_setuid(new, old, LSM_SETID_RE); if (retval < 0) goto error; retval = set_cred_ucounts(new); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) { return __sys_setreuid(ruid, euid); } /* * setuid() is implemented like SysV with SAVED_IDS * * Note that SAVED_ID's is deficient in that a setuid root program * like sendmail, for example, cannot set its uid to be a normal * user and then switch back, because if you're root, setuid() sets * the saved uid too. If you don't like this, blame the bright people * in the POSIX committee and/or USG. Note that the BSD-style setreuid() * will allow a root program to temporarily drop privileges and be able to * regain them by swapping the real and effective uid. */ long __sys_setuid(uid_t uid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kuid_t kuid; kuid = make_kuid(ns, uid); if (!uid_valid(kuid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (ns_capable_setid(old->user_ns, CAP_SETUID)) { new->suid = new->uid = kuid; if (!uid_eq(kuid, old->uid)) { retval = set_user(new); if (retval < 0) goto error; } } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { goto error; } new->fsuid = new->euid = kuid; retval = security_task_fix_setuid(new, old, LSM_SETID_ID); if (retval < 0) goto error; retval = set_cred_ucounts(new); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE1(setuid, uid_t, uid) { return __sys_setuid(uid); } /* * This function implements a generic ability to update ruid, euid, * and suid. This allows you to implement the 4.4 compatible seteuid(). */ long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kuid_t kruid, keuid, ksuid; kruid = make_kuid(ns, ruid); keuid = make_kuid(ns, euid); ksuid = make_kuid(ns, suid); if ((ruid != (uid_t) -1) && !uid_valid(kruid)) return -EINVAL; if ((euid != (uid_t) -1) && !uid_valid(keuid)) return -EINVAL; if ((suid != (uid_t) -1) && !uid_valid(ksuid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (!ns_capable_setid(old->user_ns, CAP_SETUID)) { if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid)) goto error; if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid)) goto error; if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid)) goto error; } if (ruid != (uid_t) -1) { new->uid = kruid; if (!uid_eq(kruid, old->uid)) { retval = set_user(new); if (retval < 0) goto error; } } if (euid != (uid_t) -1) new->euid = keuid; if (suid != (uid_t) -1) new->suid = ksuid; new->fsuid = new->euid; retval = security_task_fix_setuid(new, old, LSM_SETID_RES); if (retval < 0) goto error; retval = set_cred_ucounts(new); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) { return __sys_setresuid(ruid, euid, suid); } SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) { const struct cred *cred = current_cred(); int retval; uid_t ruid, euid, suid; ruid = from_kuid_munged(cred->user_ns, cred->uid); euid = from_kuid_munged(cred->user_ns, cred->euid); suid = from_kuid_munged(cred->user_ns, cred->suid); retval = put_user(ruid, ruidp); if (!retval) { retval = put_user(euid, euidp); if (!retval) return put_user(suid, suidp); } return retval; } /* * Same as above, but for rgid, egid, sgid. */ long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) { struct user_namespace *ns = current_user_ns(); const struct cred *old; struct cred *new; int retval; kgid_t krgid, kegid, ksgid; krgid = make_kgid(ns, rgid); kegid = make_kgid(ns, egid); ksgid = make_kgid(ns, sgid); if ((rgid != (gid_t) -1) && !gid_valid(krgid)) return -EINVAL; if ((egid != (gid_t) -1) && !gid_valid(kegid)) return -EINVAL; if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) return -EINVAL; new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); retval = -EPERM; if (!ns_capable_setid(old->user_ns, CAP_SETGID)) { if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid)) goto error; if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid)) goto error; if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid)) goto error; } if (rgid != (gid_t) -1) new->gid = krgid; if (egid != (gid_t) -1) new->egid = kegid; if (sgid != (gid_t) -1) new->sgid = ksgid; new->fsgid = new->egid; retval = security_task_fix_setgid(new, old, LSM_SETID_RES); if (retval < 0) goto error; return commit_creds(new); error: abort_creds(new); return retval; } SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) { return __sys_setresgid(rgid, egid, sgid); } SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) { const struct cred *cred = current_cred(); int retval; gid_t rgid, egid, sgid; rgid = from_kgid_munged(cred->user_ns, cred->gid); egid = from_kgid_munged(cred->user_ns, cred->egid); sgid = from_kgid_munged(cred->user_ns, cred->sgid); retval = put_user(rgid, rgidp); if (!retval) { retval = put_user(egid, egidp); if (!retval) retval = put_user(sgid, sgidp); } return retval; } /* * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This * is used for "access()" and for the NFS daemon (letting nfsd stay at * whatever uid it wants to). It normally shadows "euid", except when * explicitly set by setfsuid() or for access.. */ long __sys_setfsuid(uid_t uid) { const struct cred *old; struct cred *new; uid_t old_fsuid; kuid_t kuid; old = current_cred(); old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); kuid = make_kuid(old->user_ns, uid); if (!uid_valid(kuid)) return old_fsuid; new = prepare_creds(); if (!new) return old_fsuid; if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || ns_capable_setid(old->user_ns, CAP_SETUID)) { if (!uid_eq(kuid, old->fsuid)) { new->fsuid = kuid; if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) goto change_okay; } } abort_creds(new); return old_fsuid; change_okay: commit_creds(new); return old_fsuid; } SYSCALL_DEFINE1(setfsuid, uid_t, uid) { return __sys_setfsuid(uid); } /* * Samma på svenska.. */ long __sys_setfsgid(gid_t gid) { const struct cred *old; struct cred *new; gid_t old_fsgid; kgid_t kgid; old = current_cred(); old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); kgid = make_kgid(old->user_ns, gid); if (!gid_valid(kgid)) return old_fsgid; new = prepare_creds(); if (!new) return old_fsgid; if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || ns_capable_setid(old->user_ns, CAP_SETGID)) { if (!gid_eq(kgid, old->fsgid)) { new->fsgid = kgid; if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0) goto change_okay; } } abort_creds(new); return old_fsgid; change_okay: commit_creds(new); return old_fsgid; } SYSCALL_DEFINE1(setfsgid, gid_t, gid) { return __sys_setfsgid(gid); } #endif /* CONFIG_MULTIUSER */ /** * sys_getpid - return the thread group id of the current process * * Note, despite the name, this returns the tgid not the pid. The tgid and * the pid are identical unless CLONE_THREAD was specified on clone() in * which case the tgid is the same in all threads of the same group. * * This is SMP safe as current->tgid does not change. */ SYSCALL_DEFINE0(getpid) { return task_tgid_vnr(current); } /* Thread ID - the internal kernel "pid" */ SYSCALL_DEFINE0(gettid) { return task_pid_vnr(current); } /* * Accessing ->real_parent is not SMP-safe, it could * change from under us. However, we can use a stale * value of ->real_parent under rcu_read_lock(), see * release_task()->call_rcu(delayed_put_task_struct). */ SYSCALL_DEFINE0(getppid) { int pid; rcu_read_lock(); pid = task_tgid_vnr(rcu_dereference(current->real_parent)); rcu_read_unlock(); return pid; } SYSCALL_DEFINE0(getuid) { /* Only we change this so SMP safe */ return from_kuid_munged(current_user_ns(), current_uid()); } SYSCALL_DEFINE0(geteuid) { /* Only we change this so SMP safe */ return from_kuid_munged(current_user_ns(), current_euid()); } SYSCALL_DEFINE0(getgid) { /* Only we change this so SMP safe */ return from_kgid_munged(current_user_ns(), current_gid()); } SYSCALL_DEFINE0(getegid) { /* Only we change this so SMP safe */ return from_kgid_munged(current_user_ns(), current_egid()); } static void do_sys_times(struct tms *tms) { u64 tgutime, tgstime, cutime, cstime; thread_group_cputime_adjusted(current, &tgutime, &tgstime); cutime = current->signal->cutime; cstime = current->signal->cstime; tms->tms_utime = nsec_to_clock_t(tgutime); tms->tms_stime = nsec_to_clock_t(tgstime); tms->tms_cutime = nsec_to_clock_t(cutime); tms->tms_cstime = nsec_to_clock_t(cstime); } SYSCALL_DEFINE1(times, struct tms __user *, tbuf) { if (tbuf) { struct tms tmp; do_sys_times(&tmp); if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) return -EFAULT; } force_successful_syscall_return(); return (long) jiffies_64_to_clock_t(get_jiffies_64()); } #ifdef CONFIG_COMPAT static compat_clock_t clock_t_to_compat_clock_t(clock_t x) { return compat_jiffies_to_clock_t(clock_t_to_jiffies(x)); } COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf) { if (tbuf) { struct tms tms; struct compat_tms tmp; do_sys_times(&tms); /* Convert our struct tms to the compat version. */ tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime); tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime); tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime); tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime); if (copy_to_user(tbuf, &tmp, sizeof(tmp))) return -EFAULT; } force_successful_syscall_return(); return compat_jiffies_to_clock_t(jiffies); } #endif /* * This needs some heavy checking ... * I just haven't the stomach for it. I also don't fully * understand sessions/pgrp etc. Let somebody who does explain it. * * OK, I think I have the protection semantics right.... this is really * only important on a multi-user system anyway, to make sure one user * can't send a signal to a process owned by another. -TYT, 12/12/91 * * !PF_FORKNOEXEC check to conform completely to POSIX. */ SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) { struct task_struct *p; struct task_struct *group_leader = current->group_leader; struct pid *pgrp; int err; if (!pid) pid = task_pid_vnr(group_leader); if (!pgid) pgid = pid; if (pgid < 0) return -EINVAL; rcu_read_lock(); /* From this point forward we keep holding onto the tasklist lock * so that our parent does not change from under us. -DaveM */ write_lock_irq(&tasklist_lock); err = -ESRCH; p = find_task_by_vpid(pid); if (!p) goto out; err = -EINVAL; if (!thread_group_leader(p)) goto out; if (same_thread_group(p->real_parent, group_leader)) { err = -EPERM; if (task_session(p) != task_session(group_leader)) goto out; err = -EACCES; if (!(p->flags & PF_FORKNOEXEC)) goto out; } else { err = -ESRCH; if (p != group_leader) goto out; } err = -EPERM; if (p->signal->leader) goto out; pgrp = task_pid(p); if (pgid != pid) { struct task_struct *g; pgrp = find_vpid(pgid); g = pid_task(pgrp, PIDTYPE_PGID); if (!g || task_session(g) != task_session(group_leader)) goto out; } err = security_task_setpgid(p, pgid); if (err) goto out; if (task_pgrp(p) != pgrp) change_pid(p, PIDTYPE_PGID, pgrp); err = 0; out: /* All paths lead to here, thus we are safe. -DaveM */ write_unlock_irq(&tasklist_lock); rcu_read_unlock(); return err; } static int do_getpgid(pid_t pid) { struct task_struct *p; struct pid *grp; int retval; rcu_read_lock(); if (!pid) grp = task_pgrp(current); else { retval = -ESRCH; p = find_task_by_vpid(pid); if (!p) goto out; grp = task_pgrp(p); if (!grp) goto out; retval = security_task_getpgid(p); if (retval) goto out; } retval = pid_vnr(grp); out: rcu_read_unlock(); return retval; } SYSCALL_DEFINE1(getpgid, pid_t, pid) { return do_getpgid(pid); } #ifdef __ARCH_WANT_SYS_GETPGRP SYSCALL_DEFINE0(getpgrp) { return do_getpgid(0); } #endif SYSCALL_DEFINE1(getsid, pid_t, pid) { struct task_struct *p; struct pid *sid; int retval; rcu_read_lock(); if (!pid) sid = task_session(current); else { retval = -ESRCH; p = find_task_by_vpid(pid); if (!p) goto out; sid = task_session(p); if (!sid) goto out; retval = security_task_getsid(p); if (retval) goto out; } retval = pid_vnr(sid); out: rcu_read_unlock(); return retval; } static void set_special_pids(struct pid *pid) { struct task_struct *curr = current->group_leader; if (task_session(curr) != pid) change_pid(curr, PIDTYPE_SID, pid); if (task_pgrp(curr) != pid) change_pid(curr, PIDTYPE_PGID, pid); } int ksys_setsid(void) { struct task_struct *group_leader = current->group_leader; struct pid *sid = task_pid(group_leader); pid_t session = pid_vnr(sid); int err = -EPERM; write_lock_irq(&tasklist_lock); /* Fail if I am already a session leader */ if (group_leader->signal->leader) goto out; /* Fail if a process group id already exists that equals the * proposed session id. */ if (pid_task(sid, PIDTYPE_PGID)) goto out; group_leader->signal->leader = 1; set_special_pids(sid); proc_clear_tty(group_leader); err = session; out: write_unlock_irq(&tasklist_lock); if (err > 0) { proc_sid_connector(group_leader); sched_autogroup_create_attach(group_leader); } return err; } SYSCALL_DEFINE0(setsid) { return ksys_setsid(); } DECLARE_RWSEM(uts_sem); #ifdef COMPAT_UTS_MACHINE #define override_architecture(name) \ (personality(current->personality) == PER_LINUX32 && \ copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ sizeof(COMPAT_UTS_MACHINE))) #else #define override_architecture(name) 0 #endif /* * Work around broken programs that cannot handle "Linux 3.0". * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be * 2.6.60. */ static int override_release(char __user *release, size_t len) { int ret = 0; if (current->personality & UNAME26) { const char *rest = UTS_RELEASE; char buf[65] = { 0 }; int ndots = 0; unsigned v; size_t copy; while (*rest) { if (*rest == '.' && ++ndots >= 3) break; if (!isdigit(*rest) && *rest != '.') break; rest++; } v = LINUX_VERSION_PATCHLEVEL + 60; copy = clamp_t(size_t, len, 1, sizeof(buf)); copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); ret = copy_to_user(release, buf, copy + 1); } return ret; } SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) { struct new_utsname tmp; down_read(&uts_sem); memcpy(&tmp, utsname(), sizeof(tmp)); up_read(&uts_sem); if (copy_to_user(name, &tmp, sizeof(tmp))) return -EFAULT; if (override_release(name->release, sizeof(name->release))) return -EFAULT; if (override_architecture(name)) return -EFAULT; return 0; } #ifdef __ARCH_WANT_SYS_OLD_UNAME /* * Old cruft */ SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) { struct old_utsname tmp; if (!name) return -EFAULT; down_read(&uts_sem); memcpy(&tmp, utsname(), sizeof(tmp)); up_read(&uts_sem); if (copy_to_user(name, &tmp, sizeof(tmp))) return -EFAULT; if (override_release(name->release, sizeof(name->release))) return -EFAULT; if (override_architecture(name)) return -EFAULT; return 0; } SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) { struct oldold_utsname tmp; if (!name) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); down_read(&uts_sem); memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN); memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN); memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN); memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN); memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN); up_read(&uts_sem); if (copy_to_user(name, &tmp, sizeof(tmp))) return -EFAULT; if (override_architecture(name)) return -EFAULT; if (override_release(name->release, sizeof(name->release))) return -EFAULT; return 0; } #endif SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) { int errno; char tmp[__NEW_UTS_LEN]; if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; if (len < 0 || len > __NEW_UTS_LEN) return -EINVAL; errno = -EFAULT; if (!copy_from_user(tmp, name, len)) { struct new_utsname *u; down_write(&uts_sem); u = utsname(); memcpy(u->nodename, tmp, len); memset(u->nodename + len, 0, sizeof(u->nodename) - len); errno = 0; uts_proc_notify(UTS_PROC_HOSTNAME); up_write(&uts_sem); } return errno; } #ifdef __ARCH_WANT_SYS_GETHOSTNAME SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) { int i; struct new_utsname *u; char tmp[__NEW_UTS_LEN + 1]; if (len < 0) return -EINVAL; down_read(&uts_sem); u = utsname(); i = 1 + strlen(u->nodename); if (i > len) i = len; memcpy(tmp, u->nodename, i); up_read(&uts_sem); if (copy_to_user(name, tmp, i)) return -EFAULT; return 0; } #endif /* * Only setdomainname; getdomainname can be implemented by calling * uname() */ SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) { int errno; char tmp[__NEW_UTS_LEN]; if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; if (len < 0 || len > __NEW_UTS_LEN) return -EINVAL; errno = -EFAULT; if (!copy_from_user(tmp, name, len)) { struct new_utsname *u; down_write(&uts_sem); u = utsname(); memcpy(u->domainname, tmp, len); memset(u->domainname + len, 0, sizeof(u->domainname) - len); errno = 0; uts_proc_notify(UTS_PROC_DOMAINNAME); up_write(&uts_sem); } return errno; } SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) { struct rlimit value; int ret; ret = do_prlimit(current, resource, NULL, &value); if (!ret) ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; return ret; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct compat_rlimit __user *, rlim) { struct rlimit r; struct compat_rlimit r32; if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit))) return -EFAULT; if (r32.rlim_cur == COMPAT_RLIM_INFINITY) r.rlim_cur = RLIM_INFINITY; else r.rlim_cur = r32.rlim_cur; if (r32.rlim_max == COMPAT_RLIM_INFINITY) r.rlim_max = RLIM_INFINITY; else r.rlim_max = r32.rlim_max; return do_prlimit(current, resource, &r, NULL); } COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct compat_rlimit __user *, rlim) { struct rlimit r; int ret; ret = do_prlimit(current, resource, NULL, &r); if (!ret) { struct compat_rlimit r32; if (r.rlim_cur > COMPAT_RLIM_INFINITY) r32.rlim_cur = COMPAT_RLIM_INFINITY; else r32.rlim_cur = r.rlim_cur; if (r.rlim_max > COMPAT_RLIM_INFINITY) r32.rlim_max = COMPAT_RLIM_INFINITY; else r32.rlim_max = r.rlim_max; if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit))) return -EFAULT; } return ret; } #endif #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT /* * Back compatibility for getrlimit. Needed for some apps. */ SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, struct rlimit __user *, rlim) { struct rlimit x; if (resource >= RLIM_NLIMITS) return -EINVAL; resource = array_index_nospec(resource, RLIM_NLIMITS); task_lock(current->group_leader); x = current->signal->rlim[resource]; task_unlock(current->group_leader); if (x.rlim_cur > 0x7FFFFFFF) x.rlim_cur = 0x7FFFFFFF; if (x.rlim_max > 0x7FFFFFFF) x.rlim_max = 0x7FFFFFFF; return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, struct compat_rlimit __user *, rlim) { struct rlimit r; if (resource >= RLIM_NLIMITS) return -EINVAL; resource = array_index_nospec(resource, RLIM_NLIMITS); task_lock(current->group_leader); r = current->signal->rlim[resource]; task_unlock(current->group_leader); if (r.rlim_cur > 0x7FFFFFFF) r.rlim_cur = 0x7FFFFFFF; if (r.rlim_max > 0x7FFFFFFF) r.rlim_max = 0x7FFFFFFF; if (put_user(r.rlim_cur, &rlim->rlim_cur) || put_user(r.rlim_max, &rlim->rlim_max)) return -EFAULT; return 0; } #endif #endif static inline bool rlim64_is_infinity(__u64 rlim64) { #if BITS_PER_LONG < 64 return rlim64 >= ULONG_MAX; #else return rlim64 == RLIM64_INFINITY; #endif } static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) { if (rlim->rlim_cur == RLIM_INFINITY) rlim64->rlim_cur = RLIM64_INFINITY; else rlim64->rlim_cur = rlim->rlim_cur; if (rlim->rlim_max == RLIM_INFINITY) rlim64->rlim_max = RLIM64_INFINITY; else rlim64->rlim_max = rlim->rlim_max; } static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) { if (rlim64_is_infinity(rlim64->rlim_cur)) rlim->rlim_cur = RLIM_INFINITY; else rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; if (rlim64_is_infinity(rlim64->rlim_max)) rlim->rlim_max = RLIM_INFINITY; else rlim->rlim_max = (unsigned long)rlim64->rlim_max; } /* make sure you are allowed to change @tsk limits before calling this */ int do_prlimit(struct task_struct *tsk, unsigned int resource, struct rlimit *new_rlim, struct rlimit *old_rlim) { struct rlimit *rlim; int retval = 0; if (resource >= RLIM_NLIMITS) return -EINVAL; if (new_rlim) { if (new_rlim->rlim_cur > new_rlim->rlim_max) return -EINVAL; if (resource == RLIMIT_NOFILE && new_rlim->rlim_max > sysctl_nr_open) return -EPERM; } /* protect tsk->signal and tsk->sighand from disappearing */ read_lock(&tasklist_lock); if (!tsk->sighand) { retval = -ESRCH; goto out; } rlim = tsk->signal->rlim + resource; task_lock(tsk->group_leader); if (new_rlim) { /* Keep the capable check against init_user_ns until cgroups can contain all limits */ if (new_rlim->rlim_max > rlim->rlim_max && !capable(CAP_SYS_RESOURCE)) retval = -EPERM; if (!retval) retval = security_task_setrlimit(tsk, resource, new_rlim); } if (!retval) { if (old_rlim) *old_rlim = *rlim; if (new_rlim) *rlim = *new_rlim; } task_unlock(tsk->group_leader); /* * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not * infinite. In case of RLIM_INFINITY the posix CPU timer code * ignores the rlimit. */ if (!retval && new_rlim && resource == RLIMIT_CPU && new_rlim->rlim_cur != RLIM_INFINITY && IS_ENABLED(CONFIG_POSIX_TIMERS)) update_rlimit_cpu(tsk, new_rlim->rlim_cur); out: read_unlock(&tasklist_lock); return retval; } /* rcu lock must be held */ static int check_prlimit_permission(struct task_struct *task, unsigned int flags) { const struct cred *cred = current_cred(), *tcred; bool id_match; if (current == task) return 0; tcred = __task_cred(task); id_match = (uid_eq(cred->uid, tcred->euid) && uid_eq(cred->uid, tcred->suid) && uid_eq(cred->uid, tcred->uid) && gid_eq(cred->gid, tcred->egid) && gid_eq(cred->gid, tcred->sgid) && gid_eq(cred->gid, tcred->gid)); if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) return -EPERM; return security_task_prlimit(cred, tcred, flags); } SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, const struct rlimit64 __user *, new_rlim, struct rlimit64 __user *, old_rlim) { struct rlimit64 old64, new64; struct rlimit old, new; struct task_struct *tsk; unsigned int checkflags = 0; int ret; if (old_rlim) checkflags |= LSM_PRLIMIT_READ; if (new_rlim) { if (copy_from_user(&new64, new_rlim, sizeof(new64))) return -EFAULT; rlim64_to_rlim(&new64, &new); checkflags |= LSM_PRLIMIT_WRITE; } rcu_read_lock(); tsk = pid ? find_task_by_vpid(pid) : current; if (!tsk) { rcu_read_unlock(); return -ESRCH; } ret = check_prlimit_permission(tsk, checkflags); if (ret) { rcu_read_unlock(); return ret; } get_task_struct(tsk); rcu_read_unlock(); ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, old_rlim ? &old : NULL); if (!ret && old_rlim) { rlim_to_rlim64(&old, &old64); if (copy_to_user(old_rlim, &old64, sizeof(old64))) ret = -EFAULT; } put_task_struct(tsk); return ret; } SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) { struct rlimit new_rlim; if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) return -EFAULT; return do_prlimit(current, resource, &new_rlim, NULL); } /* * It would make sense to put struct rusage in the task_struct, * except that would make the task_struct be *really big*. After * task_struct gets moved into malloc'ed memory, it would * make sense to do this. It will make moving the rest of the information * a lot simpler! (Which we're not doing right now because we're not * measuring them yet). * * When sampling multiple threads for RUSAGE_SELF, under SMP we might have * races with threads incrementing their own counters. But since word * reads are atomic, we either get new values or old values and we don't * care which for the sums. We always take the siglock to protect reading * the c* fields from p->signal from races with exit.c updating those * fields when reaping, so a sample either gets all the additions of a * given child after it's reaped, or none so this sample is before reaping. * * Locking: * We need to take the siglock for CHILDEREN, SELF and BOTH * for the cases current multithreaded, non-current single threaded * non-current multithreaded. Thread traversal is now safe with * the siglock held. * Strictly speaking, we donot need to take the siglock if we are current and * single threaded, as no one else can take our signal_struct away, no one * else can reap the children to update signal->c* counters, and no one else * can race with the signal-> fields. If we do not take any lock, the * signal-> fields could be read out of order while another thread was just * exiting. So we should place a read memory barrier when we avoid the lock. * On the writer side, write memory barrier is implied in __exit_signal * as __exit_signal releases the siglock spinlock after updating the signal-> * fields. But we don't do this yet to keep things simple. * */ static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) { r->ru_nvcsw += t->nvcsw; r->ru_nivcsw += t->nivcsw; r->ru_minflt += t->min_flt; r->ru_majflt += t->maj_flt; r->ru_inblock += task_io_get_inblock(t); r->ru_oublock += task_io_get_oublock(t); } void getrusage(struct task_struct *p, int who, struct rusage *r) { struct task_struct *t; unsigned long flags; u64 tgutime, tgstime, utime, stime; unsigned long maxrss = 0; memset((char *)r, 0, sizeof (*r)); utime = stime = 0; if (who == RUSAGE_THREAD) { task_cputime_adjusted(current, &utime, &stime); accumulate_thread_rusage(p, r); maxrss = p->signal->maxrss; goto out; } if (!lock_task_sighand(p, &flags)) return; switch (who) { case RUSAGE_BOTH: case RUSAGE_CHILDREN: utime = p->signal->cutime; stime = p->signal->cstime; r->ru_nvcsw = p->signal->cnvcsw; r->ru_nivcsw = p->signal->cnivcsw; r->ru_minflt = p->signal->cmin_flt; r->ru_majflt = p->signal->cmaj_flt; r->ru_inblock = p->signal->cinblock; r->ru_oublock = p->signal->coublock; maxrss = p->signal->cmaxrss; if (who == RUSAGE_CHILDREN) break; fallthrough; case RUSAGE_SELF: thread_group_cputime_adjusted(p, &tgutime, &tgstime); utime += tgutime; stime += tgstime; r->ru_nvcsw += p->signal->nvcsw; r->ru_nivcsw += p->signal->nivcsw; r->ru_minflt += p->signal->min_flt; r->ru_majflt += p->signal->maj_flt; r->ru_inblock += p->signal->inblock; r->ru_oublock += p->signal->oublock; if (maxrss < p->signal->maxrss) maxrss = p->signal->maxrss; t = p; do { accumulate_thread_rusage(t, r); } while_each_thread(p, t); break; default: BUG(); } unlock_task_sighand(p, &flags); out: r->ru_utime = ns_to_kernel_old_timeval(utime); r->ru_stime = ns_to_kernel_old_timeval(stime); if (who != RUSAGE_CHILDREN) { struct mm_struct *mm = get_task_mm(p); if (mm) { setmax_mm_hiwater_rss(&maxrss, mm); mmput(mm); } } r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ } SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) { struct rusage r; if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && who != RUSAGE_THREAD) return -EINVAL; getrusage(current, who, &r); return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) { struct rusage r; if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && who != RUSAGE_THREAD) return -EINVAL; getrusage(current, who, &r); return put_compat_rusage(&r, ru); } #endif SYSCALL_DEFINE1(umask, int, mask) { mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); return mask; } static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) { struct fd exe; struct inode *inode; int err; exe = fdget(fd); if (!exe.file) return -EBADF; inode = file_inode(exe.file); /* * Because the original mm->exe_file points to executable file, make * sure that this one is executable as well, to avoid breaking an * overall picture. */ err = -EACCES; if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path)) goto exit; err = file_permission(exe.file, MAY_EXEC); if (err) goto exit; err = replace_mm_exe_file(mm, exe.file); exit: fdput(exe); return err; } /* * Check arithmetic relations of passed addresses. * * WARNING: we don't require any capability here so be very careful * in what is allowed for modification from userspace. */ static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map) { unsigned long mmap_max_addr = TASK_SIZE; int error = -EINVAL, i; static const unsigned char offsets[] = { offsetof(struct prctl_mm_map, start_code), offsetof(struct prctl_mm_map, end_code), offsetof(struct prctl_mm_map, start_data), offsetof(struct prctl_mm_map, end_data), offsetof(struct prctl_mm_map, start_brk), offsetof(struct prctl_mm_map, brk), offsetof(struct prctl_mm_map, start_stack), offsetof(struct prctl_mm_map, arg_start), offsetof(struct prctl_mm_map, arg_end), offsetof(struct prctl_mm_map, env_start), offsetof(struct prctl_mm_map, env_end), }; /* * Make sure the members are not somewhere outside * of allowed address space. */ for (i = 0; i < ARRAY_SIZE(offsets); i++) { u64 val = *(u64 *)((char *)prctl_map + offsets[i]); if ((unsigned long)val >= mmap_max_addr || (unsigned long)val < mmap_min_addr) goto out; } /* * Make sure the pairs are ordered. */ #define __prctl_check_order(__m1, __op, __m2) \ ((unsigned long)prctl_map->__m1 __op \ (unsigned long)prctl_map->__m2) ? 0 : -EINVAL error = __prctl_check_order(start_code, <, end_code); error |= __prctl_check_order(start_data,<=, end_data); error |= __prctl_check_order(start_brk, <=, brk); error |= __prctl_check_order(arg_start, <=, arg_end); error |= __prctl_check_order(env_start, <=, env_end); if (error) goto out; #undef __prctl_check_order error = -EINVAL; /* * @brk should be after @end_data in traditional maps. */ if (prctl_map->start_brk <= prctl_map->end_data || prctl_map->brk <= prctl_map->end_data) goto out; /* * Neither we should allow to override limits if they set. */ if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, prctl_map->start_brk, prctl_map->end_data, prctl_map->start_data)) goto out; error = 0; out: return error; } #ifdef CONFIG_CHECKPOINT_RESTORE static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) { struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; unsigned long user_auxv[AT_VECTOR_SIZE]; struct mm_struct *mm = current->mm; int error; BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); if (opt == PR_SET_MM_MAP_SIZE) return put_user((unsigned int)sizeof(prctl_map), (unsigned int __user *)addr); if (data_size != sizeof(prctl_map)) return -EINVAL; if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) return -EFAULT; error = validate_prctl_map_addr(&prctl_map); if (error) return error; if (prctl_map.auxv_size) { /* * Someone is trying to cheat the auxv vector. */ if (!prctl_map.auxv || prctl_map.auxv_size > sizeof(mm->saved_auxv)) return -EINVAL; memset(user_auxv, 0, sizeof(user_auxv)); if (copy_from_user(user_auxv, (const void __user *)prctl_map.auxv, prctl_map.auxv_size)) return -EFAULT; /* Last entry must be AT_NULL as specification requires */ user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; } if (prctl_map.exe_fd != (u32)-1) { /* * Check if the current user is checkpoint/restore capable. * At the time of this writing, it checks for CAP_SYS_ADMIN * or CAP_CHECKPOINT_RESTORE. * Note that a user with access to ptrace can masquerade an * arbitrary program as any executable, even setuid ones. * This may have implications in the tomoyo subsystem. */ if (!checkpoint_restore_ns_capable(current_user_ns())) return -EPERM; error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); if (error) return error; } /* * arg_lock protects concurrent updates but we still need mmap_lock for * read to exclude races with sys_brk. */ mmap_read_lock(mm); /* * We don't validate if these members are pointing to * real present VMAs because application may have correspond * VMAs already unmapped and kernel uses these members for statistics * output in procfs mostly, except * * - @start_brk/@brk which are used in do_brk_flags but kernel lookups * for VMAs when updating these members so anything wrong written * here cause kernel to swear at userspace program but won't lead * to any problem in kernel itself */ spin_lock(&mm->arg_lock); mm->start_code = prctl_map.start_code; mm->end_code = prctl_map.end_code; mm->start_data = prctl_map.start_data; mm->end_data = prctl_map.end_data; mm->start_brk = prctl_map.start_brk; mm->brk = prctl_map.brk; mm->start_stack = prctl_map.start_stack; mm->arg_start = prctl_map.arg_start; mm->arg_end = prctl_map.arg_end; mm->env_start = prctl_map.env_start; mm->env_end = prctl_map.env_end; spin_unlock(&mm->arg_lock); /* * Note this update of @saved_auxv is lockless thus * if someone reads this member in procfs while we're * updating -- it may get partly updated results. It's * known and acceptable trade off: we leave it as is to * not introduce additional locks here making the kernel * more complex. */ if (prctl_map.auxv_size) memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); mmap_read_unlock(mm); return 0; } #endif /* CONFIG_CHECKPOINT_RESTORE */ static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, unsigned long len) { /* * This doesn't move the auxiliary vector itself since it's pinned to * mm_struct, but it permits filling the vector with new values. It's * up to the caller to provide sane values here, otherwise userspace * tools which use this vector might be unhappy. */ unsigned long user_auxv[AT_VECTOR_SIZE] = {}; if (len > sizeof(user_auxv)) return -EINVAL; if (copy_from_user(user_auxv, (const void __user *)addr, len)) return -EFAULT; /* Make sure the last entry is always AT_NULL */ user_auxv[AT_VECTOR_SIZE - 2] = 0; user_auxv[AT_VECTOR_SIZE - 1] = 0; BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); task_lock(current); memcpy(mm->saved_auxv, user_auxv, len); task_unlock(current); return 0; } static int prctl_set_mm(int opt, unsigned long addr, unsigned long arg4, unsigned long arg5) { struct mm_struct *mm = current->mm; struct prctl_mm_map prctl_map = { .auxv = NULL, .auxv_size = 0, .exe_fd = -1, }; struct vm_area_struct *vma; int error; if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && opt != PR_SET_MM_MAP && opt != PR_SET_MM_MAP_SIZE))) return -EINVAL; #ifdef CONFIG_CHECKPOINT_RESTORE if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) return prctl_set_mm_map(opt, (const void __user *)addr, arg4); #endif if (!capable(CAP_SYS_RESOURCE)) return -EPERM; if (opt == PR_SET_MM_EXE_FILE) return prctl_set_mm_exe_file(mm, (unsigned int)addr); if (opt == PR_SET_MM_AUXV) return prctl_set_auxv(mm, addr, arg4); if (addr >= TASK_SIZE || addr < mmap_min_addr) return -EINVAL; error = -EINVAL; /* * arg_lock protects concurrent updates of arg boundaries, we need * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr * validation. */ mmap_read_lock(mm); vma = find_vma(mm, addr); spin_lock(&mm->arg_lock); prctl_map.start_code = mm->start_code; prctl_map.end_code = mm->end_code; prctl_map.start_data = mm->start_data; prctl_map.end_data = mm->end_data; prctl_map.start_brk = mm->start_brk; prctl_map.brk = mm->brk; prctl_map.start_stack = mm->start_stack; prctl_map.arg_start = mm->arg_start; prctl_map.arg_end = mm->arg_end; prctl_map.env_start = mm->env_start; prctl_map.env_end = mm->env_end; switch (opt) { case PR_SET_MM_START_CODE: prctl_map.start_code = addr; break; case PR_SET_MM_END_CODE: prctl_map.end_code = addr; break; case PR_SET_MM_START_DATA: prctl_map.start_data = addr; break; case PR_SET_MM_END_DATA: prctl_map.end_data = addr; break; case PR_SET_MM_START_STACK: prctl_map.start_stack = addr; break; case PR_SET_MM_START_BRK: prctl_map.start_brk = addr; break; case PR_SET_MM_BRK: prctl_map.brk = addr; break; case PR_SET_MM_ARG_START: prctl_map.arg_start = addr; break; case PR_SET_MM_ARG_END: prctl_map.arg_end = addr; break; case PR_SET_MM_ENV_START: prctl_map.env_start = addr; break; case PR_SET_MM_ENV_END: prctl_map.env_end = addr; break; default: goto out; } error = validate_prctl_map_addr(&prctl_map); if (error) goto out; switch (opt) { /* * If command line arguments and environment * are placed somewhere else on stack, we can * set them up here, ARG_START/END to setup * command line arguments and ENV_START/END * for environment. */ case PR_SET_MM_START_STACK: case PR_SET_MM_ARG_START: case PR_SET_MM_ARG_END: case PR_SET_MM_ENV_START: case PR_SET_MM_ENV_END: if (!vma) { error = -EFAULT; goto out; } } mm->start_code = prctl_map.start_code; mm->end_code = prctl_map.end_code; mm->start_data = prctl_map.start_data; mm->end_data = prctl_map.end_data; mm->start_brk = prctl_map.start_brk; mm->brk = prctl_map.brk; mm->start_stack = prctl_map.start_stack; mm->arg_start = prctl_map.arg_start; mm->arg_end = prctl_map.arg_end; mm->env_start = prctl_map.env_start; mm->env_end = prctl_map.env_end; error = 0; out: spin_unlock(&mm->arg_lock); mmap_read_unlock(mm); return error; } #ifdef CONFIG_CHECKPOINT_RESTORE static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) { return put_user(me->clear_child_tid, tid_addr); } #else static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) { return -EINVAL; } #endif static int propagate_has_child_subreaper(struct task_struct *p, void *data) { /* * If task has has_child_subreaper - all its descendants * already have these flag too and new descendants will * inherit it on fork, skip them. * * If we've found child_reaper - skip descendants in * it's subtree as they will never get out pidns. */ if (p->signal->has_child_subreaper || is_child_reaper(task_pid(p))) return 0; p->signal->has_child_subreaper = 1; return 1; } int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which) { return -EINVAL; } int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which, unsigned long ctrl) { return -EINVAL; } #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE) SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, unsigned long, arg4, unsigned long, arg5) { struct task_struct *me = current; unsigned char comm[sizeof(me->comm)]; long error; error = security_task_prctl(option, arg2, arg3, arg4, arg5); if (error != -ENOSYS) return error; error = 0; switch (option) { case PR_SET_PDEATHSIG: if (!valid_signal(arg2)) { error = -EINVAL; break; } me->pdeath_signal = arg2; break; case PR_GET_PDEATHSIG: error = put_user(me->pdeath_signal, (int __user *)arg2); break; case PR_GET_DUMPABLE: error = get_dumpable(me->mm); break; case PR_SET_DUMPABLE: if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { error = -EINVAL; break; } set_dumpable(me->mm, arg2); break; case PR_SET_UNALIGN: error = SET_UNALIGN_CTL(me, arg2); break; case PR_GET_UNALIGN: error = GET_UNALIGN_CTL(me, arg2); break; case PR_SET_FPEMU: error = SET_FPEMU_CTL(me, arg2); break; case PR_GET_FPEMU: error = GET_FPEMU_CTL(me, arg2); break; case PR_SET_FPEXC: error = SET_FPEXC_CTL(me, arg2); break; case PR_GET_FPEXC: error = GET_FPEXC_CTL(me, arg2); break; case PR_GET_TIMING: error = PR_TIMING_STATISTICAL; break; case PR_SET_TIMING: if (arg2 != PR_TIMING_STATISTICAL) error = -EINVAL; break; case PR_SET_NAME: comm[sizeof(me->comm) - 1] = 0; if (strncpy_from_user(comm, (char __user *)arg2, sizeof(me->comm) - 1) < 0) return -EFAULT; set_task_comm(me, comm); proc_comm_connector(me); break; case PR_GET_NAME: get_task_comm(comm, me); if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) return -EFAULT; break; case PR_GET_ENDIAN: error = GET_ENDIAN(me, arg2); break; case PR_SET_ENDIAN: error = SET_ENDIAN(me, arg2); break; case PR_GET_SECCOMP: error = prctl_get_seccomp(); break; case PR_SET_SECCOMP: error = prctl_set_seccomp(arg2, (char __user *)arg3); break; case PR_GET_TSC: error = GET_TSC_CTL(arg2); break; case PR_SET_TSC: error = SET_TSC_CTL(arg2); break; case PR_TASK_PERF_EVENTS_DISABLE: error = perf_event_task_disable(); break; case PR_TASK_PERF_EVENTS_ENABLE: error = perf_event_task_enable(); break; case PR_GET_TIMERSLACK: if (current->timer_slack_ns > ULONG_MAX) error = ULONG_MAX; else error = current->timer_slack_ns; break; case PR_SET_TIMERSLACK: if (arg2 <= 0) current->timer_slack_ns = current->default_timer_slack_ns; else current->timer_slack_ns = arg2; break; case PR_MCE_KILL: if (arg4 | arg5) return -EINVAL; switch (arg2) { case PR_MCE_KILL_CLEAR: if (arg3 != 0) return -EINVAL; current->flags &= ~PF_MCE_PROCESS; break; case PR_MCE_KILL_SET: current->flags |= PF_MCE_PROCESS; if (arg3 == PR_MCE_KILL_EARLY) current->flags |= PF_MCE_EARLY; else if (arg3 == PR_MCE_KILL_LATE) current->flags &= ~PF_MCE_EARLY; else if (arg3 == PR_MCE_KILL_DEFAULT) current->flags &= ~(PF_MCE_EARLY|PF_MCE_PROCESS); else return -EINVAL; break; default: return -EINVAL; } break; case PR_MCE_KILL_GET: if (arg2 | arg3 | arg4 | arg5) return -EINVAL; if (current->flags & PF_MCE_PROCESS) error = (current->flags & PF_MCE_EARLY) ? PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; else error = PR_MCE_KILL_DEFAULT; break; case PR_SET_MM: error = prctl_set_mm(arg2, arg3, arg4, arg5); break; case PR_GET_TID_ADDRESS: error = prctl_get_tid_address(me, (int __user * __user *)arg2); break; case PR_SET_CHILD_SUBREAPER: me->signal->is_child_subreaper = !!arg2; if (!arg2) break; walk_process_tree(me, propagate_has_child_subreaper, NULL); break; case PR_GET_CHILD_SUBREAPER: error = put_user(me->signal->is_child_subreaper, (int __user *)arg2); break; case PR_SET_NO_NEW_PRIVS: if (arg2 != 1 || arg3 || arg4 || arg5) return -EINVAL; task_set_no_new_privs(current); break; case PR_GET_NO_NEW_PRIVS: if (arg2 || arg3 || arg4 || arg5) return -EINVAL; return task_no_new_privs(current) ? 1 : 0; case PR_GET_THP_DISABLE: if (arg2 || arg3 || arg4 || arg5) return -EINVAL; error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags); break; case PR_SET_THP_DISABLE: if (arg3 || arg4 || arg5) return -EINVAL; if (mmap_write_lock_killable(me->mm)) return -EINTR; if (arg2) set_bit(MMF_DISABLE_THP, &me->mm->flags); else clear_bit(MMF_DISABLE_THP, &me->mm->flags); mmap_write_unlock(me->mm); break; case PR_MPX_ENABLE_MANAGEMENT: case PR_MPX_DISABLE_MANAGEMENT: /* No longer implemented: */ return -EINVAL; case PR_SET_FP_MODE: error = SET_FP_MODE(me, arg2); break; case PR_GET_FP_MODE: error = GET_FP_MODE(me); break; case PR_SVE_SET_VL: error = SVE_SET_VL(arg2); break; case PR_SVE_GET_VL: error = SVE_GET_VL(); break; case PR_GET_SPECULATION_CTRL: if (arg3 || arg4 || arg5) return -EINVAL; error = arch_prctl_spec_ctrl_get(me, arg2); break; case PR_SET_SPECULATION_CTRL: if (arg4 || arg5) return -EINVAL; error = arch_prctl_spec_ctrl_set(me, arg2, arg3); break; case PR_PAC_RESET_KEYS: if (arg3 || arg4 || arg5) return -EINVAL; error = PAC_RESET_KEYS(me, arg2); break; case PR_PAC_SET_ENABLED_KEYS: if (arg4 || arg5) return -EINVAL; error = PAC_SET_ENABLED_KEYS(me, arg2, arg3); break; case PR_PAC_GET_ENABLED_KEYS: if (arg2 || arg3 || arg4 || arg5) return -EINVAL; error = PAC_GET_ENABLED_KEYS(me); break; case PR_SET_TAGGED_ADDR_CTRL: if (arg3 || arg4 || arg5) return -EINVAL; error = SET_TAGGED_ADDR_CTRL(arg2); break; case PR_GET_TAGGED_ADDR_CTRL: if (arg2 || arg3 || arg4 || arg5) return -EINVAL; error = GET_TAGGED_ADDR_CTRL(); break; case PR_SET_IO_FLUSHER: if (!capable(CAP_SYS_RESOURCE)) return -EPERM; if (arg3 || arg4 || arg5) return -EINVAL; if (arg2 == 1) current->flags |= PR_IO_FLUSHER; else if (!arg2) current->flags &= ~PR_IO_FLUSHER; else return -EINVAL; break; case PR_GET_IO_FLUSHER: if (!capable(CAP_SYS_RESOURCE)) return -EPERM; if (arg2 || arg3 || arg4 || arg5) return -EINVAL; error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER; break; case PR_SET_SYSCALL_USER_DISPATCH: error = set_syscall_user_dispatch(arg2, arg3, arg4, (char __user *) arg5); break; #ifdef CONFIG_SCHED_CORE case PR_SCHED_CORE: error = sched_core_share_pid(arg2, arg3, arg4, arg5); break; #endif default: error = -EINVAL; break; } return error; } SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, struct getcpu_cache __user *, unused) { int err = 0; int cpu = raw_smp_processor_id(); if (cpup) err |= put_user(cpu, cpup); if (nodep) err |= put_user(cpu_to_node(cpu), nodep); return err ? -EFAULT : 0; } /** * do_sysinfo - fill in sysinfo struct * @info: pointer to buffer to fill */ static int do_sysinfo(struct sysinfo *info) { unsigned long mem_total, sav_total; unsigned int mem_unit, bitcount; struct timespec64 tp; memset(info, 0, sizeof(struct sysinfo)); ktime_get_boottime_ts64(&tp); timens_add_boottime(&tp); info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); info->procs = nr_threads; si_meminfo(info); si_swapinfo(info); /* * If the sum of all the available memory (i.e. ram + swap) * is less than can be stored in a 32 bit unsigned long then * we can be binary compatible with 2.2.x kernels. If not, * well, in that case 2.2.x was broken anyways... * * -Erik Andersen */ mem_total = info->totalram + info->totalswap; if (mem_total < info->totalram || mem_total < info->totalswap) goto out; bitcount = 0; mem_unit = info->mem_unit; while (mem_unit > 1) { bitcount++; mem_unit >>= 1; sav_total = mem_total; mem_total <<= 1; if (mem_total < sav_total) goto out; } /* * If mem_total did not overflow, multiply all memory values by * info->mem_unit and set it to 1. This leaves things compatible * with 2.2.x, and also retains compatibility with earlier 2.4.x * kernels... */ info->mem_unit = 1; info->totalram <<= bitcount; info->freeram <<= bitcount; info->sharedram <<= bitcount; info->bufferram <<= bitcount; info->totalswap <<= bitcount; info->freeswap <<= bitcount; info->totalhigh <<= bitcount; info->freehigh <<= bitcount; out: return 0; } SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) { struct sysinfo val; do_sysinfo(&val); if (copy_to_user(info, &val, sizeof(struct sysinfo))) return -EFAULT; return 0; } #ifdef CONFIG_COMPAT struct compat_sysinfo { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; u16 procs; u16 pad; u32 totalhigh; u32 freehigh; u32 mem_unit; char _f[20-2*sizeof(u32)-sizeof(int)]; }; COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) { struct sysinfo s; struct compat_sysinfo s_32; do_sysinfo(&s); /* Check to see if any memory value is too large for 32-bit and scale * down if needed */ if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { int bitcount = 0; while (s.mem_unit < PAGE_SIZE) { s.mem_unit <<= 1; bitcount++; } s.totalram >>= bitcount; s.freeram >>= bitcount; s.sharedram >>= bitcount; s.bufferram >>= bitcount; s.totalswap >>= bitcount; s.freeswap >>= bitcount; s.totalhigh >>= bitcount; s.freehigh >>= bitcount; } memset(&s_32, 0, sizeof(s_32)); s_32.uptime = s.uptime; s_32.loads[0] = s.loads[0]; s_32.loads[1] = s.loads[1]; s_32.loads[2] = s.loads[2]; s_32.totalram = s.totalram; s_32.freeram = s.freeram; s_32.sharedram = s.sharedram; s_32.bufferram = s.bufferram; s_32.totalswap = s.totalswap; s_32.freeswap = s.freeswap; s_32.procs = s.procs; s_32.totalhigh = s.totalhigh; s_32.freehigh = s.freehigh; s_32.mem_unit = s.mem_unit; if (copy_to_user(info, &s_32, sizeof(s_32))) return -EFAULT; return 0; } #endif /* CONFIG_COMPAT */