/* * Procedures for maintaining information about logical memory blocks. * * Peter Bergner, IBM Corp. June 2001. * Copyright (C) 2001 Peter Bergner. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/bitops.h> #include <linux/poison.h> #include <linux/pfn.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/memblock.h> static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; struct memblock memblock __initdata_memblock = { .memory.regions = memblock_memory_init_regions, .memory.cnt = 1, /* empty dummy entry */ .memory.max = INIT_MEMBLOCK_REGIONS, .reserved.regions = memblock_reserved_init_regions, .reserved.cnt = 1, /* empty dummy entry */ .reserved.max = INIT_MEMBLOCK_REGIONS, .current_limit = MEMBLOCK_ALLOC_ANYWHERE, }; int memblock_debug __initdata_memblock; static int memblock_can_resize __initdata_memblock; /* inline so we don't get a warning when pr_debug is compiled out */ static inline const char *memblock_type_name(struct memblock_type *type) { if (type == &memblock.memory) return "memory"; else if (type == &memblock.reserved) return "reserved"; else return "unknown"; } /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) { return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); } /* * Address comparison utilities */ static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, phys_addr_t size2) { return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); } static long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { unsigned long i; for (i = 0; i < type->cnt; i++) { phys_addr_t rgnbase = type->regions[i].base; phys_addr_t rgnsize = type->regions[i].size; if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) break; } return (i < type->cnt) ? i : -1; } /** * memblock_find_in_range_node - find free area in given range and node * @start: start of candidate range * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} * @size: size of free area to find * @align: alignment of free area to find * @nid: nid of the free area to find, %MAX_NUMNODES for any node * * Find @size free area aligned to @align in the specified range and node. * * RETURNS: * Found address on success, %0 on failure. */ phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, phys_addr_t end, phys_addr_t size, phys_addr_t align, int nid) { phys_addr_t this_start, this_end, cand; u64 i; /* align @size to avoid excessive fragmentation on reserved array */ size = round_up(size, align); /* pump up @end */ if (end == MEMBLOCK_ALLOC_ACCESSIBLE) end = memblock.current_limit; /* adjust @start to avoid underflow and allocating the first page */ start = max3(start, size, (phys_addr_t)PAGE_SIZE); end = max(start, end); for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { this_start = clamp(this_start, start, end); this_end = clamp(this_end, start, end); cand = round_down(this_end - size, align); if (cand >= this_start) return cand; } return 0; } /** * memblock_find_in_range - find free area in given range * @start: start of candidate range * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} * @size: size of free area to find * @align: alignment of free area to find * * Find @size free area aligned to @align in the specified range. * * RETURNS: * Found address on success, %0 on failure. */ phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end, phys_addr_t size, phys_addr_t align) { return memblock_find_in_range_node(start, end, size, align, MAX_NUMNODES); } /* * Free memblock.reserved.regions */ int __init_memblock memblock_free_reserved_regions(void) { if (memblock.reserved.regions == memblock_reserved_init_regions) return 0; return memblock_free(__pa(memblock.reserved.regions), sizeof(struct memblock_region) * memblock.reserved.max); } /* * Reserve memblock.reserved.regions */ int __init_memblock memblock_reserve_reserved_regions(void) { if (memblock.reserved.regions == memblock_reserved_init_regions) return 0; return memblock_reserve(__pa(memblock.reserved.regions), sizeof(struct memblock_region) * memblock.reserved.max); } static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) { type->total_size -= type->regions[r].size; memmove(&type->regions[r], &type->regions[r + 1], (type->cnt - (r + 1)) * sizeof(type->regions[r])); type->cnt--; /* Special case for empty arrays */ if (type->cnt == 0) { WARN_ON(type->total_size != 0); type->cnt = 1; type->regions[0].base = 0; type->regions[0].size = 0; memblock_set_region_node(&type->regions[0], MAX_NUMNODES); } } static int __init_memblock memblock_double_array(struct memblock_type *type) { struct memblock_region *new_array, *old_array; phys_addr_t old_size, new_size, addr; int use_slab = slab_is_available(); /* We don't allow resizing until we know about the reserved regions * of memory that aren't suitable for allocation */ if (!memblock_can_resize) return -1; /* Calculate new doubled size */ old_size = type->max * sizeof(struct memblock_region); new_size = old_size << 1; /* Try to find some space for it. * * WARNING: We assume that either slab_is_available() and we use it or * we use MEMBLOCK for allocations. That means that this is unsafe to use * when bootmem is currently active (unless bootmem itself is implemented * on top of MEMBLOCK which isn't the case yet) * * This should however not be an issue for now, as we currently only * call into MEMBLOCK while it's still active, or much later when slab is * active for memory hotplug operations */ if (use_slab) { new_array = kmalloc(new_size, GFP_KERNEL); addr = new_array ? __pa(new_array) : 0; } else addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t)); if (!addr) { pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", memblock_type_name(type), type->max, type->max * 2); return -1; } new_array = __va(addr); memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]", memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1); /* Found space, we now need to move the array over before * we add the reserved region since it may be our reserved * array itself that is full. */ memcpy(new_array, type->regions, old_size); memset(new_array + type->max, 0, old_size); old_array = type->regions; type->regions = new_array; type->max <<= 1; /* If we use SLAB that's it, we are done */ if (use_slab) return 0; /* Add the new reserved region now. Should not fail ! */ BUG_ON(memblock_reserve(addr, new_size)); /* If the array wasn't our static init one, then free it. We only do * that before SLAB is available as later on, we don't know whether * to use kfree or free_bootmem_pages(). Shouldn't be a big deal * anyways */ if (old_array != memblock_memory_init_regions && old_array != memblock_reserved_init_regions) memblock_free(__pa(old_array), old_size); return 0; } /** * memblock_merge_regions - merge neighboring compatible regions * @type: memblock type to scan * * Scan @type and merge neighboring compatible regions. */ static void __init_memblock memblock_merge_regions(struct memblock_type *type) { int i = 0; /* cnt never goes below 1 */ while (i < type->cnt - 1) { struct memblock_region *this = &type->regions[i]; struct memblock_region *next = &type->regions[i + 1]; if (this->base + this->size != next->base || memblock_get_region_node(this) != memblock_get_region_node(next)) { BUG_ON(this->base + this->size > next->base); i++; continue; } this->size += next->size; memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next)); type->cnt--; } } /** * memblock_insert_region - insert new memblock region * @type: memblock type to insert into * @idx: index for the insertion point * @base: base address of the new region * @size: size of the new region * * Insert new memblock region [@base,@base+@size) into @type at @idx. * @type must already have extra room to accomodate the new region. */ static void __init_memblock memblock_insert_region(struct memblock_type *type, int idx, phys_addr_t base, phys_addr_t size, int nid) { struct memblock_region *rgn = &type->regions[idx]; BUG_ON(type->cnt >= type->max); memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); rgn->base = base; rgn->size = size; memblock_set_region_node(rgn, nid); type->cnt++; type->total_size += size; } /** * memblock_add_region - add new memblock region * @type: memblock type to add new region into * @base: base address of the new region * @size: size of the new region * @nid: nid of the new region * * Add new memblock region [@base,@base+@size) into @type. The new region * is allowed to overlap with existing ones - overlaps don't affect already * existing regions. @type is guaranteed to be minimal (all neighbouring * compatible regions are merged) after the addition. * * RETURNS: * 0 on success, -errno on failure. */ static int __init_memblock memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size, int nid) { bool insert = false; phys_addr_t obase = base; phys_addr_t end = base + memblock_cap_size(base, &size); int i, nr_new; /* special case for empty array */ if (type->regions[0].size == 0) { WARN_ON(type->cnt != 1 || type->total_size); type->regions[0].base = base; type->regions[0].size = size; memblock_set_region_node(&type->regions[0], nid); type->total_size = size; return 0; } repeat: /* * The following is executed twice. Once with %false @insert and * then with %true. The first counts the number of regions needed * to accomodate the new area. The second actually inserts them. */ base = obase; nr_new = 0; for (i = 0; i < type->cnt; i++) { struct memblock_region *rgn = &type->regions[i]; phys_addr_t rbase = rgn->base; phys_addr_t rend = rbase + rgn->size; if (rbase >= end) break; if (rend <= base) continue; /* * @rgn overlaps. If it separates the lower part of new * area, insert that portion. */ if (rbase > base) { nr_new++; if (insert) memblock_insert_region(type, i++, base, rbase - base, nid); } /* area below @rend is dealt with, forget about it */ base = min(rend, end); } /* insert the remaining portion */ if (base < end) { nr_new++; if (insert) memblock_insert_region(type, i, base, end - base, nid); } /* * If this was the first round, resize array and repeat for actual * insertions; otherwise, merge and return. */ if (!insert) { while (type->cnt + nr_new > type->max) if (memblock_double_array(type) < 0) return -ENOMEM; insert = true; goto repeat; } else { memblock_merge_regions(type); return 0; } } int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, int nid) { return memblock_add_region(&memblock.memory, base, size, nid); } int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) { return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); } /** * memblock_isolate_range - isolate given range into disjoint memblocks * @type: memblock type to isolate range for * @base: base of range to isolate * @size: size of range to isolate * @start_rgn: out parameter for the start of isolated region * @end_rgn: out parameter for the end of isolated region * * Walk @type and ensure that regions don't cross the boundaries defined by * [@base,@base+@size). Crossing regions are split at the boundaries, * which may create at most two more regions. The index of the first * region inside the range is returned in *@start_rgn and end in *@end_rgn. * * RETURNS: * 0 on success, -errno on failure. */ static int __init_memblock memblock_isolate_range(struct memblock_type *type, phys_addr_t base, phys_addr_t size, int *start_rgn, int *end_rgn) { phys_addr_t end = base + memblock_cap_size(base, &size); int i; *start_rgn = *end_rgn = 0; /* we'll create at most two more regions */ while (type->cnt + 2 > type->max) if (memblock_double_array(type) < 0) return -ENOMEM; for (i = 0; i < type->cnt; i++) { struct memblock_region *rgn = &type->regions[i]; phys_addr_t rbase = rgn->base; phys_addr_t rend = rbase + rgn->size; if (rbase >= end) break; if (rend <= base) continue; if (rbase < base) { /* * @rgn intersects from below. Split and continue * to process the next region - the new top half. */ rgn->base = base; rgn->size -= base - rbase; type->total_size -= base - rbase; memblock_insert_region(type, i, rbase, base - rbase, memblock_get_region_node(rgn)); } else if (rend > end) { /* * @rgn intersects from above. Split and redo the * current region - the new bottom half. */ rgn->base = end; rgn->size -= end - rbase; type->total_size -= end - rbase; memblock_insert_region(type, i--, rbase, end - rbase, memblock_get_region_node(rgn)); } else { /* @rgn is fully contained, record it */ if (!*end_rgn) *start_rgn = i; *end_rgn = i + 1; } } return 0; } static int __init_memblock __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { int start_rgn, end_rgn; int i, ret; ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); if (ret) return ret; for (i = end_rgn - 1; i >= start_rgn; i--) memblock_remove_region(type, i); return 0; } int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) { return __memblock_remove(&memblock.memory, base, size); } int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) { memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", (unsigned long long)base, (unsigned long long)base + size, (void *)_RET_IP_); return __memblock_remove(&memblock.reserved, base, size); } int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) { struct memblock_type *_rgn = &memblock.reserved; memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", (unsigned long long)base, (unsigned long long)base + size, (void *)_RET_IP_); BUG_ON(0 == size); return memblock_add_region(_rgn, base, size, MAX_NUMNODES); } /** * __next_free_mem_range - next function for for_each_free_mem_range() * @idx: pointer to u64 loop variable * @nid: nid: node selector, %MAX_NUMNODES for all nodes * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * @p_nid: ptr to int for nid of the range, can be %NULL * * Find the first free area from *@idx which matches @nid, fill the out * parameters, and update *@idx for the next iteration. The lower 32bit of * *@idx contains index into memory region and the upper 32bit indexes the * areas before each reserved region. For example, if reserved regions * look like the following, * * 0:[0-16), 1:[32-48), 2:[128-130) * * The upper 32bit indexes the following regions. * * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) * * As both region arrays are sorted, the function advances the two indices * in lockstep and returns each intersection. */ void __init_memblock __next_free_mem_range(u64 *idx, int nid, phys_addr_t *out_start, phys_addr_t *out_end, int *out_nid) { struct memblock_type *mem = &memblock.memory; struct memblock_type *rsv = &memblock.reserved; int mi = *idx & 0xffffffff; int ri = *idx >> 32; for ( ; mi < mem->cnt; mi++) { struct memblock_region *m = &mem->regions[mi]; phys_addr_t m_start = m->base; phys_addr_t m_end = m->base + m->size; /* only memory regions are associated with nodes, check it */ if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) continue; /* scan areas before each reservation for intersection */ for ( ; ri < rsv->cnt + 1; ri++) { struct memblock_region *r = &rsv->regions[ri]; phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; /* if ri advanced past mi, break out to advance mi */ if (r_start >= m_end) break; /* if the two regions intersect, we're done */ if (m_start < r_end) { if (out_start) *out_start = max(m_start, r_start); if (out_end) *out_end = min(m_end, r_end); if (out_nid) *out_nid = memblock_get_region_node(m); /* * The region which ends first is advanced * for the next iteration. */ if (m_end <= r_end) mi++; else ri++; *idx = (u32)mi | (u64)ri << 32; return; } } } /* signal end of iteration */ *idx = ULLONG_MAX; } /** * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() * @idx: pointer to u64 loop variable * @nid: nid: node selector, %MAX_NUMNODES for all nodes * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL * @p_nid: ptr to int for nid of the range, can be %NULL * * Reverse of __next_free_mem_range(). */ void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, phys_addr_t *out_start, phys_addr_t *out_end, int *out_nid) { struct memblock_type *mem = &memblock.memory; struct memblock_type *rsv = &memblock.reserved; int mi = *idx & 0xffffffff; int ri = *idx >> 32; if (*idx == (u64)ULLONG_MAX) { mi = mem->cnt - 1; ri = rsv->cnt; } for ( ; mi >= 0; mi--) { struct memblock_region *m = &mem->regions[mi]; phys_addr_t m_start = m->base; phys_addr_t m_end = m->base + m->size; /* only memory regions are associated with nodes, check it */ if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) continue; /* scan areas before each reservation for intersection */ for ( ; ri >= 0; ri--) { struct memblock_region *r = &rsv->regions[ri]; phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; /* if ri advanced past mi, break out to advance mi */ if (r_end <= m_start) break; /* if the two regions intersect, we're done */ if (m_end > r_start) { if (out_start) *out_start = max(m_start, r_start); if (out_end) *out_end = min(m_end, r_end); if (out_nid) *out_nid = memblock_get_region_node(m); if (m_start >= r_start) mi--; else ri--; *idx = (u32)mi | (u64)ri << 32; return; } } } *idx = ULLONG_MAX; } #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP /* * Common iterator interface used to define for_each_mem_range(). */ void __init_memblock __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn, unsigned long *out_end_pfn, int *out_nid) { struct memblock_type *type = &memblock.memory; struct memblock_region *r; while (++*idx < type->cnt) { r = &type->regions[*idx]; if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) continue; if (nid == MAX_NUMNODES || nid == r->nid) break; } if (*idx >= type->cnt) { *idx = -1; return; } if (out_start_pfn) *out_start_pfn = PFN_UP(r->base); if (out_end_pfn) *out_end_pfn = PFN_DOWN(r->base + r->size); if (out_nid) *out_nid = r->nid; } /** * memblock_set_node - set node ID on memblock regions * @base: base of area to set node ID for * @size: size of area to set node ID for * @nid: node ID to set * * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. * Regions which cross the area boundaries are split as necessary. * * RETURNS: * 0 on success, -errno on failure. */ int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, int nid) { struct memblock_type *type = &memblock.memory; int start_rgn, end_rgn; int i, ret; ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); if (ret) return ret; for (i = start_rgn; i < end_rgn; i++) type->regions[i].nid = nid; memblock_merge_regions(type); return 0; } #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr, int nid) { phys_addr_t found; found = memblock_find_in_range_node(0, max_addr, size, align, nid); if (found && !memblock_reserve(found, size)) return found; return 0; } phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) { return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); } phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) { return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); } phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) { phys_addr_t alloc; alloc = __memblock_alloc_base(size, align, max_addr); if (alloc == 0) panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", (unsigned long long) size, (unsigned long long) max_addr); return alloc; } phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) { return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); } phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) { phys_addr_t res = memblock_alloc_nid(size, align, nid); if (res) return res; return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); } /* * Remaining API functions */ phys_addr_t __init memblock_phys_mem_size(void) { return memblock.memory.total_size; } /* lowest address */ phys_addr_t __init_memblock memblock_start_of_DRAM(void) { return memblock.memory.regions[0].base; } phys_addr_t __init_memblock memblock_end_of_DRAM(void) { int idx = memblock.memory.cnt - 1; return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); } void __init memblock_enforce_memory_limit(phys_addr_t limit) { unsigned long i; phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; if (!limit) return; /* find out max address */ for (i = 0; i < memblock.memory.cnt; i++) { struct memblock_region *r = &memblock.memory.regions[i]; if (limit <= r->size) { max_addr = r->base + limit; break; } limit -= r->size; } /* truncate both memory and reserved regions */ __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); } static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) { unsigned int left = 0, right = type->cnt; do { unsigned int mid = (right + left) / 2; if (addr < type->regions[mid].base) right = mid; else if (addr >= (type->regions[mid].base + type->regions[mid].size)) left = mid + 1; else return mid; } while (left < right); return -1; } int __init memblock_is_reserved(phys_addr_t addr) { return memblock_search(&memblock.reserved, addr) != -1; } int __init_memblock memblock_is_memory(phys_addr_t addr) { return memblock_search(&memblock.memory, addr) != -1; } int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) { int idx = memblock_search(&memblock.memory, base); phys_addr_t end = base + memblock_cap_size(base, &size); if (idx == -1) return 0; return memblock.memory.regions[idx].base <= base && (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size) >= end; } int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) { memblock_cap_size(base, &size); return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; } void __init_memblock memblock_set_current_limit(phys_addr_t limit) { memblock.current_limit = limit; } static void __init_memblock memblock_dump(struct memblock_type *type, char *name) { unsigned long long base, size; int i; pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); for (i = 0; i < type->cnt; i++) { struct memblock_region *rgn = &type->regions[i]; char nid_buf[32] = ""; base = rgn->base; size = rgn->size; #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP if (memblock_get_region_node(rgn) != MAX_NUMNODES) snprintf(nid_buf, sizeof(nid_buf), " on node %d", memblock_get_region_node(rgn)); #endif pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", name, i, base, base + size - 1, size, nid_buf); } } void __init_memblock __memblock_dump_all(void) { pr_info("MEMBLOCK configuration:\n"); pr_info(" memory size = %#llx reserved size = %#llx\n", (unsigned long long)memblock.memory.total_size, (unsigned long long)memblock.reserved.total_size); memblock_dump(&memblock.memory, "memory"); memblock_dump(&memblock.reserved, "reserved"); } void __init memblock_allow_resize(void) { memblock_can_resize = 1; } static int __init early_memblock(char *p) { if (p && strstr(p, "debug")) memblock_debug = 1; return 0; } early_param("memblock", early_memblock); #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) static int memblock_debug_show(struct seq_file *m, void *private) { struct memblock_type *type = m->private; struct memblock_region *reg; int i; for (i = 0; i < type->cnt; i++) { reg = &type->regions[i]; seq_printf(m, "%4d: ", i); if (sizeof(phys_addr_t) == 4) seq_printf(m, "0x%08lx..0x%08lx\n", (unsigned long)reg->base, (unsigned long)(reg->base + reg->size - 1)); else seq_printf(m, "0x%016llx..0x%016llx\n", (unsigned long long)reg->base, (unsigned long long)(reg->base + reg->size - 1)); } return 0; } static int memblock_debug_open(struct inode *inode, struct file *file) { return single_open(file, memblock_debug_show, inode->i_private); } static const struct file_operations memblock_debug_fops = { .open = memblock_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init memblock_init_debugfs(void) { struct dentry *root = debugfs_create_dir("memblock", NULL); if (!root) return -ENXIO; debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); return 0; } __initcall(memblock_init_debugfs); #endif /* CONFIG_DEBUG_FS */