/* * mm/rmap.c - physical to virtual reverse mappings * * Copyright 2001, Rik van Riel <riel@conectiva.com.br> * Released under the General Public License (GPL). * * Simple, low overhead reverse mapping scheme. * Please try to keep this thing as modular as possible. * * Provides methods for unmapping each kind of mapped page: * the anon methods track anonymous pages, and * the file methods track pages belonging to an inode. * * Original design by Rik van Riel <riel@conectiva.com.br> 2001 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 * Contributions by Hugh Dickins 2003, 2004 */ /* * Lock ordering in mm: * * inode->i_rwsem (while writing or truncating, not reading or faulting) * mm->mmap_lock * mapping->invalidate_lock (in filemap_fault) * page->flags PG_locked (lock_page) * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) * vma_start_write * mapping->i_mmap_rwsem * anon_vma->rwsem * mm->page_table_lock or pte_lock * swap_lock (in swap_duplicate, swap_info_get) * mmlist_lock (in mmput, drain_mmlist and others) * mapping->private_lock (in block_dirty_folio) * folio_lock_memcg move_lock (in block_dirty_folio) * i_pages lock (widely used) * lruvec->lru_lock (in folio_lruvec_lock_irq) * inode->i_lock (in set_page_dirty's __mark_inode_dirty) * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) * sb_lock (within inode_lock in fs/fs-writeback.c) * i_pages lock (widely used, in set_page_dirty, * in arch-dependent flush_dcache_mmap_lock, * within bdi.wb->list_lock in __sync_single_inode) * * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) * ->tasklist_lock * pte map lock * * hugetlbfs PageHuge() take locks in this order: * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) * vma_lock (hugetlb specific lock for pmd_sharing) * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) * page->flags PG_locked (lock_page) */ #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/task.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/rcupdate.h> #include <linux/export.h> #include <linux/memcontrol.h> #include <linux/mmu_notifier.h> #include <linux/migrate.h> #include <linux/hugetlb.h> #include <linux/huge_mm.h> #include <linux/backing-dev.h> #include <linux/page_idle.h> #include <linux/memremap.h> #include <linux/userfaultfd_k.h> #include <linux/mm_inline.h> #include <asm/tlbflush.h> #define CREATE_TRACE_POINTS #include <trace/events/tlb.h> #include <trace/events/migrate.h> #include "internal.h" static struct kmem_cache *anon_vma_cachep; static struct kmem_cache *anon_vma_chain_cachep; static inline struct anon_vma *anon_vma_alloc(void) { struct anon_vma *anon_vma; anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); if (anon_vma) { atomic_set(&anon_vma->refcount, 1); anon_vma->num_children = 0; anon_vma->num_active_vmas = 0; anon_vma->parent = anon_vma; /* * Initialise the anon_vma root to point to itself. If called * from fork, the root will be reset to the parents anon_vma. */ anon_vma->root = anon_vma; } return anon_vma; } static inline void anon_vma_free(struct anon_vma *anon_vma) { VM_BUG_ON(atomic_read(&anon_vma->refcount)); /* * Synchronize against folio_lock_anon_vma_read() such that * we can safely hold the lock without the anon_vma getting * freed. * * Relies on the full mb implied by the atomic_dec_and_test() from * put_anon_vma() against the acquire barrier implied by * down_read_trylock() from folio_lock_anon_vma_read(). This orders: * * folio_lock_anon_vma_read() VS put_anon_vma() * down_read_trylock() atomic_dec_and_test() * LOCK MB * atomic_read() rwsem_is_locked() * * LOCK should suffice since the actual taking of the lock must * happen _before_ what follows. */ might_sleep(); if (rwsem_is_locked(&anon_vma->root->rwsem)) { anon_vma_lock_write(anon_vma); anon_vma_unlock_write(anon_vma); } kmem_cache_free(anon_vma_cachep, anon_vma); } static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) { return kmem_cache_alloc(anon_vma_chain_cachep, gfp); } static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) { kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); } static void anon_vma_chain_link(struct vm_area_struct *vma, struct anon_vma_chain *avc, struct anon_vma *anon_vma) { avc->vma = vma; avc->anon_vma = anon_vma; list_add(&avc->same_vma, &vma->anon_vma_chain); anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); } /** * __anon_vma_prepare - attach an anon_vma to a memory region * @vma: the memory region in question * * This makes sure the memory mapping described by 'vma' has * an 'anon_vma' attached to it, so that we can associate the * anonymous pages mapped into it with that anon_vma. * * The common case will be that we already have one, which * is handled inline by anon_vma_prepare(). But if * not we either need to find an adjacent mapping that we * can re-use the anon_vma from (very common when the only * reason for splitting a vma has been mprotect()), or we * allocate a new one. * * Anon-vma allocations are very subtle, because we may have * optimistically looked up an anon_vma in folio_lock_anon_vma_read() * and that may actually touch the rwsem even in the newly * allocated vma (it depends on RCU to make sure that the * anon_vma isn't actually destroyed). * * As a result, we need to do proper anon_vma locking even * for the new allocation. At the same time, we do not want * to do any locking for the common case of already having * an anon_vma. * * This must be called with the mmap_lock held for reading. */ int __anon_vma_prepare(struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; struct anon_vma *anon_vma, *allocated; struct anon_vma_chain *avc; might_sleep(); avc = anon_vma_chain_alloc(GFP_KERNEL); if (!avc) goto out_enomem; anon_vma = find_mergeable_anon_vma(vma); allocated = NULL; if (!anon_vma) { anon_vma = anon_vma_alloc(); if (unlikely(!anon_vma)) goto out_enomem_free_avc; anon_vma->num_children++; /* self-parent link for new root */ allocated = anon_vma; } anon_vma_lock_write(anon_vma); /* page_table_lock to protect against threads */ spin_lock(&mm->page_table_lock); if (likely(!vma->anon_vma)) { vma->anon_vma = anon_vma; anon_vma_chain_link(vma, avc, anon_vma); anon_vma->num_active_vmas++; allocated = NULL; avc = NULL; } spin_unlock(&mm->page_table_lock); anon_vma_unlock_write(anon_vma); if (unlikely(allocated)) put_anon_vma(allocated); if (unlikely(avc)) anon_vma_chain_free(avc); return 0; out_enomem_free_avc: anon_vma_chain_free(avc); out_enomem: return -ENOMEM; } /* * This is a useful helper function for locking the anon_vma root as * we traverse the vma->anon_vma_chain, looping over anon_vma's that * have the same vma. * * Such anon_vma's should have the same root, so you'd expect to see * just a single mutex_lock for the whole traversal. */ static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) { struct anon_vma *new_root = anon_vma->root; if (new_root != root) { if (WARN_ON_ONCE(root)) up_write(&root->rwsem); root = new_root; down_write(&root->rwsem); } return root; } static inline void unlock_anon_vma_root(struct anon_vma *root) { if (root) up_write(&root->rwsem); } /* * Attach the anon_vmas from src to dst. * Returns 0 on success, -ENOMEM on failure. * * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before * call, we can identify this case by checking (!dst->anon_vma && * src->anon_vma). * * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find * and reuse existing anon_vma which has no vmas and only one child anon_vma. * This prevents degradation of anon_vma hierarchy to endless linear chain in * case of constantly forking task. On the other hand, an anon_vma with more * than one child isn't reused even if there was no alive vma, thus rmap * walker has a good chance of avoiding scanning the whole hierarchy when it * searches where page is mapped. */ int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) { struct anon_vma_chain *avc, *pavc; struct anon_vma *root = NULL; list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { struct anon_vma *anon_vma; avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); if (unlikely(!avc)) { unlock_anon_vma_root(root); root = NULL; avc = anon_vma_chain_alloc(GFP_KERNEL); if (!avc) goto enomem_failure; } anon_vma = pavc->anon_vma; root = lock_anon_vma_root(root, anon_vma); anon_vma_chain_link(dst, avc, anon_vma); /* * Reuse existing anon_vma if it has no vma and only one * anon_vma child. * * Root anon_vma is never reused: * it has self-parent reference and at least one child. */ if (!dst->anon_vma && src->anon_vma && anon_vma->num_children < 2 && anon_vma->num_active_vmas == 0) dst->anon_vma = anon_vma; } if (dst->anon_vma) dst->anon_vma->num_active_vmas++; unlock_anon_vma_root(root); return 0; enomem_failure: /* * dst->anon_vma is dropped here otherwise its num_active_vmas can * be incorrectly decremented in unlink_anon_vmas(). * We can safely do this because callers of anon_vma_clone() don't care * about dst->anon_vma if anon_vma_clone() failed. */ dst->anon_vma = NULL; unlink_anon_vmas(dst); return -ENOMEM; } /* * Attach vma to its own anon_vma, as well as to the anon_vmas that * the corresponding VMA in the parent process is attached to. * Returns 0 on success, non-zero on failure. */ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) { struct anon_vma_chain *avc; struct anon_vma *anon_vma; int error; /* Don't bother if the parent process has no anon_vma here. */ if (!pvma->anon_vma) return 0; /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ vma->anon_vma = NULL; /* * First, attach the new VMA to the parent VMA's anon_vmas, * so rmap can find non-COWed pages in child processes. */ error = anon_vma_clone(vma, pvma); if (error) return error; /* An existing anon_vma has been reused, all done then. */ if (vma->anon_vma) return 0; /* Then add our own anon_vma. */ anon_vma = anon_vma_alloc(); if (!anon_vma) goto out_error; anon_vma->num_active_vmas++; avc = anon_vma_chain_alloc(GFP_KERNEL); if (!avc) goto out_error_free_anon_vma; /* * The root anon_vma's rwsem is the lock actually used when we * lock any of the anon_vmas in this anon_vma tree. */ anon_vma->root = pvma->anon_vma->root; anon_vma->parent = pvma->anon_vma; /* * With refcounts, an anon_vma can stay around longer than the * process it belongs to. The root anon_vma needs to be pinned until * this anon_vma is freed, because the lock lives in the root. */ get_anon_vma(anon_vma->root); /* Mark this anon_vma as the one where our new (COWed) pages go. */ vma->anon_vma = anon_vma; anon_vma_lock_write(anon_vma); anon_vma_chain_link(vma, avc, anon_vma); anon_vma->parent->num_children++; anon_vma_unlock_write(anon_vma); return 0; out_error_free_anon_vma: put_anon_vma(anon_vma); out_error: unlink_anon_vmas(vma); return -ENOMEM; } void unlink_anon_vmas(struct vm_area_struct *vma) { struct anon_vma_chain *avc, *next; struct anon_vma *root = NULL; /* * Unlink each anon_vma chained to the VMA. This list is ordered * from newest to oldest, ensuring the root anon_vma gets freed last. */ list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { struct anon_vma *anon_vma = avc->anon_vma; root = lock_anon_vma_root(root, anon_vma); anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); /* * Leave empty anon_vmas on the list - we'll need * to free them outside the lock. */ if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { anon_vma->parent->num_children--; continue; } list_del(&avc->same_vma); anon_vma_chain_free(avc); } if (vma->anon_vma) { vma->anon_vma->num_active_vmas--; /* * vma would still be needed after unlink, and anon_vma will be prepared * when handle fault. */ vma->anon_vma = NULL; } unlock_anon_vma_root(root); /* * Iterate the list once more, it now only contains empty and unlinked * anon_vmas, destroy them. Could not do before due to __put_anon_vma() * needing to write-acquire the anon_vma->root->rwsem. */ list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { struct anon_vma *anon_vma = avc->anon_vma; VM_WARN_ON(anon_vma->num_children); VM_WARN_ON(anon_vma->num_active_vmas); put_anon_vma(anon_vma); list_del(&avc->same_vma); anon_vma_chain_free(avc); } } static void anon_vma_ctor(void *data) { struct anon_vma *anon_vma = data; init_rwsem(&anon_vma->rwsem); atomic_set(&anon_vma->refcount, 0); anon_vma->rb_root = RB_ROOT_CACHED; } void __init anon_vma_init(void) { anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, anon_vma_ctor); anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC|SLAB_ACCOUNT); } /* * Getting a lock on a stable anon_vma from a page off the LRU is tricky! * * Since there is no serialization what so ever against page_remove_rmap() * the best this function can do is return a refcount increased anon_vma * that might have been relevant to this page. * * The page might have been remapped to a different anon_vma or the anon_vma * returned may already be freed (and even reused). * * In case it was remapped to a different anon_vma, the new anon_vma will be a * child of the old anon_vma, and the anon_vma lifetime rules will therefore * ensure that any anon_vma obtained from the page will still be valid for as * long as we observe page_mapped() [ hence all those page_mapped() tests ]. * * All users of this function must be very careful when walking the anon_vma * chain and verify that the page in question is indeed mapped in it * [ something equivalent to page_mapped_in_vma() ]. * * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from * page_remove_rmap() that the anon_vma pointer from page->mapping is valid * if there is a mapcount, we can dereference the anon_vma after observing * those. */ struct anon_vma *folio_get_anon_vma(struct folio *folio) { struct anon_vma *anon_vma = NULL; unsigned long anon_mapping; rcu_read_lock(); anon_mapping = (unsigned long)READ_ONCE(folio->mapping); if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) goto out; if (!folio_mapped(folio)) goto out; anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); if (!atomic_inc_not_zero(&anon_vma->refcount)) { anon_vma = NULL; goto out; } /* * If this folio is still mapped, then its anon_vma cannot have been * freed. But if it has been unmapped, we have no security against the * anon_vma structure being freed and reused (for another anon_vma: * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() * above cannot corrupt). */ if (!folio_mapped(folio)) { rcu_read_unlock(); put_anon_vma(anon_vma); return NULL; } out: rcu_read_unlock(); return anon_vma; } /* * Similar to folio_get_anon_vma() except it locks the anon_vma. * * Its a little more complex as it tries to keep the fast path to a single * atomic op -- the trylock. If we fail the trylock, we fall back to getting a * reference like with folio_get_anon_vma() and then block on the mutex * on !rwc->try_lock case. */ struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, struct rmap_walk_control *rwc) { struct anon_vma *anon_vma = NULL; struct anon_vma *root_anon_vma; unsigned long anon_mapping; rcu_read_lock(); anon_mapping = (unsigned long)READ_ONCE(folio->mapping); if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) goto out; if (!folio_mapped(folio)) goto out; anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); root_anon_vma = READ_ONCE(anon_vma->root); if (down_read_trylock(&root_anon_vma->rwsem)) { /* * If the folio is still mapped, then this anon_vma is still * its anon_vma, and holding the mutex ensures that it will * not go away, see anon_vma_free(). */ if (!folio_mapped(folio)) { up_read(&root_anon_vma->rwsem); anon_vma = NULL; } goto out; } if (rwc && rwc->try_lock) { anon_vma = NULL; rwc->contended = true; goto out; } /* trylock failed, we got to sleep */ if (!atomic_inc_not_zero(&anon_vma->refcount)) { anon_vma = NULL; goto out; } if (!folio_mapped(folio)) { rcu_read_unlock(); put_anon_vma(anon_vma); return NULL; } /* we pinned the anon_vma, its safe to sleep */ rcu_read_unlock(); anon_vma_lock_read(anon_vma); if (atomic_dec_and_test(&anon_vma->refcount)) { /* * Oops, we held the last refcount, release the lock * and bail -- can't simply use put_anon_vma() because * we'll deadlock on the anon_vma_lock_write() recursion. */ anon_vma_unlock_read(anon_vma); __put_anon_vma(anon_vma); anon_vma = NULL; } return anon_vma; out: rcu_read_unlock(); return anon_vma; } #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH /* * Flush TLB entries for recently unmapped pages from remote CPUs. It is * important if a PTE was dirty when it was unmapped that it's flushed * before any IO is initiated on the page to prevent lost writes. Similarly, * it must be flushed before freeing to prevent data leakage. */ void try_to_unmap_flush(void) { struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; if (!tlb_ubc->flush_required) return; arch_tlbbatch_flush(&tlb_ubc->arch); tlb_ubc->flush_required = false; tlb_ubc->writable = false; } /* Flush iff there are potentially writable TLB entries that can race with IO */ void try_to_unmap_flush_dirty(void) { struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; if (tlb_ubc->writable) try_to_unmap_flush(); } /* * Bits 0-14 of mm->tlb_flush_batched record pending generations. * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. */ #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 #define TLB_FLUSH_BATCH_PENDING_MASK \ ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) #define TLB_FLUSH_BATCH_PENDING_LARGE \ (TLB_FLUSH_BATCH_PENDING_MASK / 2) static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, unsigned long uaddr) { struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; int batch; bool writable = pte_dirty(pteval); if (!pte_accessible(mm, pteval)) return; arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); tlb_ubc->flush_required = true; /* * Ensure compiler does not re-order the setting of tlb_flush_batched * before the PTE is cleared. */ barrier(); batch = atomic_read(&mm->tlb_flush_batched); retry: if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { /* * Prevent `pending' from catching up with `flushed' because of * overflow. Reset `pending' and `flushed' to be 1 and 0 if * `pending' becomes large. */ if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) goto retry; } else { atomic_inc(&mm->tlb_flush_batched); } /* * If the PTE was dirty then it's best to assume it's writable. The * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() * before the page is queued for IO. */ if (writable) tlb_ubc->writable = true; } /* * Returns true if the TLB flush should be deferred to the end of a batch of * unmap operations to reduce IPIs. */ static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) { if (!(flags & TTU_BATCH_FLUSH)) return false; return arch_tlbbatch_should_defer(mm); } /* * Reclaim unmaps pages under the PTL but do not flush the TLB prior to * releasing the PTL if TLB flushes are batched. It's possible for a parallel * operation such as mprotect or munmap to race between reclaim unmapping * the page and flushing the page. If this race occurs, it potentially allows * access to data via a stale TLB entry. Tracking all mm's that have TLB * batching in flight would be expensive during reclaim so instead track * whether TLB batching occurred in the past and if so then do a flush here * if required. This will cost one additional flush per reclaim cycle paid * by the first operation at risk such as mprotect and mumap. * * This must be called under the PTL so that an access to tlb_flush_batched * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise * via the PTL. */ void flush_tlb_batched_pending(struct mm_struct *mm) { int batch = atomic_read(&mm->tlb_flush_batched); int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; if (pending != flushed) { arch_flush_tlb_batched_pending(mm); /* * If the new TLB flushing is pending during flushing, leave * mm->tlb_flush_batched as is, to avoid losing flushing. */ atomic_cmpxchg(&mm->tlb_flush_batched, batch, pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); } } #else static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, unsigned long uaddr) { } static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) { return false; } #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ /* * At what user virtual address is page expected in vma? * Caller should check the page is actually part of the vma. */ unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) { struct folio *folio = page_folio(page); if (folio_test_anon(folio)) { struct anon_vma *page__anon_vma = folio_anon_vma(folio); /* * Note: swapoff's unuse_vma() is more efficient with this * check, and needs it to match anon_vma when KSM is active. */ if (!vma->anon_vma || !page__anon_vma || vma->anon_vma->root != page__anon_vma->root) return -EFAULT; } else if (!vma->vm_file) { return -EFAULT; } else if (vma->vm_file->f_mapping != folio->mapping) { return -EFAULT; } return vma_address(page, vma); } /* * Returns the actual pmd_t* where we expect 'address' to be mapped from, or * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* * represents. */ pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd = NULL; pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) goto out; pud = pud_offset(p4d, address); if (!pud_present(*pud)) goto out; pmd = pmd_offset(pud, address); out: return pmd; } struct folio_referenced_arg { int mapcount; int referenced; unsigned long vm_flags; struct mem_cgroup *memcg; }; /* * arg: folio_referenced_arg will be passed */ static bool folio_referenced_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *arg) { struct folio_referenced_arg *pra = arg; DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); int referenced = 0; unsigned long start = address, ptes = 0; while (page_vma_mapped_walk(&pvmw)) { address = pvmw.address; if (vma->vm_flags & VM_LOCKED) { if (!folio_test_large(folio) || !pvmw.pte) { /* Restore the mlock which got missed */ mlock_vma_folio(folio, vma); page_vma_mapped_walk_done(&pvmw); pra->vm_flags |= VM_LOCKED; return false; /* To break the loop */ } /* * For large folio fully mapped to VMA, will * be handled after the pvmw loop. * * For large folio cross VMA boundaries, it's * expected to be picked by page reclaim. But * should skip reference of pages which are in * the range of VM_LOCKED vma. As page reclaim * should just count the reference of pages out * the range of VM_LOCKED vma. */ ptes++; pra->mapcount--; continue; } if (pvmw.pte) { if (lru_gen_enabled() && pte_young(ptep_get(pvmw.pte))) { lru_gen_look_around(&pvmw); referenced++; } if (ptep_clear_flush_young_notify(vma, address, pvmw.pte)) referenced++; } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { if (pmdp_clear_flush_young_notify(vma, address, pvmw.pmd)) referenced++; } else { /* unexpected pmd-mapped folio? */ WARN_ON_ONCE(1); } pra->mapcount--; } if ((vma->vm_flags & VM_LOCKED) && folio_test_large(folio) && folio_within_vma(folio, vma)) { unsigned long s_align, e_align; s_align = ALIGN_DOWN(start, PMD_SIZE); e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); /* folio doesn't cross page table boundary and fully mapped */ if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { /* Restore the mlock which got missed */ mlock_vma_folio(folio, vma); pra->vm_flags |= VM_LOCKED; return false; /* To break the loop */ } } if (referenced) folio_clear_idle(folio); if (folio_test_clear_young(folio)) referenced++; if (referenced) { pra->referenced++; pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; } if (!pra->mapcount) return false; /* To break the loop */ return true; } static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) { struct folio_referenced_arg *pra = arg; struct mem_cgroup *memcg = pra->memcg; /* * Ignore references from this mapping if it has no recency. If the * folio has been used in another mapping, we will catch it; if this * other mapping is already gone, the unmap path will have set the * referenced flag or activated the folio in zap_pte_range(). */ if (!vma_has_recency(vma)) return true; /* * If we are reclaiming on behalf of a cgroup, skip counting on behalf * of references from different cgroups. */ if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) return true; return false; } /** * folio_referenced() - Test if the folio was referenced. * @folio: The folio to test. * @is_locked: Caller holds lock on the folio. * @memcg: target memory cgroup * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. * * Quick test_and_clear_referenced for all mappings of a folio, * * Return: The number of mappings which referenced the folio. Return -1 if * the function bailed out due to rmap lock contention. */ int folio_referenced(struct folio *folio, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags) { int we_locked = 0; struct folio_referenced_arg pra = { .mapcount = folio_mapcount(folio), .memcg = memcg, }; struct rmap_walk_control rwc = { .rmap_one = folio_referenced_one, .arg = (void *)&pra, .anon_lock = folio_lock_anon_vma_read, .try_lock = true, .invalid_vma = invalid_folio_referenced_vma, }; *vm_flags = 0; if (!pra.mapcount) return 0; if (!folio_raw_mapping(folio)) return 0; if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { we_locked = folio_trylock(folio); if (!we_locked) return 1; } rmap_walk(folio, &rwc); *vm_flags = pra.vm_flags; if (we_locked) folio_unlock(folio); return rwc.contended ? -1 : pra.referenced; } static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) { int cleaned = 0; struct vm_area_struct *vma = pvmw->vma; struct mmu_notifier_range range; unsigned long address = pvmw->address; /* * We have to assume the worse case ie pmd for invalidation. Note that * the folio can not be freed from this function. */ mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, vma->vm_mm, address, vma_address_end(pvmw)); mmu_notifier_invalidate_range_start(&range); while (page_vma_mapped_walk(pvmw)) { int ret = 0; address = pvmw->address; if (pvmw->pte) { pte_t *pte = pvmw->pte; pte_t entry = ptep_get(pte); if (!pte_dirty(entry) && !pte_write(entry)) continue; flush_cache_page(vma, address, pte_pfn(entry)); entry = ptep_clear_flush(vma, address, pte); entry = pte_wrprotect(entry); entry = pte_mkclean(entry); set_pte_at(vma->vm_mm, address, pte, entry); ret = 1; } else { #ifdef CONFIG_TRANSPARENT_HUGEPAGE pmd_t *pmd = pvmw->pmd; pmd_t entry; if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) continue; flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); entry = pmdp_invalidate(vma, address, pmd); entry = pmd_wrprotect(entry); entry = pmd_mkclean(entry); set_pmd_at(vma->vm_mm, address, pmd, entry); ret = 1; #else /* unexpected pmd-mapped folio? */ WARN_ON_ONCE(1); #endif } if (ret) cleaned++; } mmu_notifier_invalidate_range_end(&range); return cleaned; } static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *arg) { DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); int *cleaned = arg; *cleaned += page_vma_mkclean_one(&pvmw); return true; } static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) { if (vma->vm_flags & VM_SHARED) return false; return true; } int folio_mkclean(struct folio *folio) { int cleaned = 0; struct address_space *mapping; struct rmap_walk_control rwc = { .arg = (void *)&cleaned, .rmap_one = page_mkclean_one, .invalid_vma = invalid_mkclean_vma, }; BUG_ON(!folio_test_locked(folio)); if (!folio_mapped(folio)) return 0; mapping = folio_mapping(folio); if (!mapping) return 0; rmap_walk(folio, &rwc); return cleaned; } EXPORT_SYMBOL_GPL(folio_mkclean); /** * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) * within the @vma of shared mappings. And since clean PTEs * should also be readonly, write protects them too. * @pfn: start pfn. * @nr_pages: number of physically contiguous pages srarting with @pfn. * @pgoff: page offset that the @pfn mapped with. * @vma: vma that @pfn mapped within. * * Returns the number of cleaned PTEs (including PMDs). */ int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, struct vm_area_struct *vma) { struct page_vma_mapped_walk pvmw = { .pfn = pfn, .nr_pages = nr_pages, .pgoff = pgoff, .vma = vma, .flags = PVMW_SYNC, }; if (invalid_mkclean_vma(vma, NULL)) return 0; pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); return page_vma_mkclean_one(&pvmw); } int folio_total_mapcount(struct folio *folio) { int mapcount = folio_entire_mapcount(folio); int nr_pages; int i; /* In the common case, avoid the loop when no pages mapped by PTE */ if (folio_nr_pages_mapped(folio) == 0) return mapcount; /* * Add all the PTE mappings of those pages mapped by PTE. * Limit the loop to folio_nr_pages_mapped()? * Perhaps: given all the raciness, that may be a good or a bad idea. */ nr_pages = folio_nr_pages(folio); for (i = 0; i < nr_pages; i++) mapcount += atomic_read(&folio_page(folio, i)->_mapcount); /* But each of those _mapcounts was based on -1 */ mapcount += nr_pages; return mapcount; } /** * folio_move_anon_rmap - move a folio to our anon_vma * @folio: The folio to move to our anon_vma * @vma: The vma the folio belongs to * * When a folio belongs exclusively to one process after a COW event, * that folio can be moved into the anon_vma that belongs to just that * process, so the rmap code will not search the parent or sibling processes. */ void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) { void *anon_vma = vma->anon_vma; VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); VM_BUG_ON_VMA(!anon_vma, vma); anon_vma += PAGE_MAPPING_ANON; /* * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written * simultaneously, so a concurrent reader (eg folio_referenced()'s * folio_test_anon()) will not see one without the other. */ WRITE_ONCE(folio->mapping, anon_vma); } /** * __folio_set_anon - set up a new anonymous rmap for a folio * @folio: The folio to set up the new anonymous rmap for. * @vma: VM area to add the folio to. * @address: User virtual address of the mapping * @exclusive: Whether the folio is exclusive to the process. */ static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, unsigned long address, bool exclusive) { struct anon_vma *anon_vma = vma->anon_vma; BUG_ON(!anon_vma); /* * If the folio isn't exclusive to this vma, we must use the _oldest_ * possible anon_vma for the folio mapping! */ if (!exclusive) anon_vma = anon_vma->root; /* * page_idle does a lockless/optimistic rmap scan on folio->mapping. * Make sure the compiler doesn't split the stores of anon_vma and * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code * could mistake the mapping for a struct address_space and crash. */ anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); folio->index = linear_page_index(vma, address); } /** * __page_check_anon_rmap - sanity check anonymous rmap addition * @folio: The folio containing @page. * @page: the page to check the mapping of * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped */ static void __page_check_anon_rmap(struct folio *folio, struct page *page, struct vm_area_struct *vma, unsigned long address) { /* * The page's anon-rmap details (mapping and index) are guaranteed to * be set up correctly at this point. * * We have exclusion against page_add_anon_rmap because the caller * always holds the page locked. * * We have exclusion against page_add_new_anon_rmap because those pages * are initially only visible via the pagetables, and the pte is locked * over the call to page_add_new_anon_rmap. */ VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, folio); VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), page); } /** * page_add_anon_rmap - add pte mapping to an anonymous page * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped * @flags: the rmap flags * * The caller needs to hold the pte lock, and the page must be locked in * the anon_vma case: to serialize mapping,index checking after setting, * and to ensure that PageAnon is not being upgraded racily to PageKsm * (but PageKsm is never downgraded to PageAnon). */ void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address, rmap_t flags) { struct folio *folio = page_folio(page); atomic_t *mapped = &folio->_nr_pages_mapped; int nr = 0, nr_pmdmapped = 0; bool compound = flags & RMAP_COMPOUND; bool first; /* Is page being mapped by PTE? Is this its first map to be added? */ if (likely(!compound)) { first = atomic_inc_and_test(&page->_mapcount); nr = first; if (first && folio_test_large(folio)) { nr = atomic_inc_return_relaxed(mapped); nr = (nr < COMPOUND_MAPPED); } } else if (folio_test_pmd_mappable(folio)) { /* That test is redundant: it's for safety or to optimize out */ first = atomic_inc_and_test(&folio->_entire_mapcount); if (first) { nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { nr_pmdmapped = folio_nr_pages(folio); nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); /* Raced ahead of a remove and another add? */ if (unlikely(nr < 0)) nr = 0; } else { /* Raced ahead of a remove of COMPOUND_MAPPED */ nr = 0; } } } if (nr_pmdmapped) __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); if (nr) __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); if (unlikely(!folio_test_anon(folio))) { VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); /* * For a PTE-mapped large folio, we only know that the single * PTE is exclusive. Further, __folio_set_anon() might not get * folio->index right when not given the address of the head * page. */ VM_WARN_ON_FOLIO(folio_test_large(folio) && !compound, folio); __folio_set_anon(folio, vma, address, !!(flags & RMAP_EXCLUSIVE)); } else if (likely(!folio_test_ksm(folio))) { __page_check_anon_rmap(folio, page, vma, address); } if (flags & RMAP_EXCLUSIVE) SetPageAnonExclusive(page); /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ VM_WARN_ON_FOLIO((atomic_read(&page->_mapcount) > 0 || (folio_test_large(folio) && folio_entire_mapcount(folio) > 1)) && PageAnonExclusive(page), folio); /* * For large folio, only mlock it if it's fully mapped to VMA. It's * not easy to check whether the large folio is fully mapped to VMA * here. Only mlock normal 4K folio and leave page reclaim to handle * large folio. */ if (!folio_test_large(folio)) mlock_vma_folio(folio, vma); } /** * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. * @folio: The folio to add the mapping to. * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped * * Like page_add_anon_rmap() but must only be called on *new* folios. * This means the inc-and-test can be bypassed. * The folio does not have to be locked. * * If the folio is large, it is accounted as a THP. As the folio * is new, it's assumed to be mapped exclusively by a single process. */ void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, unsigned long address) { int nr; VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); __folio_set_swapbacked(folio); if (likely(!folio_test_pmd_mappable(folio))) { /* increment count (starts at -1) */ atomic_set(&folio->_mapcount, 0); nr = 1; } else { /* increment count (starts at -1) */ atomic_set(&folio->_entire_mapcount, 0); atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); nr = folio_nr_pages(folio); __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); } __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); __folio_set_anon(folio, vma, address, true); SetPageAnonExclusive(&folio->page); } /** * folio_add_file_rmap_range - add pte mapping to page range of a folio * @folio: The folio to add the mapping to * @page: The first page to add * @nr_pages: The number of pages which will be mapped * @vma: the vm area in which the mapping is added * @compound: charge the page as compound or small page * * The page range of folio is defined by [first_page, first_page + nr_pages) * * The caller needs to hold the pte lock. */ void folio_add_file_rmap_range(struct folio *folio, struct page *page, unsigned int nr_pages, struct vm_area_struct *vma, bool compound) { atomic_t *mapped = &folio->_nr_pages_mapped; unsigned int nr_pmdmapped = 0, first; int nr = 0; VM_WARN_ON_FOLIO(compound && !folio_test_pmd_mappable(folio), folio); /* Is page being mapped by PTE? Is this its first map to be added? */ if (likely(!compound)) { do { first = atomic_inc_and_test(&page->_mapcount); if (first && folio_test_large(folio)) { first = atomic_inc_return_relaxed(mapped); first = (first < COMPOUND_MAPPED); } if (first) nr++; } while (page++, --nr_pages > 0); } else if (folio_test_pmd_mappable(folio)) { /* That test is redundant: it's for safety or to optimize out */ first = atomic_inc_and_test(&folio->_entire_mapcount); if (first) { nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { nr_pmdmapped = folio_nr_pages(folio); nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); /* Raced ahead of a remove and another add? */ if (unlikely(nr < 0)) nr = 0; } else { /* Raced ahead of a remove of COMPOUND_MAPPED */ nr = 0; } } } if (nr_pmdmapped) __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); if (nr) __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); /* See comments in page_add_anon_rmap() */ if (!folio_test_large(folio)) mlock_vma_folio(folio, vma); } /** * page_add_file_rmap - add pte mapping to a file page * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @compound: charge the page as compound or small page * * The caller needs to hold the pte lock. */ void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, bool compound) { struct folio *folio = page_folio(page); unsigned int nr_pages; VM_WARN_ON_ONCE_PAGE(compound && !PageTransHuge(page), page); if (likely(!compound)) nr_pages = 1; else nr_pages = folio_nr_pages(folio); folio_add_file_rmap_range(folio, page, nr_pages, vma, compound); } /** * page_remove_rmap - take down pte mapping from a page * @page: page to remove mapping from * @vma: the vm area from which the mapping is removed * @compound: uncharge the page as compound or small page * * The caller needs to hold the pte lock. */ void page_remove_rmap(struct page *page, struct vm_area_struct *vma, bool compound) { struct folio *folio = page_folio(page); atomic_t *mapped = &folio->_nr_pages_mapped; int nr = 0, nr_pmdmapped = 0; bool last; enum node_stat_item idx; VM_BUG_ON_PAGE(compound && !PageHead(page), page); /* Hugetlb pages are not counted in NR_*MAPPED */ if (unlikely(folio_test_hugetlb(folio))) { /* hugetlb pages are always mapped with pmds */ atomic_dec(&folio->_entire_mapcount); return; } /* Is page being unmapped by PTE? Is this its last map to be removed? */ if (likely(!compound)) { last = atomic_add_negative(-1, &page->_mapcount); nr = last; if (last && folio_test_large(folio)) { nr = atomic_dec_return_relaxed(mapped); nr = (nr < COMPOUND_MAPPED); } } else if (folio_test_pmd_mappable(folio)) { /* That test is redundant: it's for safety or to optimize out */ last = atomic_add_negative(-1, &folio->_entire_mapcount); if (last) { nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); if (likely(nr < COMPOUND_MAPPED)) { nr_pmdmapped = folio_nr_pages(folio); nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); /* Raced ahead of another remove and an add? */ if (unlikely(nr < 0)) nr = 0; } else { /* An add of COMPOUND_MAPPED raced ahead */ nr = 0; } } } if (nr_pmdmapped) { if (folio_test_anon(folio)) idx = NR_ANON_THPS; else if (folio_test_swapbacked(folio)) idx = NR_SHMEM_PMDMAPPED; else idx = NR_FILE_PMDMAPPED; __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); } if (nr) { idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; __lruvec_stat_mod_folio(folio, idx, -nr); /* * Queue anon THP for deferred split if at least one * page of the folio is unmapped and at least one page * is still mapped. */ if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) if (!compound || nr < nr_pmdmapped) deferred_split_folio(folio); } /* * It would be tidy to reset folio_test_anon mapping when fully * unmapped, but that might overwrite a racing page_add_anon_rmap * which increments mapcount after us but sets mapping before us: * so leave the reset to free_pages_prepare, and remember that * it's only reliable while mapped. */ munlock_vma_folio(folio, vma); } /* * @arg: enum ttu_flags will be passed to this argument */ static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *arg) { struct mm_struct *mm = vma->vm_mm; DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); pte_t pteval; struct page *subpage; bool anon_exclusive, ret = true; struct mmu_notifier_range range; enum ttu_flags flags = (enum ttu_flags)(long)arg; unsigned long pfn; unsigned long hsz = 0; /* * When racing against e.g. zap_pte_range() on another cpu, * in between its ptep_get_and_clear_full() and page_remove_rmap(), * try_to_unmap() may return before page_mapped() has become false, * if page table locking is skipped: use TTU_SYNC to wait for that. */ if (flags & TTU_SYNC) pvmw.flags = PVMW_SYNC; if (flags & TTU_SPLIT_HUGE_PMD) split_huge_pmd_address(vma, address, false, folio); /* * For THP, we have to assume the worse case ie pmd for invalidation. * For hugetlb, it could be much worse if we need to do pud * invalidation in the case of pmd sharing. * * Note that the folio can not be freed in this function as call of * try_to_unmap() must hold a reference on the folio. */ range.end = vma_address_end(&pvmw); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, address, range.end); if (folio_test_hugetlb(folio)) { /* * If sharing is possible, start and end will be adjusted * accordingly. */ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); /* We need the huge page size for set_huge_pte_at() */ hsz = huge_page_size(hstate_vma(vma)); } mmu_notifier_invalidate_range_start(&range); while (page_vma_mapped_walk(&pvmw)) { /* Unexpected PMD-mapped THP? */ VM_BUG_ON_FOLIO(!pvmw.pte, folio); /* * If the folio is in an mlock()d vma, we must not swap it out. */ if (!(flags & TTU_IGNORE_MLOCK) && (vma->vm_flags & VM_LOCKED)) { /* Restore the mlock which got missed */ if (!folio_test_large(folio)) mlock_vma_folio(folio, vma); page_vma_mapped_walk_done(&pvmw); ret = false; break; } pfn = pte_pfn(ptep_get(pvmw.pte)); subpage = folio_page(folio, pfn - folio_pfn(folio)); address = pvmw.address; anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(subpage); if (folio_test_hugetlb(folio)) { bool anon = folio_test_anon(folio); /* * The try_to_unmap() is only passed a hugetlb page * in the case where the hugetlb page is poisoned. */ VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); /* * huge_pmd_unshare may unmap an entire PMD page. * There is no way of knowing exactly which PMDs may * be cached for this mm, so we must flush them all. * start/end were already adjusted above to cover this * range. */ flush_cache_range(vma, range.start, range.end); /* * To call huge_pmd_unshare, i_mmap_rwsem must be * held in write mode. Caller needs to explicitly * do this outside rmap routines. * * We also must hold hugetlb vma_lock in write mode. * Lock order dictates acquiring vma_lock BEFORE * i_mmap_rwsem. We can only try lock here and fail * if unsuccessful. */ if (!anon) { VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); if (!hugetlb_vma_trylock_write(vma)) { page_vma_mapped_walk_done(&pvmw); ret = false; break; } if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { hugetlb_vma_unlock_write(vma); flush_tlb_range(vma, range.start, range.end); /* * The ref count of the PMD page was * dropped which is part of the way map * counting is done for shared PMDs. * Return 'true' here. When there is * no other sharing, huge_pmd_unshare * returns false and we will unmap the * actual page and drop map count * to zero. */ page_vma_mapped_walk_done(&pvmw); break; } hugetlb_vma_unlock_write(vma); } pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); } else { flush_cache_page(vma, address, pfn); /* Nuke the page table entry. */ if (should_defer_flush(mm, flags)) { /* * We clear the PTE but do not flush so potentially * a remote CPU could still be writing to the folio. * If the entry was previously clean then the * architecture must guarantee that a clear->dirty * transition on a cached TLB entry is written through * and traps if the PTE is unmapped. */ pteval = ptep_get_and_clear(mm, address, pvmw.pte); set_tlb_ubc_flush_pending(mm, pteval, address); } else { pteval = ptep_clear_flush(vma, address, pvmw.pte); } } /* * Now the pte is cleared. If this pte was uffd-wp armed, * we may want to replace a none pte with a marker pte if * it's file-backed, so we don't lose the tracking info. */ pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); /* Set the dirty flag on the folio now the pte is gone. */ if (pte_dirty(pteval)) folio_mark_dirty(folio); /* Update high watermark before we lower rss */ update_hiwater_rss(mm); if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); if (folio_test_hugetlb(folio)) { hugetlb_count_sub(folio_nr_pages(folio), mm); set_huge_pte_at(mm, address, pvmw.pte, pteval, hsz); } else { dec_mm_counter(mm, mm_counter(&folio->page)); set_pte_at(mm, address, pvmw.pte, pteval); } } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { /* * The guest indicated that the page content is of no * interest anymore. Simply discard the pte, vmscan * will take care of the rest. * A future reference will then fault in a new zero * page. When userfaultfd is active, we must not drop * this page though, as its main user (postcopy * migration) will not expect userfaults on already * copied pages. */ dec_mm_counter(mm, mm_counter(&folio->page)); } else if (folio_test_anon(folio)) { swp_entry_t entry = page_swap_entry(subpage); pte_t swp_pte; /* * Store the swap location in the pte. * See handle_pte_fault() ... */ if (unlikely(folio_test_swapbacked(folio) != folio_test_swapcache(folio))) { WARN_ON_ONCE(1); ret = false; page_vma_mapped_walk_done(&pvmw); break; } /* MADV_FREE page check */ if (!folio_test_swapbacked(folio)) { int ref_count, map_count; /* * Synchronize with gup_pte_range(): * - clear PTE; barrier; read refcount * - inc refcount; barrier; read PTE */ smp_mb(); ref_count = folio_ref_count(folio); map_count = folio_mapcount(folio); /* * Order reads for page refcount and dirty flag * (see comments in __remove_mapping()). */ smp_rmb(); /* * The only page refs must be one from isolation * plus the rmap(s) (dropped by discard:). */ if (ref_count == 1 + map_count && !folio_test_dirty(folio)) { dec_mm_counter(mm, MM_ANONPAGES); goto discard; } /* * If the folio was redirtied, it cannot be * discarded. Remap the page to page table. */ set_pte_at(mm, address, pvmw.pte, pteval); folio_set_swapbacked(folio); ret = false; page_vma_mapped_walk_done(&pvmw); break; } if (swap_duplicate(entry) < 0) { set_pte_at(mm, address, pvmw.pte, pteval); ret = false; page_vma_mapped_walk_done(&pvmw); break; } if (arch_unmap_one(mm, vma, address, pteval) < 0) { swap_free(entry); set_pte_at(mm, address, pvmw.pte, pteval); ret = false; page_vma_mapped_walk_done(&pvmw); break; } /* See page_try_share_anon_rmap(): clear PTE first. */ if (anon_exclusive && page_try_share_anon_rmap(subpage)) { swap_free(entry); set_pte_at(mm, address, pvmw.pte, pteval); ret = false; page_vma_mapped_walk_done(&pvmw); break; } if (list_empty(&mm->mmlist)) { spin_lock(&mmlist_lock); if (list_empty(&mm->mmlist)) list_add(&mm->mmlist, &init_mm.mmlist); spin_unlock(&mmlist_lock); } dec_mm_counter(mm, MM_ANONPAGES); inc_mm_counter(mm, MM_SWAPENTS); swp_pte = swp_entry_to_pte(entry); if (anon_exclusive) swp_pte = pte_swp_mkexclusive(swp_pte); if (pte_soft_dirty(pteval)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_uffd_wp(pteval)) swp_pte = pte_swp_mkuffd_wp(swp_pte); set_pte_at(mm, address, pvmw.pte, swp_pte); } else { /* * This is a locked file-backed folio, * so it cannot be removed from the page * cache and replaced by a new folio before * mmu_notifier_invalidate_range_end, so no * concurrent thread might update its page table * to point at a new folio while a device is * still using this folio. * * See Documentation/mm/mmu_notifier.rst */ dec_mm_counter(mm, mm_counter_file(&folio->page)); } discard: page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); if (vma->vm_flags & VM_LOCKED) mlock_drain_local(); folio_put(folio); } mmu_notifier_invalidate_range_end(&range); return ret; } static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) { return vma_is_temporary_stack(vma); } static int folio_not_mapped(struct folio *folio) { return !folio_mapped(folio); } /** * try_to_unmap - Try to remove all page table mappings to a folio. * @folio: The folio to unmap. * @flags: action and flags * * Tries to remove all the page table entries which are mapping this * folio. It is the caller's responsibility to check if the folio is * still mapped if needed (use TTU_SYNC to prevent accounting races). * * Context: Caller must hold the folio lock. */ void try_to_unmap(struct folio *folio, enum ttu_flags flags) { struct rmap_walk_control rwc = { .rmap_one = try_to_unmap_one, .arg = (void *)flags, .done = folio_not_mapped, .anon_lock = folio_lock_anon_vma_read, }; if (flags & TTU_RMAP_LOCKED) rmap_walk_locked(folio, &rwc); else rmap_walk(folio, &rwc); } /* * @arg: enum ttu_flags will be passed to this argument. * * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs * containing migration entries. */ static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *arg) { struct mm_struct *mm = vma->vm_mm; DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); pte_t pteval; struct page *subpage; bool anon_exclusive, ret = true; struct mmu_notifier_range range; enum ttu_flags flags = (enum ttu_flags)(long)arg; unsigned long pfn; unsigned long hsz = 0; /* * When racing against e.g. zap_pte_range() on another cpu, * in between its ptep_get_and_clear_full() and page_remove_rmap(), * try_to_migrate() may return before page_mapped() has become false, * if page table locking is skipped: use TTU_SYNC to wait for that. */ if (flags & TTU_SYNC) pvmw.flags = PVMW_SYNC; /* * unmap_page() in mm/huge_memory.c is the only user of migration with * TTU_SPLIT_HUGE_PMD and it wants to freeze. */ if (flags & TTU_SPLIT_HUGE_PMD) split_huge_pmd_address(vma, address, true, folio); /* * For THP, we have to assume the worse case ie pmd for invalidation. * For hugetlb, it could be much worse if we need to do pud * invalidation in the case of pmd sharing. * * Note that the page can not be free in this function as call of * try_to_unmap() must hold a reference on the page. */ range.end = vma_address_end(&pvmw); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, address, range.end); if (folio_test_hugetlb(folio)) { /* * If sharing is possible, start and end will be adjusted * accordingly. */ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); /* We need the huge page size for set_huge_pte_at() */ hsz = huge_page_size(hstate_vma(vma)); } mmu_notifier_invalidate_range_start(&range); while (page_vma_mapped_walk(&pvmw)) { #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION /* PMD-mapped THP migration entry */ if (!pvmw.pte) { subpage = folio_page(folio, pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || !folio_test_pmd_mappable(folio), folio); if (set_pmd_migration_entry(&pvmw, subpage)) { ret = false; page_vma_mapped_walk_done(&pvmw); break; } continue; } #endif /* Unexpected PMD-mapped THP? */ VM_BUG_ON_FOLIO(!pvmw.pte, folio); pfn = pte_pfn(ptep_get(pvmw.pte)); if (folio_is_zone_device(folio)) { /* * Our PTE is a non-present device exclusive entry and * calculating the subpage as for the common case would * result in an invalid pointer. * * Since only PAGE_SIZE pages can currently be * migrated, just set it to page. This will need to be * changed when hugepage migrations to device private * memory are supported. */ VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); subpage = &folio->page; } else { subpage = folio_page(folio, pfn - folio_pfn(folio)); } address = pvmw.address; anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(subpage); if (folio_test_hugetlb(folio)) { bool anon = folio_test_anon(folio); /* * huge_pmd_unshare may unmap an entire PMD page. * There is no way of knowing exactly which PMDs may * be cached for this mm, so we must flush them all. * start/end were already adjusted above to cover this * range. */ flush_cache_range(vma, range.start, range.end); /* * To call huge_pmd_unshare, i_mmap_rwsem must be * held in write mode. Caller needs to explicitly * do this outside rmap routines. * * We also must hold hugetlb vma_lock in write mode. * Lock order dictates acquiring vma_lock BEFORE * i_mmap_rwsem. We can only try lock here and * fail if unsuccessful. */ if (!anon) { VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); if (!hugetlb_vma_trylock_write(vma)) { page_vma_mapped_walk_done(&pvmw); ret = false; break; } if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { hugetlb_vma_unlock_write(vma); flush_tlb_range(vma, range.start, range.end); /* * The ref count of the PMD page was * dropped which is part of the way map * counting is done for shared PMDs. * Return 'true' here. When there is * no other sharing, huge_pmd_unshare * returns false and we will unmap the * actual page and drop map count * to zero. */ page_vma_mapped_walk_done(&pvmw); break; } hugetlb_vma_unlock_write(vma); } /* Nuke the hugetlb page table entry */ pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); } else { flush_cache_page(vma, address, pfn); /* Nuke the page table entry. */ if (should_defer_flush(mm, flags)) { /* * We clear the PTE but do not flush so potentially * a remote CPU could still be writing to the folio. * If the entry was previously clean then the * architecture must guarantee that a clear->dirty * transition on a cached TLB entry is written through * and traps if the PTE is unmapped. */ pteval = ptep_get_and_clear(mm, address, pvmw.pte); set_tlb_ubc_flush_pending(mm, pteval, address); } else { pteval = ptep_clear_flush(vma, address, pvmw.pte); } } /* Set the dirty flag on the folio now the pte is gone. */ if (pte_dirty(pteval)) folio_mark_dirty(folio); /* Update high watermark before we lower rss */ update_hiwater_rss(mm); if (folio_is_device_private(folio)) { unsigned long pfn = folio_pfn(folio); swp_entry_t entry; pte_t swp_pte; if (anon_exclusive) BUG_ON(page_try_share_anon_rmap(subpage)); /* * Store the pfn of the page in a special migration * pte. do_swap_page() will wait until the migration * pte is removed and then restart fault handling. */ entry = pte_to_swp_entry(pteval); if (is_writable_device_private_entry(entry)) entry = make_writable_migration_entry(pfn); else if (anon_exclusive) entry = make_readable_exclusive_migration_entry(pfn); else entry = make_readable_migration_entry(pfn); swp_pte = swp_entry_to_pte(entry); /* * pteval maps a zone device page and is therefore * a swap pte. */ if (pte_swp_soft_dirty(pteval)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_swp_uffd_wp(pteval)) swp_pte = pte_swp_mkuffd_wp(swp_pte); set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); trace_set_migration_pte(pvmw.address, pte_val(swp_pte), compound_order(&folio->page)); /* * No need to invalidate here it will synchronize on * against the special swap migration pte. */ } else if (PageHWPoison(subpage)) { pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); if (folio_test_hugetlb(folio)) { hugetlb_count_sub(folio_nr_pages(folio), mm); set_huge_pte_at(mm, address, pvmw.pte, pteval, hsz); } else { dec_mm_counter(mm, mm_counter(&folio->page)); set_pte_at(mm, address, pvmw.pte, pteval); } } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { /* * The guest indicated that the page content is of no * interest anymore. Simply discard the pte, vmscan * will take care of the rest. * A future reference will then fault in a new zero * page. When userfaultfd is active, we must not drop * this page though, as its main user (postcopy * migration) will not expect userfaults on already * copied pages. */ dec_mm_counter(mm, mm_counter(&folio->page)); } else { swp_entry_t entry; pte_t swp_pte; if (arch_unmap_one(mm, vma, address, pteval) < 0) { if (folio_test_hugetlb(folio)) set_huge_pte_at(mm, address, pvmw.pte, pteval, hsz); else set_pte_at(mm, address, pvmw.pte, pteval); ret = false; page_vma_mapped_walk_done(&pvmw); break; } VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && !anon_exclusive, subpage); /* See page_try_share_anon_rmap(): clear PTE first. */ if (anon_exclusive && page_try_share_anon_rmap(subpage)) { if (folio_test_hugetlb(folio)) set_huge_pte_at(mm, address, pvmw.pte, pteval, hsz); else set_pte_at(mm, address, pvmw.pte, pteval); ret = false; page_vma_mapped_walk_done(&pvmw); break; } /* * Store the pfn of the page in a special migration * pte. do_swap_page() will wait until the migration * pte is removed and then restart fault handling. */ if (pte_write(pteval)) entry = make_writable_migration_entry( page_to_pfn(subpage)); else if (anon_exclusive) entry = make_readable_exclusive_migration_entry( page_to_pfn(subpage)); else entry = make_readable_migration_entry( page_to_pfn(subpage)); if (pte_young(pteval)) entry = make_migration_entry_young(entry); if (pte_dirty(pteval)) entry = make_migration_entry_dirty(entry); swp_pte = swp_entry_to_pte(entry); if (pte_soft_dirty(pteval)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_uffd_wp(pteval)) swp_pte = pte_swp_mkuffd_wp(swp_pte); if (folio_test_hugetlb(folio)) set_huge_pte_at(mm, address, pvmw.pte, swp_pte, hsz); else set_pte_at(mm, address, pvmw.pte, swp_pte); trace_set_migration_pte(address, pte_val(swp_pte), compound_order(&folio->page)); /* * No need to invalidate here it will synchronize on * against the special swap migration pte. */ } page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); if (vma->vm_flags & VM_LOCKED) mlock_drain_local(); folio_put(folio); } mmu_notifier_invalidate_range_end(&range); return ret; } /** * try_to_migrate - try to replace all page table mappings with swap entries * @folio: the folio to replace page table entries for * @flags: action and flags * * Tries to remove all the page table entries which are mapping this folio and * replace them with special swap entries. Caller must hold the folio lock. */ void try_to_migrate(struct folio *folio, enum ttu_flags flags) { struct rmap_walk_control rwc = { .rmap_one = try_to_migrate_one, .arg = (void *)flags, .done = folio_not_mapped, .anon_lock = folio_lock_anon_vma_read, }; /* * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. */ if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | TTU_SYNC | TTU_BATCH_FLUSH))) return; if (folio_is_zone_device(folio) && (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) return; /* * During exec, a temporary VMA is setup and later moved. * The VMA is moved under the anon_vma lock but not the * page tables leading to a race where migration cannot * find the migration ptes. Rather than increasing the * locking requirements of exec(), migration skips * temporary VMAs until after exec() completes. */ if (!folio_test_ksm(folio) && folio_test_anon(folio)) rwc.invalid_vma = invalid_migration_vma; if (flags & TTU_RMAP_LOCKED) rmap_walk_locked(folio, &rwc); else rmap_walk(folio, &rwc); } #ifdef CONFIG_DEVICE_PRIVATE struct make_exclusive_args { struct mm_struct *mm; unsigned long address; void *owner; bool valid; }; static bool page_make_device_exclusive_one(struct folio *folio, struct vm_area_struct *vma, unsigned long address, void *priv) { struct mm_struct *mm = vma->vm_mm; DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); struct make_exclusive_args *args = priv; pte_t pteval; struct page *subpage; bool ret = true; struct mmu_notifier_range range; swp_entry_t entry; pte_t swp_pte; pte_t ptent; mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma->vm_mm, address, min(vma->vm_end, address + folio_size(folio)), args->owner); mmu_notifier_invalidate_range_start(&range); while (page_vma_mapped_walk(&pvmw)) { /* Unexpected PMD-mapped THP? */ VM_BUG_ON_FOLIO(!pvmw.pte, folio); ptent = ptep_get(pvmw.pte); if (!pte_present(ptent)) { ret = false; page_vma_mapped_walk_done(&pvmw); break; } subpage = folio_page(folio, pte_pfn(ptent) - folio_pfn(folio)); address = pvmw.address; /* Nuke the page table entry. */ flush_cache_page(vma, address, pte_pfn(ptent)); pteval = ptep_clear_flush(vma, address, pvmw.pte); /* Set the dirty flag on the folio now the pte is gone. */ if (pte_dirty(pteval)) folio_mark_dirty(folio); /* * Check that our target page is still mapped at the expected * address. */ if (args->mm == mm && args->address == address && pte_write(pteval)) args->valid = true; /* * Store the pfn of the page in a special migration * pte. do_swap_page() will wait until the migration * pte is removed and then restart fault handling. */ if (pte_write(pteval)) entry = make_writable_device_exclusive_entry( page_to_pfn(subpage)); else entry = make_readable_device_exclusive_entry( page_to_pfn(subpage)); swp_pte = swp_entry_to_pte(entry); if (pte_soft_dirty(pteval)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_uffd_wp(pteval)) swp_pte = pte_swp_mkuffd_wp(swp_pte); set_pte_at(mm, address, pvmw.pte, swp_pte); /* * There is a reference on the page for the swap entry which has * been removed, so shouldn't take another. */ page_remove_rmap(subpage, vma, false); } mmu_notifier_invalidate_range_end(&range); return ret; } /** * folio_make_device_exclusive - Mark the folio exclusively owned by a device. * @folio: The folio to replace page table entries for. * @mm: The mm_struct where the folio is expected to be mapped. * @address: Address where the folio is expected to be mapped. * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks * * Tries to remove all the page table entries which are mapping this * folio and replace them with special device exclusive swap entries to * grant a device exclusive access to the folio. * * Context: Caller must hold the folio lock. * Return: false if the page is still mapped, or if it could not be unmapped * from the expected address. Otherwise returns true (success). */ static bool folio_make_device_exclusive(struct folio *folio, struct mm_struct *mm, unsigned long address, void *owner) { struct make_exclusive_args args = { .mm = mm, .address = address, .owner = owner, .valid = false, }; struct rmap_walk_control rwc = { .rmap_one = page_make_device_exclusive_one, .done = folio_not_mapped, .anon_lock = folio_lock_anon_vma_read, .arg = &args, }; /* * Restrict to anonymous folios for now to avoid potential writeback * issues. */ if (!folio_test_anon(folio)) return false; rmap_walk(folio, &rwc); return args.valid && !folio_mapcount(folio); } /** * make_device_exclusive_range() - Mark a range for exclusive use by a device * @mm: mm_struct of associated target process * @start: start of the region to mark for exclusive device access * @end: end address of region * @pages: returns the pages which were successfully marked for exclusive access * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering * * Returns: number of pages found in the range by GUP. A page is marked for * exclusive access only if the page pointer is non-NULL. * * This function finds ptes mapping page(s) to the given address range, locks * them and replaces mappings with special swap entries preventing userspace CPU * access. On fault these entries are replaced with the original mapping after * calling MMU notifiers. * * A driver using this to program access from a device must use a mmu notifier * critical section to hold a device specific lock during programming. Once * programming is complete it should drop the page lock and reference after * which point CPU access to the page will revoke the exclusive access. */ int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct page **pages, void *owner) { long npages = (end - start) >> PAGE_SHIFT; long i; npages = get_user_pages_remote(mm, start, npages, FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, pages, NULL); if (npages < 0) return npages; for (i = 0; i < npages; i++, start += PAGE_SIZE) { struct folio *folio = page_folio(pages[i]); if (PageTail(pages[i]) || !folio_trylock(folio)) { folio_put(folio); pages[i] = NULL; continue; } if (!folio_make_device_exclusive(folio, mm, start, owner)) { folio_unlock(folio); folio_put(folio); pages[i] = NULL; } } return npages; } EXPORT_SYMBOL_GPL(make_device_exclusive_range); #endif void __put_anon_vma(struct anon_vma *anon_vma) { struct anon_vma *root = anon_vma->root; anon_vma_free(anon_vma); if (root != anon_vma && atomic_dec_and_test(&root->refcount)) anon_vma_free(root); } static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, struct rmap_walk_control *rwc) { struct anon_vma *anon_vma; if (rwc->anon_lock) return rwc->anon_lock(folio, rwc); /* * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() * because that depends on page_mapped(); but not all its usages * are holding mmap_lock. Users without mmap_lock are required to * take a reference count to prevent the anon_vma disappearing */ anon_vma = folio_anon_vma(folio); if (!anon_vma) return NULL; if (anon_vma_trylock_read(anon_vma)) goto out; if (rwc->try_lock) { anon_vma = NULL; rwc->contended = true; goto out; } anon_vma_lock_read(anon_vma); out: return anon_vma; } /* * rmap_walk_anon - do something to anonymous page using the object-based * rmap method * @folio: the folio to be handled * @rwc: control variable according to each walk type * @locked: caller holds relevant rmap lock * * Find all the mappings of a folio using the mapping pointer and the vma * chains contained in the anon_vma struct it points to. */ static void rmap_walk_anon(struct folio *folio, struct rmap_walk_control *rwc, bool locked) { struct anon_vma *anon_vma; pgoff_t pgoff_start, pgoff_end; struct anon_vma_chain *avc; if (locked) { anon_vma = folio_anon_vma(folio); /* anon_vma disappear under us? */ VM_BUG_ON_FOLIO(!anon_vma, folio); } else { anon_vma = rmap_walk_anon_lock(folio, rwc); } if (!anon_vma) return; pgoff_start = folio_pgoff(folio); pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff_start, pgoff_end) { struct vm_area_struct *vma = avc->vma; unsigned long address = vma_address(&folio->page, vma); VM_BUG_ON_VMA(address == -EFAULT, vma); cond_resched(); if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) continue; if (!rwc->rmap_one(folio, vma, address, rwc->arg)) break; if (rwc->done && rwc->done(folio)) break; } if (!locked) anon_vma_unlock_read(anon_vma); } /* * rmap_walk_file - do something to file page using the object-based rmap method * @folio: the folio to be handled * @rwc: control variable according to each walk type * @locked: caller holds relevant rmap lock * * Find all the mappings of a folio using the mapping pointer and the vma chains * contained in the address_space struct it points to. */ static void rmap_walk_file(struct folio *folio, struct rmap_walk_control *rwc, bool locked) { struct address_space *mapping = folio_mapping(folio); pgoff_t pgoff_start, pgoff_end; struct vm_area_struct *vma; /* * The page lock not only makes sure that page->mapping cannot * suddenly be NULLified by truncation, it makes sure that the * structure at mapping cannot be freed and reused yet, * so we can safely take mapping->i_mmap_rwsem. */ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); if (!mapping) return; pgoff_start = folio_pgoff(folio); pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; if (!locked) { if (i_mmap_trylock_read(mapping)) goto lookup; if (rwc->try_lock) { rwc->contended = true; return; } i_mmap_lock_read(mapping); } lookup: vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff_start, pgoff_end) { unsigned long address = vma_address(&folio->page, vma); VM_BUG_ON_VMA(address == -EFAULT, vma); cond_resched(); if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) continue; if (!rwc->rmap_one(folio, vma, address, rwc->arg)) goto done; if (rwc->done && rwc->done(folio)) goto done; } done: if (!locked) i_mmap_unlock_read(mapping); } void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) { if (unlikely(folio_test_ksm(folio))) rmap_walk_ksm(folio, rwc); else if (folio_test_anon(folio)) rmap_walk_anon(folio, rwc, false); else rmap_walk_file(folio, rwc, false); } /* Like rmap_walk, but caller holds relevant rmap lock */ void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) { /* no ksm support for now */ VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); if (folio_test_anon(folio)) rmap_walk_anon(folio, rwc, true); else rmap_walk_file(folio, rwc, true); } #ifdef CONFIG_HUGETLB_PAGE /* * The following two functions are for anonymous (private mapped) hugepages. * Unlike common anonymous pages, anonymous hugepages have no accounting code * and no lru code, because we handle hugepages differently from common pages. * * RMAP_COMPOUND is ignored. */ void hugepage_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, unsigned long address, rmap_t flags) { VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); atomic_inc(&folio->_entire_mapcount); if (flags & RMAP_EXCLUSIVE) SetPageAnonExclusive(&folio->page); VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && PageAnonExclusive(&folio->page), folio); } void hugepage_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, unsigned long address) { BUG_ON(address < vma->vm_start || address >= vma->vm_end); /* increment count (starts at -1) */ atomic_set(&folio->_entire_mapcount, 0); folio_clear_hugetlb_restore_reserve(folio); __folio_set_anon(folio, vma, address, true); SetPageAnonExclusive(&folio->page); } #endif /* CONFIG_HUGETLB_PAGE */