/* * Resizable virtual memory filesystem for Linux. * * Copyright (C) 2000 Linus Torvalds. * 2000 Transmeta Corp. * 2000-2001 Christoph Rohland * 2000-2001 SAP AG * 2002 Red Hat Inc. * Copyright (C) 2002-2011 Hugh Dickins. * Copyright (C) 2011 Google Inc. * Copyright (C) 2002-2005 VERITAS Software Corporation. * Copyright (C) 2004 Andi Kleen, SuSE Labs * * Extended attribute support for tmpfs: * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> * * tiny-shmem: * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> * * This file is released under the GPL. */ #include <linux/fs.h> #include <linux/init.h> #include <linux/vfs.h> #include <linux/mount.h> #include <linux/ramfs.h> #include <linux/pagemap.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/random.h> #include <linux/sched/signal.h> #include <linux/export.h> #include <linux/swap.h> #include <linux/uio.h> #include <linux/khugepaged.h> #include <linux/hugetlb.h> #include <linux/frontswap.h> #include <linux/fs_parser.h> #include <linux/swapfile.h> static struct vfsmount *shm_mnt; #ifdef CONFIG_SHMEM /* * This virtual memory filesystem is heavily based on the ramfs. It * extends ramfs by the ability to use swap and honor resource limits * which makes it a completely usable filesystem. */ #include <linux/xattr.h> #include <linux/exportfs.h> #include <linux/posix_acl.h> #include <linux/posix_acl_xattr.h> #include <linux/mman.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/backing-dev.h> #include <linux/shmem_fs.h> #include <linux/writeback.h> #include <linux/pagevec.h> #include <linux/percpu_counter.h> #include <linux/falloc.h> #include <linux/splice.h> #include <linux/security.h> #include <linux/swapops.h> #include <linux/mempolicy.h> #include <linux/namei.h> #include <linux/ctype.h> #include <linux/migrate.h> #include <linux/highmem.h> #include <linux/seq_file.h> #include <linux/magic.h> #include <linux/syscalls.h> #include <linux/fcntl.h> #include <uapi/linux/memfd.h> #include <linux/userfaultfd_k.h> #include <linux/rmap.h> #include <linux/uuid.h> #include <linux/uaccess.h> #include "internal.h" #define BLOCKS_PER_PAGE (PAGE_SIZE/512) #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) /* Pretend that each entry is of this size in directory's i_size */ #define BOGO_DIRENT_SIZE 20 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ #define SHORT_SYMLINK_LEN 128 /* * shmem_fallocate communicates with shmem_fault or shmem_writepage via * inode->i_private (with i_rwsem making sure that it has only one user at * a time): we would prefer not to enlarge the shmem inode just for that. */ struct shmem_falloc { wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ pgoff_t start; /* start of range currently being fallocated */ pgoff_t next; /* the next page offset to be fallocated */ pgoff_t nr_falloced; /* how many new pages have been fallocated */ pgoff_t nr_unswapped; /* how often writepage refused to swap out */ }; struct shmem_options { unsigned long long blocks; unsigned long long inodes; struct mempolicy *mpol; kuid_t uid; kgid_t gid; umode_t mode; bool full_inums; int huge; int seen; #define SHMEM_SEEN_BLOCKS 1 #define SHMEM_SEEN_INODES 2 #define SHMEM_SEEN_HUGE 4 #define SHMEM_SEEN_INUMS 8 }; #ifdef CONFIG_TMPFS static unsigned long shmem_default_max_blocks(void) { return totalram_pages() / 2; } static unsigned long shmem_default_max_inodes(void) { unsigned long nr_pages = totalram_pages(); return min(nr_pages - totalhigh_pages(), nr_pages / 2); } #endif static int shmem_swapin_page(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, vm_fault_t *fault_type); static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, struct vm_fault *vmf, vm_fault_t *fault_type); int shmem_getpage(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp) { return shmem_getpage_gfp(inode, index, pagep, sgp, mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); } static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) { return sb->s_fs_info; } /* * shmem_file_setup pre-accounts the whole fixed size of a VM object, * for shared memory and for shared anonymous (/dev/zero) mappings * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), * consistent with the pre-accounting of private mappings ... */ static inline int shmem_acct_size(unsigned long flags, loff_t size) { return (flags & VM_NORESERVE) ? 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); } static inline void shmem_unacct_size(unsigned long flags, loff_t size) { if (!(flags & VM_NORESERVE)) vm_unacct_memory(VM_ACCT(size)); } static inline int shmem_reacct_size(unsigned long flags, loff_t oldsize, loff_t newsize) { if (!(flags & VM_NORESERVE)) { if (VM_ACCT(newsize) > VM_ACCT(oldsize)) return security_vm_enough_memory_mm(current->mm, VM_ACCT(newsize) - VM_ACCT(oldsize)); else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); } return 0; } /* * ... whereas tmpfs objects are accounted incrementally as * pages are allocated, in order to allow large sparse files. * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. */ static inline int shmem_acct_block(unsigned long flags, long pages) { if (!(flags & VM_NORESERVE)) return 0; return security_vm_enough_memory_mm(current->mm, pages * VM_ACCT(PAGE_SIZE)); } static inline void shmem_unacct_blocks(unsigned long flags, long pages) { if (flags & VM_NORESERVE) vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); } static inline bool shmem_inode_acct_block(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (shmem_acct_block(info->flags, pages)) return false; if (sbinfo->max_blocks) { if (percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks - pages) > 0) goto unacct; percpu_counter_add(&sbinfo->used_blocks, pages); } return true; unacct: shmem_unacct_blocks(info->flags, pages); return false; } static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (sbinfo->max_blocks) percpu_counter_sub(&sbinfo->used_blocks, pages); shmem_unacct_blocks(info->flags, pages); } static const struct super_operations shmem_ops; const struct address_space_operations shmem_aops; static const struct file_operations shmem_file_operations; static const struct inode_operations shmem_inode_operations; static const struct inode_operations shmem_dir_inode_operations; static const struct inode_operations shmem_special_inode_operations; static const struct vm_operations_struct shmem_vm_ops; static struct file_system_type shmem_fs_type; bool vma_is_shmem(struct vm_area_struct *vma) { return vma->vm_ops == &shmem_vm_ops; } static LIST_HEAD(shmem_swaplist); static DEFINE_MUTEX(shmem_swaplist_mutex); /* * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and * produces a novel ino for the newly allocated inode. * * It may also be called when making a hard link to permit the space needed by * each dentry. However, in that case, no new inode number is needed since that * internally draws from another pool of inode numbers (currently global * get_next_ino()). This case is indicated by passing NULL as inop. */ #define SHMEM_INO_BATCH 1024 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); ino_t ino; if (!(sb->s_flags & SB_KERNMOUNT)) { raw_spin_lock(&sbinfo->stat_lock); if (sbinfo->max_inodes) { if (!sbinfo->free_inodes) { raw_spin_unlock(&sbinfo->stat_lock); return -ENOSPC; } sbinfo->free_inodes--; } if (inop) { ino = sbinfo->next_ino++; if (unlikely(is_zero_ino(ino))) ino = sbinfo->next_ino++; if (unlikely(!sbinfo->full_inums && ino > UINT_MAX)) { /* * Emulate get_next_ino uint wraparound for * compatibility */ if (IS_ENABLED(CONFIG_64BIT)) pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", __func__, MINOR(sb->s_dev)); sbinfo->next_ino = 1; ino = sbinfo->next_ino++; } *inop = ino; } raw_spin_unlock(&sbinfo->stat_lock); } else if (inop) { /* * __shmem_file_setup, one of our callers, is lock-free: it * doesn't hold stat_lock in shmem_reserve_inode since * max_inodes is always 0, and is called from potentially * unknown contexts. As such, use a per-cpu batched allocator * which doesn't require the per-sb stat_lock unless we are at * the batch boundary. * * We don't need to worry about inode{32,64} since SB_KERNMOUNT * shmem mounts are not exposed to userspace, so we don't need * to worry about things like glibc compatibility. */ ino_t *next_ino; next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); ino = *next_ino; if (unlikely(ino % SHMEM_INO_BATCH == 0)) { raw_spin_lock(&sbinfo->stat_lock); ino = sbinfo->next_ino; sbinfo->next_ino += SHMEM_INO_BATCH; raw_spin_unlock(&sbinfo->stat_lock); if (unlikely(is_zero_ino(ino))) ino++; } *inop = ino; *next_ino = ++ino; put_cpu(); } return 0; } static void shmem_free_inode(struct super_block *sb) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); if (sbinfo->max_inodes) { raw_spin_lock(&sbinfo->stat_lock); sbinfo->free_inodes++; raw_spin_unlock(&sbinfo->stat_lock); } } /** * shmem_recalc_inode - recalculate the block usage of an inode * @inode: inode to recalc * * We have to calculate the free blocks since the mm can drop * undirtied hole pages behind our back. * * But normally info->alloced == inode->i_mapping->nrpages + info->swapped * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) * * It has to be called with the spinlock held. */ static void shmem_recalc_inode(struct inode *inode) { struct shmem_inode_info *info = SHMEM_I(inode); long freed; freed = info->alloced - info->swapped - inode->i_mapping->nrpages; if (freed > 0) { info->alloced -= freed; inode->i_blocks -= freed * BLOCKS_PER_PAGE; shmem_inode_unacct_blocks(inode, freed); } } bool shmem_charge(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); unsigned long flags; if (!shmem_inode_acct_block(inode, pages)) return false; /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ inode->i_mapping->nrpages += pages; spin_lock_irqsave(&info->lock, flags); info->alloced += pages; inode->i_blocks += pages * BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irqrestore(&info->lock, flags); return true; } void shmem_uncharge(struct inode *inode, long pages) { struct shmem_inode_info *info = SHMEM_I(inode); unsigned long flags; /* nrpages adjustment done by __delete_from_page_cache() or caller */ spin_lock_irqsave(&info->lock, flags); info->alloced -= pages; inode->i_blocks -= pages * BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irqrestore(&info->lock, flags); shmem_inode_unacct_blocks(inode, pages); } /* * Replace item expected in xarray by a new item, while holding xa_lock. */ static int shmem_replace_entry(struct address_space *mapping, pgoff_t index, void *expected, void *replacement) { XA_STATE(xas, &mapping->i_pages, index); void *item; VM_BUG_ON(!expected); VM_BUG_ON(!replacement); item = xas_load(&xas); if (item != expected) return -ENOENT; xas_store(&xas, replacement); return 0; } /* * Sometimes, before we decide whether to proceed or to fail, we must check * that an entry was not already brought back from swap by a racing thread. * * Checking page is not enough: by the time a SwapCache page is locked, it * might be reused, and again be SwapCache, using the same swap as before. */ static bool shmem_confirm_swap(struct address_space *mapping, pgoff_t index, swp_entry_t swap) { return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); } /* * Definitions for "huge tmpfs": tmpfs mounted with the huge= option * * SHMEM_HUGE_NEVER: * disables huge pages for the mount; * SHMEM_HUGE_ALWAYS: * enables huge pages for the mount; * SHMEM_HUGE_WITHIN_SIZE: * only allocate huge pages if the page will be fully within i_size, * also respect fadvise()/madvise() hints; * SHMEM_HUGE_ADVISE: * only allocate huge pages if requested with fadvise()/madvise(); */ #define SHMEM_HUGE_NEVER 0 #define SHMEM_HUGE_ALWAYS 1 #define SHMEM_HUGE_WITHIN_SIZE 2 #define SHMEM_HUGE_ADVISE 3 /* * Special values. * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: * * SHMEM_HUGE_DENY: * disables huge on shm_mnt and all mounts, for emergency use; * SHMEM_HUGE_FORCE: * enables huge on shm_mnt and all mounts, w/o needing option, for testing; * */ #define SHMEM_HUGE_DENY (-1) #define SHMEM_HUGE_FORCE (-2) #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* ifdef here to avoid bloating shmem.o when not necessary */ static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, pgoff_t index) { loff_t i_size; if (shmem_huge == SHMEM_HUGE_DENY) return false; if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) return false; if (shmem_huge == SHMEM_HUGE_FORCE) return true; switch (SHMEM_SB(inode->i_sb)->huge) { case SHMEM_HUGE_ALWAYS: return true; case SHMEM_HUGE_WITHIN_SIZE: index = round_up(index + 1, HPAGE_PMD_NR); i_size = round_up(i_size_read(inode), PAGE_SIZE); if (i_size >> PAGE_SHIFT >= index) return true; fallthrough; case SHMEM_HUGE_ADVISE: if (vma && (vma->vm_flags & VM_HUGEPAGE)) return true; fallthrough; default: return false; } } #if defined(CONFIG_SYSFS) static int shmem_parse_huge(const char *str) { if (!strcmp(str, "never")) return SHMEM_HUGE_NEVER; if (!strcmp(str, "always")) return SHMEM_HUGE_ALWAYS; if (!strcmp(str, "within_size")) return SHMEM_HUGE_WITHIN_SIZE; if (!strcmp(str, "advise")) return SHMEM_HUGE_ADVISE; if (!strcmp(str, "deny")) return SHMEM_HUGE_DENY; if (!strcmp(str, "force")) return SHMEM_HUGE_FORCE; return -EINVAL; } #endif #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) static const char *shmem_format_huge(int huge) { switch (huge) { case SHMEM_HUGE_NEVER: return "never"; case SHMEM_HUGE_ALWAYS: return "always"; case SHMEM_HUGE_WITHIN_SIZE: return "within_size"; case SHMEM_HUGE_ADVISE: return "advise"; case SHMEM_HUGE_DENY: return "deny"; case SHMEM_HUGE_FORCE: return "force"; default: VM_BUG_ON(1); return "bad_val"; } } #endif static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, struct shrink_control *sc, unsigned long nr_to_split) { LIST_HEAD(list), *pos, *next; LIST_HEAD(to_remove); struct inode *inode; struct shmem_inode_info *info; struct page *page; unsigned long batch = sc ? sc->nr_to_scan : 128; int removed = 0, split = 0; if (list_empty(&sbinfo->shrinklist)) return SHRINK_STOP; spin_lock(&sbinfo->shrinklist_lock); list_for_each_safe(pos, next, &sbinfo->shrinklist) { info = list_entry(pos, struct shmem_inode_info, shrinklist); /* pin the inode */ inode = igrab(&info->vfs_inode); /* inode is about to be evicted */ if (!inode) { list_del_init(&info->shrinklist); removed++; goto next; } /* Check if there's anything to gain */ if (round_up(inode->i_size, PAGE_SIZE) == round_up(inode->i_size, HPAGE_PMD_SIZE)) { list_move(&info->shrinklist, &to_remove); removed++; goto next; } list_move(&info->shrinklist, &list); next: if (!--batch) break; } spin_unlock(&sbinfo->shrinklist_lock); list_for_each_safe(pos, next, &to_remove) { info = list_entry(pos, struct shmem_inode_info, shrinklist); inode = &info->vfs_inode; list_del_init(&info->shrinklist); iput(inode); } list_for_each_safe(pos, next, &list) { int ret; info = list_entry(pos, struct shmem_inode_info, shrinklist); inode = &info->vfs_inode; if (nr_to_split && split >= nr_to_split) goto leave; page = find_get_page(inode->i_mapping, (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); if (!page) goto drop; /* No huge page at the end of the file: nothing to split */ if (!PageTransHuge(page)) { put_page(page); goto drop; } /* * Leave the inode on the list if we failed to lock * the page at this time. * * Waiting for the lock may lead to deadlock in the * reclaim path. */ if (!trylock_page(page)) { put_page(page); goto leave; } ret = split_huge_page(page); unlock_page(page); put_page(page); /* If split failed leave the inode on the list */ if (ret) goto leave; split++; drop: list_del_init(&info->shrinklist); removed++; leave: iput(inode); } spin_lock(&sbinfo->shrinklist_lock); list_splice_tail(&list, &sbinfo->shrinklist); sbinfo->shrinklist_len -= removed; spin_unlock(&sbinfo->shrinklist_lock); return split; } static long shmem_unused_huge_scan(struct super_block *sb, struct shrink_control *sc) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); if (!READ_ONCE(sbinfo->shrinklist_len)) return SHRINK_STOP; return shmem_unused_huge_shrink(sbinfo, sc, 0); } static long shmem_unused_huge_count(struct super_block *sb, struct shrink_control *sc) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); return READ_ONCE(sbinfo->shrinklist_len); } #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ #define shmem_huge SHMEM_HUGE_DENY bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, pgoff_t index) { return false; } static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, struct shrink_control *sc, unsigned long nr_to_split) { return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * Like add_to_page_cache_locked, but error if expected item has gone. */ static int shmem_add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t index, void *expected, gfp_t gfp, struct mm_struct *charge_mm) { XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); unsigned long i = 0; unsigned long nr = compound_nr(page); int error; VM_BUG_ON_PAGE(PageTail(page), page); VM_BUG_ON_PAGE(index != round_down(index, nr), page); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageSwapBacked(page), page); VM_BUG_ON(expected && PageTransHuge(page)); page_ref_add(page, nr); page->mapping = mapping; page->index = index; if (!PageSwapCache(page)) { error = mem_cgroup_charge(page_folio(page), charge_mm, gfp); if (error) { if (PageTransHuge(page)) { count_vm_event(THP_FILE_FALLBACK); count_vm_event(THP_FILE_FALLBACK_CHARGE); } goto error; } } cgroup_throttle_swaprate(page, gfp); do { void *entry; xas_lock_irq(&xas); entry = xas_find_conflict(&xas); if (entry != expected) xas_set_err(&xas, -EEXIST); xas_create_range(&xas); if (xas_error(&xas)) goto unlock; next: xas_store(&xas, page); if (++i < nr) { xas_next(&xas); goto next; } if (PageTransHuge(page)) { count_vm_event(THP_FILE_ALLOC); __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); } mapping->nrpages += nr; __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); __mod_lruvec_page_state(page, NR_SHMEM, nr); unlock: xas_unlock_irq(&xas); } while (xas_nomem(&xas, gfp)); if (xas_error(&xas)) { error = xas_error(&xas); goto error; } return 0; error: page->mapping = NULL; page_ref_sub(page, nr); return error; } /* * Like delete_from_page_cache, but substitutes swap for page. */ static void shmem_delete_from_page_cache(struct page *page, void *radswap) { struct address_space *mapping = page->mapping; int error; VM_BUG_ON_PAGE(PageCompound(page), page); xa_lock_irq(&mapping->i_pages); error = shmem_replace_entry(mapping, page->index, page, radswap); page->mapping = NULL; mapping->nrpages--; __dec_lruvec_page_state(page, NR_FILE_PAGES); __dec_lruvec_page_state(page, NR_SHMEM); xa_unlock_irq(&mapping->i_pages); put_page(page); BUG_ON(error); } /* * Remove swap entry from page cache, free the swap and its page cache. */ static int shmem_free_swap(struct address_space *mapping, pgoff_t index, void *radswap) { void *old; old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); if (old != radswap) return -ENOENT; free_swap_and_cache(radix_to_swp_entry(radswap)); return 0; } /* * Determine (in bytes) how many of the shmem object's pages mapped by the * given offsets are swapped out. * * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, * as long as the inode doesn't go away and racy results are not a problem. */ unsigned long shmem_partial_swap_usage(struct address_space *mapping, pgoff_t start, pgoff_t end) { XA_STATE(xas, &mapping->i_pages, start); struct page *page; unsigned long swapped = 0; rcu_read_lock(); xas_for_each(&xas, page, end - 1) { if (xas_retry(&xas, page)) continue; if (xa_is_value(page)) swapped++; if (need_resched()) { xas_pause(&xas); cond_resched_rcu(); } } rcu_read_unlock(); return swapped << PAGE_SHIFT; } /* * Determine (in bytes) how many of the shmem object's pages mapped by the * given vma is swapped out. * * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, * as long as the inode doesn't go away and racy results are not a problem. */ unsigned long shmem_swap_usage(struct vm_area_struct *vma) { struct inode *inode = file_inode(vma->vm_file); struct shmem_inode_info *info = SHMEM_I(inode); struct address_space *mapping = inode->i_mapping; unsigned long swapped; /* Be careful as we don't hold info->lock */ swapped = READ_ONCE(info->swapped); /* * The easier cases are when the shmem object has nothing in swap, or * the vma maps it whole. Then we can simply use the stats that we * already track. */ if (!swapped) return 0; if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) return swapped << PAGE_SHIFT; /* Here comes the more involved part */ return shmem_partial_swap_usage(mapping, vma->vm_pgoff, vma->vm_pgoff + vma_pages(vma)); } /* * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. */ void shmem_unlock_mapping(struct address_space *mapping) { struct pagevec pvec; pgoff_t index = 0; pagevec_init(&pvec); /* * Minor point, but we might as well stop if someone else SHM_LOCKs it. */ while (!mapping_unevictable(mapping)) { if (!pagevec_lookup(&pvec, mapping, &index)) break; check_move_unevictable_pages(&pvec); pagevec_release(&pvec); cond_resched(); } } /* * Check whether a hole-punch or truncation needs to split a huge page, * returning true if no split was required, or the split has been successful. * * Eviction (or truncation to 0 size) should never need to split a huge page; * but in rare cases might do so, if shmem_undo_range() failed to trylock on * head, and then succeeded to trylock on tail. * * A split can only succeed when there are no additional references on the * huge page: so the split below relies upon find_get_entries() having stopped * when it found a subpage of the huge page, without getting further references. */ static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) { if (!PageTransCompound(page)) return true; /* Just proceed to delete a huge page wholly within the range punched */ if (PageHead(page) && page->index >= start && page->index + HPAGE_PMD_NR <= end) return true; /* Try to split huge page, so we can truly punch the hole or truncate */ return split_huge_page(page) >= 0; } /* * Remove range of pages and swap entries from page cache, and free them. * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. */ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, bool unfalloc) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; pgoff_t end = (lend + 1) >> PAGE_SHIFT; unsigned int partial_start = lstart & (PAGE_SIZE - 1); unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; long nr_swaps_freed = 0; pgoff_t index; int i; if (lend == -1) end = -1; /* unsigned, so actually very big */ if (info->fallocend > start && info->fallocend <= end && !unfalloc) info->fallocend = start; pagevec_init(&pvec); index = start; while (index < end && find_lock_entries(mapping, index, end - 1, &pvec, indices)) { for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; index = indices[i]; if (xa_is_value(page)) { if (unfalloc) continue; nr_swaps_freed += !shmem_free_swap(mapping, index, page); continue; } index += thp_nr_pages(page) - 1; if (!unfalloc || !PageUptodate(page)) truncate_inode_page(mapping, page); unlock_page(page); } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); cond_resched(); index++; } if (partial_start) { struct page *page = NULL; shmem_getpage(inode, start - 1, &page, SGP_READ); if (page) { unsigned int top = PAGE_SIZE; if (start > end) { top = partial_end; partial_end = 0; } zero_user_segment(page, partial_start, top); set_page_dirty(page); unlock_page(page); put_page(page); } } if (partial_end) { struct page *page = NULL; shmem_getpage(inode, end, &page, SGP_READ); if (page) { zero_user_segment(page, 0, partial_end); set_page_dirty(page); unlock_page(page); put_page(page); } } if (start >= end) return; index = start; while (index < end) { cond_resched(); if (!find_get_entries(mapping, index, end - 1, &pvec, indices)) { /* If all gone or hole-punch or unfalloc, we're done */ if (index == start || end != -1) break; /* But if truncating, restart to make sure all gone */ index = start; continue; } for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; index = indices[i]; if (xa_is_value(page)) { if (unfalloc) continue; if (shmem_free_swap(mapping, index, page)) { /* Swap was replaced by page: retry */ index--; break; } nr_swaps_freed++; continue; } lock_page(page); if (!unfalloc || !PageUptodate(page)) { if (page_mapping(page) != mapping) { /* Page was replaced by swap: retry */ unlock_page(page); index--; break; } VM_BUG_ON_PAGE(PageWriteback(page), page); if (shmem_punch_compound(page, start, end)) truncate_inode_page(mapping, page); else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { /* Wipe the page and don't get stuck */ clear_highpage(page); flush_dcache_page(page); set_page_dirty(page); if (index < round_up(start, HPAGE_PMD_NR)) start = index + 1; } } unlock_page(page); } pagevec_remove_exceptionals(&pvec); pagevec_release(&pvec); index++; } spin_lock_irq(&info->lock); info->swapped -= nr_swaps_freed; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) { shmem_undo_range(inode, lstart, lend, false); inode->i_ctime = inode->i_mtime = current_time(inode); } EXPORT_SYMBOL_GPL(shmem_truncate_range); static int shmem_getattr(struct user_namespace *mnt_userns, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = path->dentry->d_inode; struct shmem_inode_info *info = SHMEM_I(inode); if (info->alloced - info->swapped != inode->i_mapping->nrpages) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } generic_fillattr(&init_user_ns, inode, stat); if (shmem_is_huge(NULL, inode, 0)) stat->blksize = HPAGE_PMD_SIZE; return 0; } static int shmem_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct shmem_inode_info *info = SHMEM_I(inode); int error; error = setattr_prepare(&init_user_ns, dentry, attr); if (error) return error; if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { loff_t oldsize = inode->i_size; loff_t newsize = attr->ia_size; /* protected by i_rwsem */ if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || (newsize > oldsize && (info->seals & F_SEAL_GROW))) return -EPERM; if (newsize != oldsize) { error = shmem_reacct_size(SHMEM_I(inode)->flags, oldsize, newsize); if (error) return error; i_size_write(inode, newsize); inode->i_ctime = inode->i_mtime = current_time(inode); } if (newsize <= oldsize) { loff_t holebegin = round_up(newsize, PAGE_SIZE); if (oldsize > holebegin) unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); if (info->alloced) shmem_truncate_range(inode, newsize, (loff_t)-1); /* unmap again to remove racily COWed private pages */ if (oldsize > holebegin) unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); } } setattr_copy(&init_user_ns, inode, attr); if (attr->ia_valid & ATTR_MODE) error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); return error; } static void shmem_evict_inode(struct inode *inode) { struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); if (shmem_mapping(inode->i_mapping)) { shmem_unacct_size(info->flags, inode->i_size); inode->i_size = 0; shmem_truncate_range(inode, 0, (loff_t)-1); if (!list_empty(&info->shrinklist)) { spin_lock(&sbinfo->shrinklist_lock); if (!list_empty(&info->shrinklist)) { list_del_init(&info->shrinklist); sbinfo->shrinklist_len--; } spin_unlock(&sbinfo->shrinklist_lock); } while (!list_empty(&info->swaplist)) { /* Wait while shmem_unuse() is scanning this inode... */ wait_var_event(&info->stop_eviction, !atomic_read(&info->stop_eviction)); mutex_lock(&shmem_swaplist_mutex); /* ...but beware of the race if we peeked too early */ if (!atomic_read(&info->stop_eviction)) list_del_init(&info->swaplist); mutex_unlock(&shmem_swaplist_mutex); } } simple_xattrs_free(&info->xattrs); WARN_ON(inode->i_blocks); shmem_free_inode(inode->i_sb); clear_inode(inode); } static int shmem_find_swap_entries(struct address_space *mapping, pgoff_t start, unsigned int nr_entries, struct page **entries, pgoff_t *indices, unsigned int type, bool frontswap) { XA_STATE(xas, &mapping->i_pages, start); struct page *page; swp_entry_t entry; unsigned int ret = 0; if (!nr_entries) return 0; rcu_read_lock(); xas_for_each(&xas, page, ULONG_MAX) { if (xas_retry(&xas, page)) continue; if (!xa_is_value(page)) continue; entry = radix_to_swp_entry(page); if (swp_type(entry) != type) continue; if (frontswap && !frontswap_test(swap_info[type], swp_offset(entry))) continue; indices[ret] = xas.xa_index; entries[ret] = page; if (need_resched()) { xas_pause(&xas); cond_resched_rcu(); } if (++ret == nr_entries) break; } rcu_read_unlock(); return ret; } /* * Move the swapped pages for an inode to page cache. Returns the count * of pages swapped in, or the error in case of failure. */ static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, pgoff_t *indices) { int i = 0; int ret = 0; int error = 0; struct address_space *mapping = inode->i_mapping; for (i = 0; i < pvec.nr; i++) { struct page *page = pvec.pages[i]; if (!xa_is_value(page)) continue; error = shmem_swapin_page(inode, indices[i], &page, SGP_CACHE, mapping_gfp_mask(mapping), NULL, NULL); if (error == 0) { unlock_page(page); put_page(page); ret++; } if (error == -ENOMEM) break; error = 0; } return error ? error : ret; } /* * If swap found in inode, free it and move page from swapcache to filecache. */ static int shmem_unuse_inode(struct inode *inode, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct address_space *mapping = inode->i_mapping; pgoff_t start = 0; struct pagevec pvec; pgoff_t indices[PAGEVEC_SIZE]; bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); int ret = 0; pagevec_init(&pvec); do { unsigned int nr_entries = PAGEVEC_SIZE; if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) nr_entries = *fs_pages_to_unuse; pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, pvec.pages, indices, type, frontswap); if (pvec.nr == 0) { ret = 0; break; } ret = shmem_unuse_swap_entries(inode, pvec, indices); if (ret < 0) break; if (frontswap_partial) { *fs_pages_to_unuse -= ret; if (*fs_pages_to_unuse == 0) { ret = FRONTSWAP_PAGES_UNUSED; break; } } start = indices[pvec.nr - 1]; } while (true); return ret; } /* * Read all the shared memory data that resides in the swap * device 'type' back into memory, so the swap device can be * unused. */ int shmem_unuse(unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct shmem_inode_info *info, *next; int error = 0; if (list_empty(&shmem_swaplist)) return 0; mutex_lock(&shmem_swaplist_mutex); list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { if (!info->swapped) { list_del_init(&info->swaplist); continue; } /* * Drop the swaplist mutex while searching the inode for swap; * but before doing so, make sure shmem_evict_inode() will not * remove placeholder inode from swaplist, nor let it be freed * (igrab() would protect from unlink, but not from unmount). */ atomic_inc(&info->stop_eviction); mutex_unlock(&shmem_swaplist_mutex); error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, fs_pages_to_unuse); cond_resched(); mutex_lock(&shmem_swaplist_mutex); next = list_next_entry(info, swaplist); if (!info->swapped) list_del_init(&info->swaplist); if (atomic_dec_and_test(&info->stop_eviction)) wake_up_var(&info->stop_eviction); if (error) break; } mutex_unlock(&shmem_swaplist_mutex); return error; } /* * Move the page from the page cache to the swap cache. */ static int shmem_writepage(struct page *page, struct writeback_control *wbc) { struct shmem_inode_info *info; struct address_space *mapping; struct inode *inode; swp_entry_t swap; pgoff_t index; /* * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, * and its shmem_writeback() needs them to be split when swapping. */ if (PageTransCompound(page)) { /* Ensure the subpages are still dirty */ SetPageDirty(page); if (split_huge_page(page) < 0) goto redirty; ClearPageDirty(page); } BUG_ON(!PageLocked(page)); mapping = page->mapping; index = page->index; inode = mapping->host; info = SHMEM_I(inode); if (info->flags & VM_LOCKED) goto redirty; if (!total_swap_pages) goto redirty; /* * Our capabilities prevent regular writeback or sync from ever calling * shmem_writepage; but a stacking filesystem might use ->writepage of * its underlying filesystem, in which case tmpfs should write out to * swap only in response to memory pressure, and not for the writeback * threads or sync. */ if (!wbc->for_reclaim) { WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ goto redirty; } /* * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC * value into swapfile.c, the only way we can correctly account for a * fallocated page arriving here is now to initialize it and write it. * * That's okay for a page already fallocated earlier, but if we have * not yet completed the fallocation, then (a) we want to keep track * of this page in case we have to undo it, and (b) it may not be a * good idea to continue anyway, once we're pushing into swap. So * reactivate the page, and let shmem_fallocate() quit when too many. */ if (!PageUptodate(page)) { if (inode->i_private) { struct shmem_falloc *shmem_falloc; spin_lock(&inode->i_lock); shmem_falloc = inode->i_private; if (shmem_falloc && !shmem_falloc->waitq && index >= shmem_falloc->start && index < shmem_falloc->next) shmem_falloc->nr_unswapped++; else shmem_falloc = NULL; spin_unlock(&inode->i_lock); if (shmem_falloc) goto redirty; } clear_highpage(page); flush_dcache_page(page); SetPageUptodate(page); } swap = get_swap_page(page); if (!swap.val) goto redirty; /* * Add inode to shmem_unuse()'s list of swapped-out inodes, * if it's not already there. Do it now before the page is * moved to swap cache, when its pagelock no longer protects * the inode from eviction. But don't unlock the mutex until * we've incremented swapped, because shmem_unuse_inode() will * prune a !swapped inode from the swaplist under this mutex. */ mutex_lock(&shmem_swaplist_mutex); if (list_empty(&info->swaplist)) list_add(&info->swaplist, &shmem_swaplist); if (add_to_swap_cache(page, swap, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, NULL) == 0) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); info->swapped++; spin_unlock_irq(&info->lock); swap_shmem_alloc(swap); shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); mutex_unlock(&shmem_swaplist_mutex); BUG_ON(page_mapped(page)); swap_writepage(page, wbc); return 0; } mutex_unlock(&shmem_swaplist_mutex); put_swap_page(page, swap); redirty: set_page_dirty(page); if (wbc->for_reclaim) return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ unlock_page(page); return 0; } #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) { char buffer[64]; if (!mpol || mpol->mode == MPOL_DEFAULT) return; /* show nothing */ mpol_to_str(buffer, sizeof(buffer), mpol); seq_printf(seq, ",mpol=%s", buffer); } static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) { struct mempolicy *mpol = NULL; if (sbinfo->mpol) { raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ mpol = sbinfo->mpol; mpol_get(mpol); raw_spin_unlock(&sbinfo->stat_lock); } return mpol; } #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) { } static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) { return NULL; } #endif /* CONFIG_NUMA && CONFIG_TMPFS */ #ifndef CONFIG_NUMA #define vm_policy vm_private_data #endif static void shmem_pseudo_vma_init(struct vm_area_struct *vma, struct shmem_inode_info *info, pgoff_t index) { /* Create a pseudo vma that just contains the policy */ vma_init(vma, NULL); /* Bias interleave by inode number to distribute better across nodes */ vma->vm_pgoff = index + info->vfs_inode.i_ino; vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); } static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) { /* Drop reference taken by mpol_shared_policy_lookup() */ mpol_cond_put(vma->vm_policy); } static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct page *page; struct vm_fault vmf = { .vma = &pvma, }; shmem_pseudo_vma_init(&pvma, info, index); page = swap_cluster_readahead(swap, gfp, &vmf); shmem_pseudo_vma_destroy(&pvma); return page; } /* * Make sure huge_gfp is always more limited than limit_gfp. * Some of the flags set permissions, while others set limitations. */ static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) { gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); /* Allow allocations only from the originally specified zones. */ result |= zoneflags; /* * Minimize the result gfp by taking the union with the deny flags, * and the intersection of the allow flags. */ result |= (limit_gfp & denyflags); result |= (huge_gfp & limit_gfp) & allowflags; return result; } static struct page *shmem_alloc_hugepage(gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct address_space *mapping = info->vfs_inode.i_mapping; pgoff_t hindex; struct page *page; hindex = round_down(index, HPAGE_PMD_NR); if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, XA_PRESENT)) return NULL; shmem_pseudo_vma_init(&pvma, info, hindex); page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); shmem_pseudo_vma_destroy(&pvma); if (page) prep_transhuge_page(page); else count_vm_event(THP_FILE_FALLBACK); return page; } static struct page *shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct vm_area_struct pvma; struct page *page; shmem_pseudo_vma_init(&pvma, info, index); page = alloc_page_vma(gfp, &pvma, 0); shmem_pseudo_vma_destroy(&pvma); return page; } static struct page *shmem_alloc_and_acct_page(gfp_t gfp, struct inode *inode, pgoff_t index, bool huge) { struct shmem_inode_info *info = SHMEM_I(inode); struct page *page; int nr; int err = -ENOSPC; if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) huge = false; nr = huge ? HPAGE_PMD_NR : 1; if (!shmem_inode_acct_block(inode, nr)) goto failed; if (huge) page = shmem_alloc_hugepage(gfp, info, index); else page = shmem_alloc_page(gfp, info, index); if (page) { __SetPageLocked(page); __SetPageSwapBacked(page); return page; } err = -ENOMEM; shmem_inode_unacct_blocks(inode, nr); failed: return ERR_PTR(err); } /* * When a page is moved from swapcache to shmem filecache (either by the * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of * shmem_unuse_inode()), it may have been read in earlier from swap, in * ignorance of the mapping it belongs to. If that mapping has special * constraints (like the gma500 GEM driver, which requires RAM below 4GB), * we may need to copy to a suitable page before moving to filecache. * * In a future release, this may well be extended to respect cpuset and * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); * but for now it is a simple matter of zone. */ static bool shmem_should_replace_page(struct page *page, gfp_t gfp) { return page_zonenum(page) > gfp_zone(gfp); } static int shmem_replace_page(struct page **pagep, gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { struct page *oldpage, *newpage; struct folio *old, *new; struct address_space *swap_mapping; swp_entry_t entry; pgoff_t swap_index; int error; oldpage = *pagep; entry.val = page_private(oldpage); swap_index = swp_offset(entry); swap_mapping = page_mapping(oldpage); /* * We have arrived here because our zones are constrained, so don't * limit chance of success by further cpuset and node constraints. */ gfp &= ~GFP_CONSTRAINT_MASK; newpage = shmem_alloc_page(gfp, info, index); if (!newpage) return -ENOMEM; get_page(newpage); copy_highpage(newpage, oldpage); flush_dcache_page(newpage); __SetPageLocked(newpage); __SetPageSwapBacked(newpage); SetPageUptodate(newpage); set_page_private(newpage, entry.val); SetPageSwapCache(newpage); /* * Our caller will very soon move newpage out of swapcache, but it's * a nice clean interface for us to replace oldpage by newpage there. */ xa_lock_irq(&swap_mapping->i_pages); error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); if (!error) { old = page_folio(oldpage); new = page_folio(newpage); mem_cgroup_migrate(old, new); __inc_lruvec_page_state(newpage, NR_FILE_PAGES); __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); } xa_unlock_irq(&swap_mapping->i_pages); if (unlikely(error)) { /* * Is this possible? I think not, now that our callers check * both PageSwapCache and page_private after getting page lock; * but be defensive. Reverse old to newpage for clear and free. */ oldpage = newpage; } else { lru_cache_add(newpage); *pagep = newpage; } ClearPageSwapCache(oldpage); set_page_private(oldpage, 0); unlock_page(oldpage); put_page(oldpage); put_page(oldpage); return error; } /* * Swap in the page pointed to by *pagep. * Caller has to make sure that *pagep contains a valid swapped page. * Returns 0 and the page in pagep if success. On failure, returns the * error code and NULL in *pagep. */ static int shmem_swapin_page(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, vm_fault_t *fault_type) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; struct page *page; swp_entry_t swap; int error; VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); swap = radix_to_swp_entry(*pagep); *pagep = NULL; /* Look it up and read it in.. */ page = lookup_swap_cache(swap, NULL, 0); if (!page) { /* Or update major stats only when swapin succeeds?? */ if (fault_type) { *fault_type |= VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(charge_mm, PGMAJFAULT); } /* Here we actually start the io */ page = shmem_swapin(swap, gfp, info, index); if (!page) { error = -ENOMEM; goto failed; } } /* We have to do this with page locked to prevent races */ lock_page(page); if (!PageSwapCache(page) || page_private(page) != swap.val || !shmem_confirm_swap(mapping, index, swap)) { error = -EEXIST; goto unlock; } if (!PageUptodate(page)) { error = -EIO; goto failed; } wait_on_page_writeback(page); /* * Some architectures may have to restore extra metadata to the * physical page after reading from swap. */ arch_swap_restore(swap, page); if (shmem_should_replace_page(page, gfp)) { error = shmem_replace_page(&page, gfp, info, index); if (error) goto failed; } error = shmem_add_to_page_cache(page, mapping, index, swp_to_radix_entry(swap), gfp, charge_mm); if (error) goto failed; spin_lock_irq(&info->lock); info->swapped--; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); if (sgp == SGP_WRITE) mark_page_accessed(page); delete_from_swap_cache(page); set_page_dirty(page); swap_free(swap); *pagep = page; return 0; failed: if (!shmem_confirm_swap(mapping, index, swap)) error = -EEXIST; unlock: if (page) { unlock_page(page); put_page(page); } return error; } /* * shmem_getpage_gfp - find page in cache, or get from swap, or allocate * * If we allocate a new one we do not mark it dirty. That's up to the * vm. If we swap it in we mark it dirty since we also free the swap * entry since a page cannot live in both the swap and page cache. * * vma, vmf, and fault_type are only supplied by shmem_fault: * otherwise they are NULL. */ static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, struct page **pagep, enum sgp_type sgp, gfp_t gfp, struct vm_area_struct *vma, struct vm_fault *vmf, vm_fault_t *fault_type) { struct address_space *mapping = inode->i_mapping; struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo; struct mm_struct *charge_mm; struct page *page; pgoff_t hindex = index; gfp_t huge_gfp; int error; int once = 0; int alloced = 0; if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) return -EFBIG; repeat: if (sgp <= SGP_CACHE && ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { return -EINVAL; } sbinfo = SHMEM_SB(inode->i_sb); charge_mm = vma ? vma->vm_mm : NULL; page = pagecache_get_page(mapping, index, FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); if (page && vma && userfaultfd_minor(vma)) { if (!xa_is_value(page)) { unlock_page(page); put_page(page); } *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); return 0; } if (xa_is_value(page)) { error = shmem_swapin_page(inode, index, &page, sgp, gfp, vma, fault_type); if (error == -EEXIST) goto repeat; *pagep = page; return error; } if (page) { hindex = page->index; if (sgp == SGP_WRITE) mark_page_accessed(page); if (PageUptodate(page)) goto out; /* fallocated page */ if (sgp != SGP_READ) goto clear; unlock_page(page); put_page(page); } /* * SGP_READ: succeed on hole, with NULL page, letting caller zero. * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. */ *pagep = NULL; if (sgp == SGP_READ) return 0; if (sgp == SGP_NOALLOC) return -ENOENT; /* * Fast cache lookup and swap lookup did not find it: allocate. */ if (vma && userfaultfd_missing(vma)) { *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); return 0; } /* Never use a huge page for shmem_symlink() */ if (S_ISLNK(inode->i_mode)) goto alloc_nohuge; if (!shmem_is_huge(vma, inode, index)) goto alloc_nohuge; huge_gfp = vma_thp_gfp_mask(vma); huge_gfp = limit_gfp_mask(huge_gfp, gfp); page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); if (IS_ERR(page)) { alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, index, false); } if (IS_ERR(page)) { int retry = 5; error = PTR_ERR(page); page = NULL; if (error != -ENOSPC) goto unlock; /* * Try to reclaim some space by splitting a huge page * beyond i_size on the filesystem. */ while (retry--) { int ret; ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); if (ret == SHRINK_STOP) break; if (ret) goto alloc_nohuge; } goto unlock; } if (PageTransHuge(page)) hindex = round_down(index, HPAGE_PMD_NR); else hindex = index; if (sgp == SGP_WRITE) __SetPageReferenced(page); error = shmem_add_to_page_cache(page, mapping, hindex, NULL, gfp & GFP_RECLAIM_MASK, charge_mm); if (error) goto unacct; lru_cache_add(page); spin_lock_irq(&info->lock); info->alloced += compound_nr(page); inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); alloced = true; if (PageTransHuge(page) && DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < hindex + HPAGE_PMD_NR - 1) { /* * Part of the huge page is beyond i_size: subject * to shrink under memory pressure. */ spin_lock(&sbinfo->shrinklist_lock); /* * _careful to defend against unlocked access to * ->shrink_list in shmem_unused_huge_shrink() */ if (list_empty_careful(&info->shrinklist)) { list_add_tail(&info->shrinklist, &sbinfo->shrinklist); sbinfo->shrinklist_len++; } spin_unlock(&sbinfo->shrinklist_lock); } /* * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. */ if (sgp == SGP_FALLOC) sgp = SGP_WRITE; clear: /* * Let SGP_WRITE caller clear ends if write does not fill page; * but SGP_FALLOC on a page fallocated earlier must initialize * it now, lest undo on failure cancel our earlier guarantee. */ if (sgp != SGP_WRITE && !PageUptodate(page)) { int i; for (i = 0; i < compound_nr(page); i++) { clear_highpage(page + i); flush_dcache_page(page + i); } SetPageUptodate(page); } /* Perhaps the file has been truncated since we checked */ if (sgp <= SGP_CACHE && ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { if (alloced) { ClearPageDirty(page); delete_from_page_cache(page); spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } error = -EINVAL; goto unlock; } out: *pagep = page + index - hindex; return 0; /* * Error recovery. */ unacct: shmem_inode_unacct_blocks(inode, compound_nr(page)); if (PageTransHuge(page)) { unlock_page(page); put_page(page); goto alloc_nohuge; } unlock: if (page) { unlock_page(page); put_page(page); } if (error == -ENOSPC && !once++) { spin_lock_irq(&info->lock); shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); goto repeat; } if (error == -EEXIST) goto repeat; return error; } /* * This is like autoremove_wake_function, but it removes the wait queue * entry unconditionally - even if something else had already woken the * target. */ static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { int ret = default_wake_function(wait, mode, sync, key); list_del_init(&wait->entry); return ret; } static vm_fault_t shmem_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct inode *inode = file_inode(vma->vm_file); gfp_t gfp = mapping_gfp_mask(inode->i_mapping); int err; vm_fault_t ret = VM_FAULT_LOCKED; /* * Trinity finds that probing a hole which tmpfs is punching can * prevent the hole-punch from ever completing: which in turn * locks writers out with its hold on i_rwsem. So refrain from * faulting pages into the hole while it's being punched. Although * shmem_undo_range() does remove the additions, it may be unable to * keep up, as each new page needs its own unmap_mapping_range() call, * and the i_mmap tree grows ever slower to scan if new vmas are added. * * It does not matter if we sometimes reach this check just before the * hole-punch begins, so that one fault then races with the punch: * we just need to make racing faults a rare case. * * The implementation below would be much simpler if we just used a * standard mutex or completion: but we cannot take i_rwsem in fault, * and bloating every shmem inode for this unlikely case would be sad. */ if (unlikely(inode->i_private)) { struct shmem_falloc *shmem_falloc; spin_lock(&inode->i_lock); shmem_falloc = inode->i_private; if (shmem_falloc && shmem_falloc->waitq && vmf->pgoff >= shmem_falloc->start && vmf->pgoff < shmem_falloc->next) { struct file *fpin; wait_queue_head_t *shmem_falloc_waitq; DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); ret = VM_FAULT_NOPAGE; fpin = maybe_unlock_mmap_for_io(vmf, NULL); if (fpin) ret = VM_FAULT_RETRY; shmem_falloc_waitq = shmem_falloc->waitq; prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, TASK_UNINTERRUPTIBLE); spin_unlock(&inode->i_lock); schedule(); /* * shmem_falloc_waitq points into the shmem_fallocate() * stack of the hole-punching task: shmem_falloc_waitq * is usually invalid by the time we reach here, but * finish_wait() does not dereference it in that case; * though i_lock needed lest racing with wake_up_all(). */ spin_lock(&inode->i_lock); finish_wait(shmem_falloc_waitq, &shmem_fault_wait); spin_unlock(&inode->i_lock); if (fpin) fput(fpin); return ret; } spin_unlock(&inode->i_lock); } err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, gfp, vma, vmf, &ret); if (err) return vmf_error(err); return ret; } unsigned long shmem_get_unmapped_area(struct file *file, unsigned long uaddr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); unsigned long addr; unsigned long offset; unsigned long inflated_len; unsigned long inflated_addr; unsigned long inflated_offset; if (len > TASK_SIZE) return -ENOMEM; get_area = current->mm->get_unmapped_area; addr = get_area(file, uaddr, len, pgoff, flags); if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) return addr; if (IS_ERR_VALUE(addr)) return addr; if (addr & ~PAGE_MASK) return addr; if (addr > TASK_SIZE - len) return addr; if (shmem_huge == SHMEM_HUGE_DENY) return addr; if (len < HPAGE_PMD_SIZE) return addr; if (flags & MAP_FIXED) return addr; /* * Our priority is to support MAP_SHARED mapped hugely; * and support MAP_PRIVATE mapped hugely too, until it is COWed. * But if caller specified an address hint and we allocated area there * successfully, respect that as before. */ if (uaddr == addr) return addr; if (shmem_huge != SHMEM_HUGE_FORCE) { struct super_block *sb; if (file) { VM_BUG_ON(file->f_op != &shmem_file_operations); sb = file_inode(file)->i_sb; } else { /* * Called directly from mm/mmap.c, or drivers/char/mem.c * for "/dev/zero", to create a shared anonymous object. */ if (IS_ERR(shm_mnt)) return addr; sb = shm_mnt->mnt_sb; } if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) return addr; } offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); if (offset && offset + len < 2 * HPAGE_PMD_SIZE) return addr; if ((addr & (HPAGE_PMD_SIZE-1)) == offset) return addr; inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; if (inflated_len > TASK_SIZE) return addr; if (inflated_len < len) return addr; inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); if (IS_ERR_VALUE(inflated_addr)) return addr; if (inflated_addr & ~PAGE_MASK) return addr; inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); inflated_addr += offset - inflated_offset; if (inflated_offset > offset) inflated_addr += HPAGE_PMD_SIZE; if (inflated_addr > TASK_SIZE - len) return addr; return inflated_addr; } #ifdef CONFIG_NUMA static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) { struct inode *inode = file_inode(vma->vm_file); return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); } static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, unsigned long addr) { struct inode *inode = file_inode(vma->vm_file); pgoff_t index; index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); } #endif int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) { struct inode *inode = file_inode(file); struct shmem_inode_info *info = SHMEM_I(inode); int retval = -ENOMEM; /* * What serializes the accesses to info->flags? * ipc_lock_object() when called from shmctl_do_lock(), * no serialization needed when called from shm_destroy(). */ if (lock && !(info->flags & VM_LOCKED)) { if (!user_shm_lock(inode->i_size, ucounts)) goto out_nomem; info->flags |= VM_LOCKED; mapping_set_unevictable(file->f_mapping); } if (!lock && (info->flags & VM_LOCKED) && ucounts) { user_shm_unlock(inode->i_size, ucounts); info->flags &= ~VM_LOCKED; mapping_clear_unevictable(file->f_mapping); } retval = 0; out_nomem: return retval; } static int shmem_mmap(struct file *file, struct vm_area_struct *vma) { struct shmem_inode_info *info = SHMEM_I(file_inode(file)); int ret; ret = seal_check_future_write(info->seals, vma); if (ret) return ret; /* arm64 - allow memory tagging on RAM-based files */ vma->vm_flags |= VM_MTE_ALLOWED; file_accessed(file); vma->vm_ops = &shmem_vm_ops; if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < (vma->vm_end & HPAGE_PMD_MASK)) { khugepaged_enter(vma, vma->vm_flags); } return 0; } static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, umode_t mode, dev_t dev, unsigned long flags) { struct inode *inode; struct shmem_inode_info *info; struct shmem_sb_info *sbinfo = SHMEM_SB(sb); ino_t ino; if (shmem_reserve_inode(sb, &ino)) return NULL; inode = new_inode(sb); if (inode) { inode->i_ino = ino; inode_init_owner(&init_user_ns, inode, dir, mode); inode->i_blocks = 0; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); inode->i_generation = prandom_u32(); info = SHMEM_I(inode); memset(info, 0, (char *)inode - (char *)info); spin_lock_init(&info->lock); atomic_set(&info->stop_eviction, 0); info->seals = F_SEAL_SEAL; info->flags = flags & VM_NORESERVE; INIT_LIST_HEAD(&info->shrinklist); INIT_LIST_HEAD(&info->swaplist); simple_xattrs_init(&info->xattrs); cache_no_acl(inode); switch (mode & S_IFMT) { default: inode->i_op = &shmem_special_inode_operations; init_special_inode(inode, mode, dev); break; case S_IFREG: inode->i_mapping->a_ops = &shmem_aops; inode->i_op = &shmem_inode_operations; inode->i_fop = &shmem_file_operations; mpol_shared_policy_init(&info->policy, shmem_get_sbmpol(sbinfo)); break; case S_IFDIR: inc_nlink(inode); /* Some things misbehave if size == 0 on a directory */ inode->i_size = 2 * BOGO_DIRENT_SIZE; inode->i_op = &shmem_dir_inode_operations; inode->i_fop = &simple_dir_operations; break; case S_IFLNK: /* * Must not load anything in the rbtree, * mpol_free_shared_policy will not be called. */ mpol_shared_policy_init(&info->policy, NULL); break; } lockdep_annotate_inode_mutex_key(inode); } else shmem_free_inode(sb); return inode; } #ifdef CONFIG_USERFAULTFD int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, pmd_t *dst_pmd, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, bool zeropage, struct page **pagep) { struct inode *inode = file_inode(dst_vma->vm_file); struct shmem_inode_info *info = SHMEM_I(inode); struct address_space *mapping = inode->i_mapping; gfp_t gfp = mapping_gfp_mask(mapping); pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); void *page_kaddr; struct page *page; int ret; pgoff_t max_off; if (!shmem_inode_acct_block(inode, 1)) { /* * We may have got a page, returned -ENOENT triggering a retry, * and now we find ourselves with -ENOMEM. Release the page, to * avoid a BUG_ON in our caller. */ if (unlikely(*pagep)) { put_page(*pagep); *pagep = NULL; } return -ENOMEM; } if (!*pagep) { ret = -ENOMEM; page = shmem_alloc_page(gfp, info, pgoff); if (!page) goto out_unacct_blocks; if (!zeropage) { /* COPY */ page_kaddr = kmap_atomic(page); ret = copy_from_user(page_kaddr, (const void __user *)src_addr, PAGE_SIZE); kunmap_atomic(page_kaddr); /* fallback to copy_from_user outside mmap_lock */ if (unlikely(ret)) { *pagep = page; ret = -ENOENT; /* don't free the page */ goto out_unacct_blocks; } } else { /* ZEROPAGE */ clear_highpage(page); } } else { page = *pagep; *pagep = NULL; } VM_BUG_ON(PageLocked(page)); VM_BUG_ON(PageSwapBacked(page)); __SetPageLocked(page); __SetPageSwapBacked(page); __SetPageUptodate(page); ret = -EFAULT; max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); if (unlikely(pgoff >= max_off)) goto out_release; ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, gfp & GFP_RECLAIM_MASK, dst_mm); if (ret) goto out_release; ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, page, true, false); if (ret) goto out_delete_from_cache; spin_lock_irq(&info->lock); info->alloced++; inode->i_blocks += BLOCKS_PER_PAGE; shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); unlock_page(page); return 0; out_delete_from_cache: delete_from_page_cache(page); out_release: unlock_page(page); put_page(page); out_unacct_blocks: shmem_inode_unacct_blocks(inode, 1); return ret; } #endif /* CONFIG_USERFAULTFD */ #ifdef CONFIG_TMPFS static const struct inode_operations shmem_symlink_inode_operations; static const struct inode_operations shmem_short_symlink_operations; #ifdef CONFIG_TMPFS_XATTR static int shmem_initxattrs(struct inode *, const struct xattr *, void *); #else #define shmem_initxattrs NULL #endif static int shmem_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct inode *inode = mapping->host; struct shmem_inode_info *info = SHMEM_I(inode); pgoff_t index = pos >> PAGE_SHIFT; int ret = 0; /* i_rwsem is held by caller */ if (unlikely(info->seals & (F_SEAL_GROW | F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) return -EPERM; if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) return -EPERM; } ret = shmem_getpage(inode, index, pagep, SGP_WRITE); if (*pagep && PageHWPoison(*pagep)) { unlock_page(*pagep); put_page(*pagep); ret = -EIO; } return ret; } static int shmem_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; if (pos + copied > inode->i_size) i_size_write(inode, pos + copied); if (!PageUptodate(page)) { struct page *head = compound_head(page); if (PageTransCompound(page)) { int i; for (i = 0; i < HPAGE_PMD_NR; i++) { if (head + i == page) continue; clear_highpage(head + i); flush_dcache_page(head + i); } } if (copied < PAGE_SIZE) { unsigned from = pos & (PAGE_SIZE - 1); zero_user_segments(page, 0, from, from + copied, PAGE_SIZE); } SetPageUptodate(head); } set_page_dirty(page); unlock_page(page); put_page(page); return copied; } static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct address_space *mapping = inode->i_mapping; pgoff_t index; unsigned long offset; enum sgp_type sgp = SGP_READ; int error = 0; ssize_t retval = 0; loff_t *ppos = &iocb->ki_pos; /* * Might this read be for a stacking filesystem? Then when reading * holes of a sparse file, we actually need to allocate those pages, * and even mark them dirty, so it cannot exceed the max_blocks limit. */ if (!iter_is_iovec(to)) sgp = SGP_CACHE; index = *ppos >> PAGE_SHIFT; offset = *ppos & ~PAGE_MASK; for (;;) { struct page *page = NULL; pgoff_t end_index; unsigned long nr, ret; loff_t i_size = i_size_read(inode); end_index = i_size >> PAGE_SHIFT; if (index > end_index) break; if (index == end_index) { nr = i_size & ~PAGE_MASK; if (nr <= offset) break; } error = shmem_getpage(inode, index, &page, sgp); if (error) { if (error == -EINVAL) error = 0; break; } if (page) { if (sgp == SGP_CACHE) set_page_dirty(page); unlock_page(page); if (PageHWPoison(page)) { put_page(page); error = -EIO; break; } } /* * We must evaluate after, since reads (unlike writes) * are called without i_rwsem protection against truncate */ nr = PAGE_SIZE; i_size = i_size_read(inode); end_index = i_size >> PAGE_SHIFT; if (index == end_index) { nr = i_size & ~PAGE_MASK; if (nr <= offset) { if (page) put_page(page); break; } } nr -= offset; if (page) { /* * If users can be writing to this page using arbitrary * virtual addresses, take care about potential aliasing * before reading the page on the kernel side. */ if (mapping_writably_mapped(mapping)) flush_dcache_page(page); /* * Mark the page accessed if we read the beginning. */ if (!offset) mark_page_accessed(page); } else { page = ZERO_PAGE(0); get_page(page); } /* * Ok, we have the page, and it's up-to-date, so * now we can copy it to user space... */ ret = copy_page_to_iter(page, offset, nr, to); retval += ret; offset += ret; index += offset >> PAGE_SHIFT; offset &= ~PAGE_MASK; put_page(page); if (!iov_iter_count(to)) break; if (ret < nr) { error = -EFAULT; break; } cond_resched(); } *ppos = ((loff_t) index << PAGE_SHIFT) + offset; file_accessed(file); return retval ? retval : error; } static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) { struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; if (whence != SEEK_DATA && whence != SEEK_HOLE) return generic_file_llseek_size(file, offset, whence, MAX_LFS_FILESIZE, i_size_read(inode)); if (offset < 0) return -ENXIO; inode_lock(inode); /* We're holding i_rwsem so we can access i_size directly */ offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); if (offset >= 0) offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); inode_unlock(inode); return offset; } static long shmem_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_falloc shmem_falloc; pgoff_t start, index, end, undo_fallocend; int error; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) return -EOPNOTSUPP; inode_lock(inode); if (mode & FALLOC_FL_PUNCH_HOLE) { struct address_space *mapping = file->f_mapping; loff_t unmap_start = round_up(offset, PAGE_SIZE); loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); /* protected by i_rwsem */ if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { error = -EPERM; goto out; } shmem_falloc.waitq = &shmem_falloc_waitq; shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; spin_lock(&inode->i_lock); inode->i_private = &shmem_falloc; spin_unlock(&inode->i_lock); if ((u64)unmap_end > (u64)unmap_start) unmap_mapping_range(mapping, unmap_start, 1 + unmap_end - unmap_start, 0); shmem_truncate_range(inode, offset, offset + len - 1); /* No need to unmap again: hole-punching leaves COWed pages */ spin_lock(&inode->i_lock); inode->i_private = NULL; wake_up_all(&shmem_falloc_waitq); WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); spin_unlock(&inode->i_lock); error = 0; goto out; } /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ error = inode_newsize_ok(inode, offset + len); if (error) goto out; if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { error = -EPERM; goto out; } start = offset >> PAGE_SHIFT; end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Try to avoid a swapstorm if len is impossible to satisfy */ if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { error = -ENOSPC; goto out; } shmem_falloc.waitq = NULL; shmem_falloc.start = start; shmem_falloc.next = start; shmem_falloc.nr_falloced = 0; shmem_falloc.nr_unswapped = 0; spin_lock(&inode->i_lock); inode->i_private = &shmem_falloc; spin_unlock(&inode->i_lock); /* * info->fallocend is only relevant when huge pages might be * involved: to prevent split_huge_page() freeing fallocated * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. */ undo_fallocend = info->fallocend; if (info->fallocend < end) info->fallocend = end; for (index = start; index < end; ) { struct page *page; /* * Good, the fallocate(2) manpage permits EINTR: we may have * been interrupted because we are using up too much memory. */ if (signal_pending(current)) error = -EINTR; else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) error = -ENOMEM; else error = shmem_getpage(inode, index, &page, SGP_FALLOC); if (error) { info->fallocend = undo_fallocend; /* Remove the !PageUptodate pages we added */ if (index > start) { shmem_undo_range(inode, (loff_t)start << PAGE_SHIFT, ((loff_t)index << PAGE_SHIFT) - 1, true); } goto undone; } index++; /* * Here is a more important optimization than it appears: * a second SGP_FALLOC on the same huge page will clear it, * making it PageUptodate and un-undoable if we fail later. */ if (PageTransCompound(page)) { index = round_up(index, HPAGE_PMD_NR); /* Beware 32-bit wraparound */ if (!index) index--; } /* * Inform shmem_writepage() how far we have reached. * No need for lock or barrier: we have the page lock. */ if (!PageUptodate(page)) shmem_falloc.nr_falloced += index - shmem_falloc.next; shmem_falloc.next = index; /* * If !PageUptodate, leave it that way so that freeable pages * can be recognized if we need to rollback on error later. * But set_page_dirty so that memory pressure will swap rather * than free the pages we are allocating (and SGP_CACHE pages * might still be clean: we now need to mark those dirty too). */ set_page_dirty(page); unlock_page(page); put_page(page); cond_resched(); } if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) i_size_write(inode, offset + len); inode->i_ctime = current_time(inode); undone: spin_lock(&inode->i_lock); inode->i_private = NULL; spin_unlock(&inode->i_lock); out: inode_unlock(inode); return error; } static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) { struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); buf->f_type = TMPFS_MAGIC; buf->f_bsize = PAGE_SIZE; buf->f_namelen = NAME_MAX; if (sbinfo->max_blocks) { buf->f_blocks = sbinfo->max_blocks; buf->f_bavail = buf->f_bfree = sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks); } if (sbinfo->max_inodes) { buf->f_files = sbinfo->max_inodes; buf->f_ffree = sbinfo->free_inodes; } /* else leave those fields 0 like simple_statfs */ buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); return 0; } /* * File creation. Allocate an inode, and we're done.. */ static int shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { struct inode *inode; int error = -ENOSPC; inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); if (inode) { error = simple_acl_create(dir, inode); if (error) goto out_iput; error = security_inode_init_security(inode, dir, &dentry->d_name, shmem_initxattrs, NULL); if (error && error != -EOPNOTSUPP) goto out_iput; error = 0; dir->i_size += BOGO_DIRENT_SIZE; dir->i_ctime = dir->i_mtime = current_time(dir); d_instantiate(dentry, inode); dget(dentry); /* Extra count - pin the dentry in core */ } return error; out_iput: iput(inode); return error; } static int shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, umode_t mode) { struct inode *inode; int error = -ENOSPC; inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); if (inode) { error = security_inode_init_security(inode, dir, NULL, shmem_initxattrs, NULL); if (error && error != -EOPNOTSUPP) goto out_iput; error = simple_acl_create(dir, inode); if (error) goto out_iput; d_tmpfile(dentry, inode); } return error; out_iput: iput(inode); return error; } static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, umode_t mode) { int error; if ((error = shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFDIR, 0))) return error; inc_nlink(dir); return 0; } static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); } /* * Link a file.. */ static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(old_dentry); int ret = 0; /* * No ordinary (disk based) filesystem counts links as inodes; * but each new link needs a new dentry, pinning lowmem, and * tmpfs dentries cannot be pruned until they are unlinked. * But if an O_TMPFILE file is linked into the tmpfs, the * first link must skip that, to get the accounting right. */ if (inode->i_nlink) { ret = shmem_reserve_inode(inode->i_sb, NULL); if (ret) goto out; } dir->i_size += BOGO_DIRENT_SIZE; inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); inc_nlink(inode); ihold(inode); /* New dentry reference */ dget(dentry); /* Extra pinning count for the created dentry */ d_instantiate(dentry, inode); out: return ret; } static int shmem_unlink(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) shmem_free_inode(inode->i_sb); dir->i_size -= BOGO_DIRENT_SIZE; inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); drop_nlink(inode); dput(dentry); /* Undo the count from "create" - this does all the work */ return 0; } static int shmem_rmdir(struct inode *dir, struct dentry *dentry) { if (!simple_empty(dentry)) return -ENOTEMPTY; drop_nlink(d_inode(dentry)); drop_nlink(dir); return shmem_unlink(dir, dentry); } static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { bool old_is_dir = d_is_dir(old_dentry); bool new_is_dir = d_is_dir(new_dentry); if (old_dir != new_dir && old_is_dir != new_is_dir) { if (old_is_dir) { drop_nlink(old_dir); inc_nlink(new_dir); } else { drop_nlink(new_dir); inc_nlink(old_dir); } } old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = new_dir->i_mtime = d_inode(old_dentry)->i_ctime = d_inode(new_dentry)->i_ctime = current_time(old_dir); return 0; } static int shmem_whiteout(struct user_namespace *mnt_userns, struct inode *old_dir, struct dentry *old_dentry) { struct dentry *whiteout; int error; whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); if (!whiteout) return -ENOMEM; error = shmem_mknod(&init_user_ns, old_dir, whiteout, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); dput(whiteout); if (error) return error; /* * Cheat and hash the whiteout while the old dentry is still in * place, instead of playing games with FS_RENAME_DOES_D_MOVE. * * d_lookup() will consistently find one of them at this point, * not sure which one, but that isn't even important. */ d_rehash(whiteout); return 0; } /* * The VFS layer already does all the dentry stuff for rename, * we just have to decrement the usage count for the target if * it exists so that the VFS layer correctly free's it when it * gets overwritten. */ static int shmem_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { struct inode *inode = d_inode(old_dentry); int they_are_dirs = S_ISDIR(inode->i_mode); if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) return -EINVAL; if (flags & RENAME_EXCHANGE) return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); if (!simple_empty(new_dentry)) return -ENOTEMPTY; if (flags & RENAME_WHITEOUT) { int error; error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); if (error) return error; } if (d_really_is_positive(new_dentry)) { (void) shmem_unlink(new_dir, new_dentry); if (they_are_dirs) { drop_nlink(d_inode(new_dentry)); drop_nlink(old_dir); } } else if (they_are_dirs) { drop_nlink(old_dir); inc_nlink(new_dir); } old_dir->i_size -= BOGO_DIRENT_SIZE; new_dir->i_size += BOGO_DIRENT_SIZE; old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = new_dir->i_mtime = inode->i_ctime = current_time(old_dir); return 0; } static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, const char *symname) { int error; int len; struct inode *inode; struct page *page; len = strlen(symname) + 1; if (len > PAGE_SIZE) return -ENAMETOOLONG; inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, VM_NORESERVE); if (!inode) return -ENOSPC; error = security_inode_init_security(inode, dir, &dentry->d_name, shmem_initxattrs, NULL); if (error && error != -EOPNOTSUPP) { iput(inode); return error; } inode->i_size = len-1; if (len <= SHORT_SYMLINK_LEN) { inode->i_link = kmemdup(symname, len, GFP_KERNEL); if (!inode->i_link) { iput(inode); return -ENOMEM; } inode->i_op = &shmem_short_symlink_operations; } else { inode_nohighmem(inode); error = shmem_getpage(inode, 0, &page, SGP_WRITE); if (error) { iput(inode); return error; } inode->i_mapping->a_ops = &shmem_aops; inode->i_op = &shmem_symlink_inode_operations; memcpy(page_address(page), symname, len); SetPageUptodate(page); set_page_dirty(page); unlock_page(page); put_page(page); } dir->i_size += BOGO_DIRENT_SIZE; dir->i_ctime = dir->i_mtime = current_time(dir); d_instantiate(dentry, inode); dget(dentry); return 0; } static void shmem_put_link(void *arg) { mark_page_accessed(arg); put_page(arg); } static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done) { struct page *page = NULL; int error; if (!dentry) { page = find_get_page(inode->i_mapping, 0); if (!page) return ERR_PTR(-ECHILD); if (PageHWPoison(page) || !PageUptodate(page)) { put_page(page); return ERR_PTR(-ECHILD); } } else { error = shmem_getpage(inode, 0, &page, SGP_READ); if (error) return ERR_PTR(error); if (page && PageHWPoison(page)) { unlock_page(page); put_page(page); return ERR_PTR(-ECHILD); } unlock_page(page); } set_delayed_call(done, shmem_put_link, page); return page_address(page); } #ifdef CONFIG_TMPFS_XATTR /* * Superblocks without xattr inode operations may get some security.* xattr * support from the LSM "for free". As soon as we have any other xattrs * like ACLs, we also need to implement the security.* handlers at * filesystem level, though. */ /* * Callback for security_inode_init_security() for acquiring xattrs. */ static int shmem_initxattrs(struct inode *inode, const struct xattr *xattr_array, void *fs_info) { struct shmem_inode_info *info = SHMEM_I(inode); const struct xattr *xattr; struct simple_xattr *new_xattr; size_t len; for (xattr = xattr_array; xattr->name != NULL; xattr++) { new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); if (!new_xattr) return -ENOMEM; len = strlen(xattr->name) + 1; new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, GFP_KERNEL); if (!new_xattr->name) { kvfree(new_xattr); return -ENOMEM; } memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN); memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, xattr->name, len); simple_xattr_list_add(&info->xattrs, new_xattr); } return 0; } static int shmem_xattr_handler_get(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *buffer, size_t size) { struct shmem_inode_info *info = SHMEM_I(inode); name = xattr_full_name(handler, name); return simple_xattr_get(&info->xattrs, name, buffer, size); } static int shmem_xattr_handler_set(const struct xattr_handler *handler, struct user_namespace *mnt_userns, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct shmem_inode_info *info = SHMEM_I(inode); name = xattr_full_name(handler, name); return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); } static const struct xattr_handler shmem_security_xattr_handler = { .prefix = XATTR_SECURITY_PREFIX, .get = shmem_xattr_handler_get, .set = shmem_xattr_handler_set, }; static const struct xattr_handler shmem_trusted_xattr_handler = { .prefix = XATTR_TRUSTED_PREFIX, .get = shmem_xattr_handler_get, .set = shmem_xattr_handler_set, }; static const struct xattr_handler *shmem_xattr_handlers[] = { #ifdef CONFIG_TMPFS_POSIX_ACL &posix_acl_access_xattr_handler, &posix_acl_default_xattr_handler, #endif &shmem_security_xattr_handler, &shmem_trusted_xattr_handler, NULL }; static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) { struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); } #endif /* CONFIG_TMPFS_XATTR */ static const struct inode_operations shmem_short_symlink_operations = { .get_link = simple_get_link, #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, #endif }; static const struct inode_operations shmem_symlink_inode_operations = { .get_link = shmem_get_link, #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, #endif }; static struct dentry *shmem_get_parent(struct dentry *child) { return ERR_PTR(-ESTALE); } static int shmem_match(struct inode *ino, void *vfh) { __u32 *fh = vfh; __u64 inum = fh[2]; inum = (inum << 32) | fh[1]; return ino->i_ino == inum && fh[0] == ino->i_generation; } /* Find any alias of inode, but prefer a hashed alias */ static struct dentry *shmem_find_alias(struct inode *inode) { struct dentry *alias = d_find_alias(inode); return alias ?: d_find_any_alias(inode); } static struct dentry *shmem_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { struct inode *inode; struct dentry *dentry = NULL; u64 inum; if (fh_len < 3) return NULL; inum = fid->raw[2]; inum = (inum << 32) | fid->raw[1]; inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), shmem_match, fid->raw); if (inode) { dentry = shmem_find_alias(inode); iput(inode); } return dentry; } static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, struct inode *parent) { if (*len < 3) { *len = 3; return FILEID_INVALID; } if (inode_unhashed(inode)) { /* Unfortunately insert_inode_hash is not idempotent, * so as we hash inodes here rather than at creation * time, we need a lock to ensure we only try * to do it once */ static DEFINE_SPINLOCK(lock); spin_lock(&lock); if (inode_unhashed(inode)) __insert_inode_hash(inode, inode->i_ino + inode->i_generation); spin_unlock(&lock); } fh[0] = inode->i_generation; fh[1] = inode->i_ino; fh[2] = ((__u64)inode->i_ino) >> 32; *len = 3; return 1; } static const struct export_operations shmem_export_ops = { .get_parent = shmem_get_parent, .encode_fh = shmem_encode_fh, .fh_to_dentry = shmem_fh_to_dentry, }; enum shmem_param { Opt_gid, Opt_huge, Opt_mode, Opt_mpol, Opt_nr_blocks, Opt_nr_inodes, Opt_size, Opt_uid, Opt_inode32, Opt_inode64, }; static const struct constant_table shmem_param_enums_huge[] = { {"never", SHMEM_HUGE_NEVER }, {"always", SHMEM_HUGE_ALWAYS }, {"within_size", SHMEM_HUGE_WITHIN_SIZE }, {"advise", SHMEM_HUGE_ADVISE }, {} }; const struct fs_parameter_spec shmem_fs_parameters[] = { fsparam_u32 ("gid", Opt_gid), fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), fsparam_u32oct("mode", Opt_mode), fsparam_string("mpol", Opt_mpol), fsparam_string("nr_blocks", Opt_nr_blocks), fsparam_string("nr_inodes", Opt_nr_inodes), fsparam_string("size", Opt_size), fsparam_u32 ("uid", Opt_uid), fsparam_flag ("inode32", Opt_inode32), fsparam_flag ("inode64", Opt_inode64), {} }; static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) { struct shmem_options *ctx = fc->fs_private; struct fs_parse_result result; unsigned long long size; char *rest; int opt; opt = fs_parse(fc, shmem_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_size: size = memparse(param->string, &rest); if (*rest == '%') { size <<= PAGE_SHIFT; size *= totalram_pages(); do_div(size, 100); rest++; } if (*rest) goto bad_value; ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); ctx->seen |= SHMEM_SEEN_BLOCKS; break; case Opt_nr_blocks: ctx->blocks = memparse(param->string, &rest); if (*rest) goto bad_value; ctx->seen |= SHMEM_SEEN_BLOCKS; break; case Opt_nr_inodes: ctx->inodes = memparse(param->string, &rest); if (*rest) goto bad_value; ctx->seen |= SHMEM_SEEN_INODES; break; case Opt_mode: ctx->mode = result.uint_32 & 07777; break; case Opt_uid: ctx->uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(ctx->uid)) goto bad_value; break; case Opt_gid: ctx->gid = make_kgid(current_user_ns(), result.uint_32); if (!gid_valid(ctx->gid)) goto bad_value; break; case Opt_huge: ctx->huge = result.uint_32; if (ctx->huge != SHMEM_HUGE_NEVER && !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && has_transparent_hugepage())) goto unsupported_parameter; ctx->seen |= SHMEM_SEEN_HUGE; break; case Opt_mpol: if (IS_ENABLED(CONFIG_NUMA)) { mpol_put(ctx->mpol); ctx->mpol = NULL; if (mpol_parse_str(param->string, &ctx->mpol)) goto bad_value; break; } goto unsupported_parameter; case Opt_inode32: ctx->full_inums = false; ctx->seen |= SHMEM_SEEN_INUMS; break; case Opt_inode64: if (sizeof(ino_t) < 8) { return invalfc(fc, "Cannot use inode64 with <64bit inums in kernel\n"); } ctx->full_inums = true; ctx->seen |= SHMEM_SEEN_INUMS; break; } return 0; unsupported_parameter: return invalfc(fc, "Unsupported parameter '%s'", param->key); bad_value: return invalfc(fc, "Bad value for '%s'", param->key); } static int shmem_parse_options(struct fs_context *fc, void *data) { char *options = data; if (options) { int err = security_sb_eat_lsm_opts(options, &fc->security); if (err) return err; } while (options != NULL) { char *this_char = options; for (;;) { /* * NUL-terminate this option: unfortunately, * mount options form a comma-separated list, * but mpol's nodelist may also contain commas. */ options = strchr(options, ','); if (options == NULL) break; options++; if (!isdigit(*options)) { options[-1] = '\0'; break; } } if (*this_char) { char *value = strchr(this_char, '='); size_t len = 0; int err; if (value) { *value++ = '\0'; len = strlen(value); } err = vfs_parse_fs_string(fc, this_char, value, len); if (err < 0) return err; } } return 0; } /* * Reconfigure a shmem filesystem. * * Note that we disallow change from limited->unlimited blocks/inodes while any * are in use; but we must separately disallow unlimited->limited, because in * that case we have no record of how much is already in use. */ static int shmem_reconfigure(struct fs_context *fc) { struct shmem_options *ctx = fc->fs_private; struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); unsigned long inodes; struct mempolicy *mpol = NULL; const char *err; raw_spin_lock(&sbinfo->stat_lock); inodes = sbinfo->max_inodes - sbinfo->free_inodes; if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { if (!sbinfo->max_blocks) { err = "Cannot retroactively limit size"; goto out; } if (percpu_counter_compare(&sbinfo->used_blocks, ctx->blocks) > 0) { err = "Too small a size for current use"; goto out; } } if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { if (!sbinfo->max_inodes) { err = "Cannot retroactively limit inodes"; goto out; } if (ctx->inodes < inodes) { err = "Too few inodes for current use"; goto out; } } if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && sbinfo->next_ino > UINT_MAX) { err = "Current inum too high to switch to 32-bit inums"; goto out; } if (ctx->seen & SHMEM_SEEN_HUGE) sbinfo->huge = ctx->huge; if (ctx->seen & SHMEM_SEEN_INUMS) sbinfo->full_inums = ctx->full_inums; if (ctx->seen & SHMEM_SEEN_BLOCKS) sbinfo->max_blocks = ctx->blocks; if (ctx->seen & SHMEM_SEEN_INODES) { sbinfo->max_inodes = ctx->inodes; sbinfo->free_inodes = ctx->inodes - inodes; } /* * Preserve previous mempolicy unless mpol remount option was specified. */ if (ctx->mpol) { mpol = sbinfo->mpol; sbinfo->mpol = ctx->mpol; /* transfers initial ref */ ctx->mpol = NULL; } raw_spin_unlock(&sbinfo->stat_lock); mpol_put(mpol); return 0; out: raw_spin_unlock(&sbinfo->stat_lock); return invalfc(fc, "%s", err); } static int shmem_show_options(struct seq_file *seq, struct dentry *root) { struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); if (sbinfo->max_blocks != shmem_default_max_blocks()) seq_printf(seq, ",size=%luk", sbinfo->max_blocks << (PAGE_SHIFT - 10)); if (sbinfo->max_inodes != shmem_default_max_inodes()) seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); if (sbinfo->mode != (0777 | S_ISVTX)) seq_printf(seq, ",mode=%03ho", sbinfo->mode); if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) seq_printf(seq, ",uid=%u", from_kuid_munged(&init_user_ns, sbinfo->uid)); if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) seq_printf(seq, ",gid=%u", from_kgid_munged(&init_user_ns, sbinfo->gid)); /* * Showing inode{64,32} might be useful even if it's the system default, * since then people don't have to resort to checking both here and * /proc/config.gz to confirm 64-bit inums were successfully applied * (which may not even exist if IKCONFIG_PROC isn't enabled). * * We hide it when inode64 isn't the default and we are using 32-bit * inodes, since that probably just means the feature isn't even under * consideration. * * As such: * * +-----------------+-----------------+ * | TMPFS_INODE64=y | TMPFS_INODE64=n | * +------------------+-----------------+-----------------+ * | full_inums=true | show | show | * | full_inums=false | show | hide | * +------------------+-----------------+-----------------+ * */ if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ if (sbinfo->huge) seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); #endif shmem_show_mpol(seq, sbinfo->mpol); return 0; } #endif /* CONFIG_TMPFS */ static void shmem_put_super(struct super_block *sb) { struct shmem_sb_info *sbinfo = SHMEM_SB(sb); free_percpu(sbinfo->ino_batch); percpu_counter_destroy(&sbinfo->used_blocks); mpol_put(sbinfo->mpol); kfree(sbinfo); sb->s_fs_info = NULL; } static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) { struct shmem_options *ctx = fc->fs_private; struct inode *inode; struct shmem_sb_info *sbinfo; /* Round up to L1_CACHE_BYTES to resist false sharing */ sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), L1_CACHE_BYTES), GFP_KERNEL); if (!sbinfo) return -ENOMEM; sb->s_fs_info = sbinfo; #ifdef CONFIG_TMPFS /* * Per default we only allow half of the physical ram per * tmpfs instance, limiting inodes to one per page of lowmem; * but the internal instance is left unlimited. */ if (!(sb->s_flags & SB_KERNMOUNT)) { if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) ctx->blocks = shmem_default_max_blocks(); if (!(ctx->seen & SHMEM_SEEN_INODES)) ctx->inodes = shmem_default_max_inodes(); if (!(ctx->seen & SHMEM_SEEN_INUMS)) ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); } else { sb->s_flags |= SB_NOUSER; } sb->s_export_op = &shmem_export_ops; sb->s_flags |= SB_NOSEC; #else sb->s_flags |= SB_NOUSER; #endif sbinfo->max_blocks = ctx->blocks; sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; if (sb->s_flags & SB_KERNMOUNT) { sbinfo->ino_batch = alloc_percpu(ino_t); if (!sbinfo->ino_batch) goto failed; } sbinfo->uid = ctx->uid; sbinfo->gid = ctx->gid; sbinfo->full_inums = ctx->full_inums; sbinfo->mode = ctx->mode; sbinfo->huge = ctx->huge; sbinfo->mpol = ctx->mpol; ctx->mpol = NULL; raw_spin_lock_init(&sbinfo->stat_lock); if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) goto failed; spin_lock_init(&sbinfo->shrinklist_lock); INIT_LIST_HEAD(&sbinfo->shrinklist); sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; sb->s_magic = TMPFS_MAGIC; sb->s_op = &shmem_ops; sb->s_time_gran = 1; #ifdef CONFIG_TMPFS_XATTR sb->s_xattr = shmem_xattr_handlers; #endif #ifdef CONFIG_TMPFS_POSIX_ACL sb->s_flags |= SB_POSIXACL; #endif uuid_gen(&sb->s_uuid); inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); if (!inode) goto failed; inode->i_uid = sbinfo->uid; inode->i_gid = sbinfo->gid; sb->s_root = d_make_root(inode); if (!sb->s_root) goto failed; return 0; failed: shmem_put_super(sb); return -ENOMEM; } static int shmem_get_tree(struct fs_context *fc) { return get_tree_nodev(fc, shmem_fill_super); } static void shmem_free_fc(struct fs_context *fc) { struct shmem_options *ctx = fc->fs_private; if (ctx) { mpol_put(ctx->mpol); kfree(ctx); } } static const struct fs_context_operations shmem_fs_context_ops = { .free = shmem_free_fc, .get_tree = shmem_get_tree, #ifdef CONFIG_TMPFS .parse_monolithic = shmem_parse_options, .parse_param = shmem_parse_one, .reconfigure = shmem_reconfigure, #endif }; static struct kmem_cache *shmem_inode_cachep; static struct inode *shmem_alloc_inode(struct super_block *sb) { struct shmem_inode_info *info; info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); if (!info) return NULL; return &info->vfs_inode; } static void shmem_free_in_core_inode(struct inode *inode) { if (S_ISLNK(inode->i_mode)) kfree(inode->i_link); kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); } static void shmem_destroy_inode(struct inode *inode) { if (S_ISREG(inode->i_mode)) mpol_free_shared_policy(&SHMEM_I(inode)->policy); } static void shmem_init_inode(void *foo) { struct shmem_inode_info *info = foo; inode_init_once(&info->vfs_inode); } static void shmem_init_inodecache(void) { shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", sizeof(struct shmem_inode_info), 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); } static void shmem_destroy_inodecache(void) { kmem_cache_destroy(shmem_inode_cachep); } /* Keep the page in page cache instead of truncating it */ static int shmem_error_remove_page(struct address_space *mapping, struct page *page) { return 0; } const struct address_space_operations shmem_aops = { .writepage = shmem_writepage, .set_page_dirty = __set_page_dirty_no_writeback, #ifdef CONFIG_TMPFS .write_begin = shmem_write_begin, .write_end = shmem_write_end, #endif #ifdef CONFIG_MIGRATION .migratepage = migrate_page, #endif .error_remove_page = shmem_error_remove_page, }; EXPORT_SYMBOL(shmem_aops); static const struct file_operations shmem_file_operations = { .mmap = shmem_mmap, .get_unmapped_area = shmem_get_unmapped_area, #ifdef CONFIG_TMPFS .llseek = shmem_file_llseek, .read_iter = shmem_file_read_iter, .write_iter = generic_file_write_iter, .fsync = noop_fsync, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = shmem_fallocate, #endif }; static const struct inode_operations shmem_inode_operations = { .getattr = shmem_getattr, .setattr = shmem_setattr, #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, .set_acl = simple_set_acl, #endif }; static const struct inode_operations shmem_dir_inode_operations = { #ifdef CONFIG_TMPFS .create = shmem_create, .lookup = simple_lookup, .link = shmem_link, .unlink = shmem_unlink, .symlink = shmem_symlink, .mkdir = shmem_mkdir, .rmdir = shmem_rmdir, .mknod = shmem_mknod, .rename = shmem_rename2, .tmpfile = shmem_tmpfile, #endif #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, #endif #ifdef CONFIG_TMPFS_POSIX_ACL .setattr = shmem_setattr, .set_acl = simple_set_acl, #endif }; static const struct inode_operations shmem_special_inode_operations = { #ifdef CONFIG_TMPFS_XATTR .listxattr = shmem_listxattr, #endif #ifdef CONFIG_TMPFS_POSIX_ACL .setattr = shmem_setattr, .set_acl = simple_set_acl, #endif }; static const struct super_operations shmem_ops = { .alloc_inode = shmem_alloc_inode, .free_inode = shmem_free_in_core_inode, .destroy_inode = shmem_destroy_inode, #ifdef CONFIG_TMPFS .statfs = shmem_statfs, .show_options = shmem_show_options, #endif .evict_inode = shmem_evict_inode, .drop_inode = generic_delete_inode, .put_super = shmem_put_super, #ifdef CONFIG_TRANSPARENT_HUGEPAGE .nr_cached_objects = shmem_unused_huge_count, .free_cached_objects = shmem_unused_huge_scan, #endif }; static const struct vm_operations_struct shmem_vm_ops = { .fault = shmem_fault, .map_pages = filemap_map_pages, #ifdef CONFIG_NUMA .set_policy = shmem_set_policy, .get_policy = shmem_get_policy, #endif }; int shmem_init_fs_context(struct fs_context *fc) { struct shmem_options *ctx; ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->mode = 0777 | S_ISVTX; ctx->uid = current_fsuid(); ctx->gid = current_fsgid(); fc->fs_private = ctx; fc->ops = &shmem_fs_context_ops; return 0; } static struct file_system_type shmem_fs_type = { .owner = THIS_MODULE, .name = "tmpfs", .init_fs_context = shmem_init_fs_context, #ifdef CONFIG_TMPFS .parameters = shmem_fs_parameters, #endif .kill_sb = kill_litter_super, .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT, }; int __init shmem_init(void) { int error; shmem_init_inodecache(); error = register_filesystem(&shmem_fs_type); if (error) { pr_err("Could not register tmpfs\n"); goto out2; } shm_mnt = kern_mount(&shmem_fs_type); if (IS_ERR(shm_mnt)) { error = PTR_ERR(shm_mnt); pr_err("Could not kern_mount tmpfs\n"); goto out1; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; else shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ #endif return 0; out1: unregister_filesystem(&shmem_fs_type); out2: shmem_destroy_inodecache(); shm_mnt = ERR_PTR(error); return error; } #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) static ssize_t shmem_enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { static const int values[] = { SHMEM_HUGE_ALWAYS, SHMEM_HUGE_WITHIN_SIZE, SHMEM_HUGE_ADVISE, SHMEM_HUGE_NEVER, SHMEM_HUGE_DENY, SHMEM_HUGE_FORCE, }; int len = 0; int i; for (i = 0; i < ARRAY_SIZE(values); i++) { len += sysfs_emit_at(buf, len, shmem_huge == values[i] ? "%s[%s]" : "%s%s", i ? " " : "", shmem_format_huge(values[i])); } len += sysfs_emit_at(buf, len, "\n"); return len; } static ssize_t shmem_enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { char tmp[16]; int huge; if (count + 1 > sizeof(tmp)) return -EINVAL; memcpy(tmp, buf, count); tmp[count] = '\0'; if (count && tmp[count - 1] == '\n') tmp[count - 1] = '\0'; huge = shmem_parse_huge(tmp); if (huge == -EINVAL) return -EINVAL; if (!has_transparent_hugepage() && huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) return -EINVAL; shmem_huge = huge; if (shmem_huge > SHMEM_HUGE_DENY) SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; return count; } struct kobj_attribute shmem_enabled_attr = __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ #else /* !CONFIG_SHMEM */ /* * tiny-shmem: simple shmemfs and tmpfs using ramfs code * * This is intended for small system where the benefits of the full * shmem code (swap-backed and resource-limited) are outweighed by * their complexity. On systems without swap this code should be * effectively equivalent, but much lighter weight. */ static struct file_system_type shmem_fs_type = { .name = "tmpfs", .init_fs_context = ramfs_init_fs_context, .parameters = ramfs_fs_parameters, .kill_sb = kill_litter_super, .fs_flags = FS_USERNS_MOUNT, }; int __init shmem_init(void) { BUG_ON(register_filesystem(&shmem_fs_type) != 0); shm_mnt = kern_mount(&shmem_fs_type); BUG_ON(IS_ERR(shm_mnt)); return 0; } int shmem_unuse(unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { return 0; } int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) { return 0; } void shmem_unlock_mapping(struct address_space *mapping) { } #ifdef CONFIG_MMU unsigned long shmem_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); } #endif void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) { truncate_inode_pages_range(inode->i_mapping, lstart, lend); } EXPORT_SYMBOL_GPL(shmem_truncate_range); #define shmem_vm_ops generic_file_vm_ops #define shmem_file_operations ramfs_file_operations #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) #define shmem_acct_size(flags, size) 0 #define shmem_unacct_size(flags, size) do {} while (0) #endif /* CONFIG_SHMEM */ /* common code */ static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, unsigned long flags, unsigned int i_flags) { struct inode *inode; struct file *res; if (IS_ERR(mnt)) return ERR_CAST(mnt); if (size < 0 || size > MAX_LFS_FILESIZE) return ERR_PTR(-EINVAL); if (shmem_acct_size(flags, size)) return ERR_PTR(-ENOMEM); inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); if (unlikely(!inode)) { shmem_unacct_size(flags, size); return ERR_PTR(-ENOSPC); } inode->i_flags |= i_flags; inode->i_size = size; clear_nlink(inode); /* It is unlinked */ res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); if (!IS_ERR(res)) res = alloc_file_pseudo(inode, mnt, name, O_RDWR, &shmem_file_operations); if (IS_ERR(res)) iput(inode); return res; } /** * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be * kernel internal. There will be NO LSM permission checks against the * underlying inode. So users of this interface must do LSM checks at a * higher layer. The users are the big_key and shm implementations. LSM * checks are provided at the key or shm level rather than the inode. * @name: name for dentry (to be seen in /proc/<pid>/maps * @size: size to be set for the file * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size */ struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) { return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); } /** * shmem_file_setup - get an unlinked file living in tmpfs * @name: name for dentry (to be seen in /proc/<pid>/maps * @size: size to be set for the file * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size */ struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) { return __shmem_file_setup(shm_mnt, name, size, flags, 0); } EXPORT_SYMBOL_GPL(shmem_file_setup); /** * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs * @mnt: the tmpfs mount where the file will be created * @name: name for dentry (to be seen in /proc/<pid>/maps * @size: size to be set for the file * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size */ struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, loff_t size, unsigned long flags) { return __shmem_file_setup(mnt, name, size, flags, 0); } EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); /** * shmem_zero_setup - setup a shared anonymous mapping * @vma: the vma to be mmapped is prepared by do_mmap */ int shmem_zero_setup(struct vm_area_struct *vma) { struct file *file; loff_t size = vma->vm_end - vma->vm_start; /* * Cloning a new file under mmap_lock leads to a lock ordering conflict * between XFS directory reading and selinux: since this file is only * accessible to the user through its mapping, use S_PRIVATE flag to * bypass file security, in the same way as shmem_kernel_file_setup(). */ file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); if (IS_ERR(file)) return PTR_ERR(file); if (vma->vm_file) fput(vma->vm_file); vma->vm_file = file; vma->vm_ops = &shmem_vm_ops; if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < (vma->vm_end & HPAGE_PMD_MASK)) { khugepaged_enter(vma, vma->vm_flags); } return 0; } /** * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. * @mapping: the page's address_space * @index: the page index * @gfp: the page allocator flags to use if allocating * * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", * with any new page allocations done using the specified allocation flags. * But read_cache_page_gfp() uses the ->readpage() method: which does not * suit tmpfs, since it may have pages in swapcache, and needs to find those * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. * * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. */ struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp) { #ifdef CONFIG_SHMEM struct inode *inode = mapping->host; struct page *page; int error; BUG_ON(!shmem_mapping(mapping)); error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL, NULL, NULL); if (error) page = ERR_PTR(error); else unlock_page(page); if (PageHWPoison(page)) page = ERR_PTR(-EIO); return page; #else /* * The tiny !SHMEM case uses ramfs without swap */ return read_cache_page_gfp(mapping, index, gfp); #endif } EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);