/* * Routines having to do with the 'struct sk_buff' memory handlers. * * Authors: Alan Cox * Florian La Roche * * Fixes: * Alan Cox : Fixed the worst of the load * balancer bugs. * Dave Platt : Interrupt stacking fix. * Richard Kooijman : Timestamp fixes. * Alan Cox : Changed buffer format. * Alan Cox : destructor hook for AF_UNIX etc. * Linus Torvalds : Better skb_clone. * Alan Cox : Added skb_copy. * Alan Cox : Added all the changed routines Linus * only put in the headers * Ray VanTassle : Fixed --skb->lock in free * Alan Cox : skb_copy copy arp field * Andi Kleen : slabified it. * Robert Olsson : Removed skb_head_pool * * NOTE: * The __skb_ routines should be called with interrupts * disabled, or you better be *real* sure that the operation is atomic * with respect to whatever list is being frobbed (e.g. via lock_sock() * or via disabling bottom half handlers, etc). * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * The functions in this file will not compile correctly with gcc 2.4.x */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_NET_CLS_ACT #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct kmem_cache *skbuff_head_cache __read_mostly; static struct kmem_cache *skbuff_fclone_cache __read_mostly; /** * skb_panic - private function for out-of-line support * @skb: buffer * @sz: size * @addr: address * @msg: skb_over_panic or skb_under_panic * * Out-of-line support for skb_put() and skb_push(). * Called via the wrapper skb_over_panic() or skb_under_panic(). * Keep out of line to prevent kernel bloat. * __builtin_return_address is not used because it is not always reliable. */ static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, const char msg[]) { pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", msg, addr, skb->len, sz, skb->head, skb->data, (unsigned long)skb->tail, (unsigned long)skb->end, skb->dev ? skb->dev->name : ""); BUG(); } static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) { skb_panic(skb, sz, addr, __func__); } static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) { skb_panic(skb, sz, addr, __func__); } /* * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells * the caller if emergency pfmemalloc reserves are being used. If it is and * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves * may be used. Otherwise, the packet data may be discarded until enough * memory is free */ #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip, bool *pfmemalloc) { void *obj; bool ret_pfmemalloc = false; /* * Try a regular allocation, when that fails and we're not entitled * to the reserves, fail. */ obj = kmalloc_node_track_caller(size, flags | __GFP_NOMEMALLOC | __GFP_NOWARN, node); if (obj || !(gfp_pfmemalloc_allowed(flags))) goto out; /* Try again but now we are using pfmemalloc reserves */ ret_pfmemalloc = true; obj = kmalloc_node_track_caller(size, flags, node); out: if (pfmemalloc) *pfmemalloc = ret_pfmemalloc; return obj; } /* Allocate a new skbuff. We do this ourselves so we can fill in a few * 'private' fields and also do memory statistics to find all the * [BEEP] leaks. * */ struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) { struct sk_buff *skb; /* Get the HEAD */ skb = kmem_cache_alloc_node(skbuff_head_cache, gfp_mask & ~__GFP_DMA, node); if (!skb) goto out; /* * Only clear those fields we need to clear, not those that we will * actually initialise below. Hence, don't put any more fields after * the tail pointer in struct sk_buff! */ memset(skb, 0, offsetof(struct sk_buff, tail)); skb->head = NULL; skb->truesize = sizeof(struct sk_buff); atomic_set(&skb->users, 1); skb->mac_header = (typeof(skb->mac_header))~0U; out: return skb; } /** * __alloc_skb - allocate a network buffer * @size: size to allocate * @gfp_mask: allocation mask * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache * instead of head cache and allocate a cloned (child) skb. * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for * allocations in case the data is required for writeback * @node: numa node to allocate memory on * * Allocate a new &sk_buff. The returned buffer has no headroom and a * tail room of at least size bytes. The object has a reference count * of one. The return is the buffer. On a failure the return is %NULL. * * Buffers may only be allocated from interrupts using a @gfp_mask of * %GFP_ATOMIC. */ struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, int flags, int node) { struct kmem_cache *cache; struct skb_shared_info *shinfo; struct sk_buff *skb; u8 *data; bool pfmemalloc; cache = (flags & SKB_ALLOC_FCLONE) ? skbuff_fclone_cache : skbuff_head_cache; if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) gfp_mask |= __GFP_MEMALLOC; /* Get the HEAD */ skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); if (!skb) goto out; prefetchw(skb); /* We do our best to align skb_shared_info on a separate cache * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives * aligned memory blocks, unless SLUB/SLAB debug is enabled. * Both skb->head and skb_shared_info are cache line aligned. */ size = SKB_DATA_ALIGN(size); size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); if (!data) goto nodata; /* kmalloc(size) might give us more room than requested. * Put skb_shared_info exactly at the end of allocated zone, * to allow max possible filling before reallocation. */ size = SKB_WITH_OVERHEAD(ksize(data)); prefetchw(data + size); /* * Only clear those fields we need to clear, not those that we will * actually initialise below. Hence, don't put any more fields after * the tail pointer in struct sk_buff! */ memset(skb, 0, offsetof(struct sk_buff, tail)); /* Account for allocated memory : skb + skb->head */ skb->truesize = SKB_TRUESIZE(size); skb->pfmemalloc = pfmemalloc; atomic_set(&skb->users, 1); skb->head = data; skb->data = data; skb_reset_tail_pointer(skb); skb->end = skb->tail + size; skb->mac_header = (typeof(skb->mac_header))~0U; skb->transport_header = (typeof(skb->transport_header))~0U; /* make sure we initialize shinfo sequentially */ shinfo = skb_shinfo(skb); memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); atomic_set(&shinfo->dataref, 1); kmemcheck_annotate_variable(shinfo->destructor_arg); if (flags & SKB_ALLOC_FCLONE) { struct sk_buff_fclones *fclones; fclones = container_of(skb, struct sk_buff_fclones, skb1); kmemcheck_annotate_bitfield(&fclones->skb2, flags1); skb->fclone = SKB_FCLONE_ORIG; atomic_set(&fclones->fclone_ref, 1); fclones->skb2.fclone = SKB_FCLONE_CLONE; fclones->skb2.pfmemalloc = pfmemalloc; } out: return skb; nodata: kmem_cache_free(cache, skb); skb = NULL; goto out; } EXPORT_SYMBOL(__alloc_skb); /** * build_skb - build a network buffer * @data: data buffer provided by caller * @frag_size: size of fragment, or 0 if head was kmalloced * * Allocate a new &sk_buff. Caller provides space holding head and * skb_shared_info. @data must have been allocated by kmalloc() only if * @frag_size is 0, otherwise data should come from the page allocator. * The return is the new skb buffer. * On a failure the return is %NULL, and @data is not freed. * Notes : * Before IO, driver allocates only data buffer where NIC put incoming frame * Driver should add room at head (NET_SKB_PAD) and * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) * After IO, driver calls build_skb(), to allocate sk_buff and populate it * before giving packet to stack. * RX rings only contains data buffers, not full skbs. */ struct sk_buff *build_skb(void *data, unsigned int frag_size) { struct skb_shared_info *shinfo; struct sk_buff *skb; unsigned int size = frag_size ? : ksize(data); skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); if (!skb) return NULL; size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); memset(skb, 0, offsetof(struct sk_buff, tail)); skb->truesize = SKB_TRUESIZE(size); if (frag_size) { skb->head_frag = 1; if (virt_to_head_page(data)->pfmemalloc) skb->pfmemalloc = 1; } atomic_set(&skb->users, 1); skb->head = data; skb->data = data; skb_reset_tail_pointer(skb); skb->end = skb->tail + size; skb->mac_header = (typeof(skb->mac_header))~0U; skb->transport_header = (typeof(skb->transport_header))~0U; /* make sure we initialize shinfo sequentially */ shinfo = skb_shinfo(skb); memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); atomic_set(&shinfo->dataref, 1); kmemcheck_annotate_variable(shinfo->destructor_arg); return skb; } EXPORT_SYMBOL(build_skb); struct netdev_alloc_cache { struct page_frag frag; /* we maintain a pagecount bias, so that we dont dirty cache line * containing page->_count every time we allocate a fragment. */ unsigned int pagecnt_bias; }; static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache); static DEFINE_PER_CPU(struct netdev_alloc_cache, napi_alloc_cache); static struct page *__page_frag_refill(struct netdev_alloc_cache *nc, gfp_t gfp_mask) { const unsigned int order = NETDEV_FRAG_PAGE_MAX_ORDER; struct page *page = NULL; gfp_t gfp = gfp_mask; if (order) { gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); nc->frag.size = PAGE_SIZE << (page ? order : 0); } if (unlikely(!page)) page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); nc->frag.page = page; return page; } static void *__alloc_page_frag(struct netdev_alloc_cache __percpu *cache, unsigned int fragsz, gfp_t gfp_mask) { struct netdev_alloc_cache *nc = this_cpu_ptr(cache); struct page *page = nc->frag.page; unsigned int size; int offset; if (unlikely(!page)) { refill: page = __page_frag_refill(nc, gfp_mask); if (!page) return NULL; /* if size can vary use frag.size else just use PAGE_SIZE */ size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE; /* Even if we own the page, we do not use atomic_set(). * This would break get_page_unless_zero() users. */ atomic_add(size - 1, &page->_count); /* reset page count bias and offset to start of new frag */ nc->pagecnt_bias = size; nc->frag.offset = size; } offset = nc->frag.offset - fragsz; if (unlikely(offset < 0)) { if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count)) goto refill; /* if size can vary use frag.size else just use PAGE_SIZE */ size = NETDEV_FRAG_PAGE_MAX_ORDER ? nc->frag.size : PAGE_SIZE; /* OK, page count is 0, we can safely set it */ atomic_set(&page->_count, size); /* reset page count bias and offset to start of new frag */ nc->pagecnt_bias = size; offset = size - fragsz; } nc->pagecnt_bias--; nc->frag.offset = offset; return page_address(page) + offset; } static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) { unsigned long flags; void *data; local_irq_save(flags); data = __alloc_page_frag(&netdev_alloc_cache, fragsz, gfp_mask); local_irq_restore(flags); return data; } /** * netdev_alloc_frag - allocate a page fragment * @fragsz: fragment size * * Allocates a frag from a page for receive buffer. * Uses GFP_ATOMIC allocations. */ void *netdev_alloc_frag(unsigned int fragsz) { return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); } EXPORT_SYMBOL(netdev_alloc_frag); static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) { return __alloc_page_frag(&napi_alloc_cache, fragsz, gfp_mask); } void *napi_alloc_frag(unsigned int fragsz) { return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); } EXPORT_SYMBOL(napi_alloc_frag); /** * __alloc_rx_skb - allocate an skbuff for rx * @length: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb * @flags: If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for * allocations in case we have to fallback to __alloc_skb() * If SKB_ALLOC_NAPI is set, page fragment will be allocated * from napi_cache instead of netdev_cache. * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. */ static struct sk_buff *__alloc_rx_skb(unsigned int length, gfp_t gfp_mask, int flags) { struct sk_buff *skb = NULL; unsigned int fragsz = SKB_DATA_ALIGN(length) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) { void *data; if (sk_memalloc_socks()) gfp_mask |= __GFP_MEMALLOC; data = (flags & SKB_ALLOC_NAPI) ? __napi_alloc_frag(fragsz, gfp_mask) : __netdev_alloc_frag(fragsz, gfp_mask); if (likely(data)) { skb = build_skb(data, fragsz); if (unlikely(!skb)) put_page(virt_to_head_page(data)); } } else { skb = __alloc_skb(length, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); } return skb; } /** * __netdev_alloc_skb - allocate an skbuff for rx on a specific device * @dev: network device to receive on * @length: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has NET_SKB_PAD headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. */ struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, gfp_t gfp_mask) { struct sk_buff *skb; length += NET_SKB_PAD; skb = __alloc_rx_skb(length, gfp_mask, 0); if (likely(skb)) { skb_reserve(skb, NET_SKB_PAD); skb->dev = dev; } return skb; } EXPORT_SYMBOL(__netdev_alloc_skb); /** * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance * @napi: napi instance this buffer was allocated for * @length: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages * * Allocate a new sk_buff for use in NAPI receive. This buffer will * attempt to allocate the head from a special reserved region used * only for NAPI Rx allocation. By doing this we can save several * CPU cycles by avoiding having to disable and re-enable IRQs. * * %NULL is returned if there is no free memory. */ struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int length, gfp_t gfp_mask) { struct sk_buff *skb; length += NET_SKB_PAD + NET_IP_ALIGN; skb = __alloc_rx_skb(length, gfp_mask, SKB_ALLOC_NAPI); if (likely(skb)) { skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); skb->dev = napi->dev; } return skb; } EXPORT_SYMBOL(__napi_alloc_skb); void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize) { skb_fill_page_desc(skb, i, page, off, size); skb->len += size; skb->data_len += size; skb->truesize += truesize; } EXPORT_SYMBOL(skb_add_rx_frag); void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, unsigned int truesize) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; skb_frag_size_add(frag, size); skb->len += size; skb->data_len += size; skb->truesize += truesize; } EXPORT_SYMBOL(skb_coalesce_rx_frag); static void skb_drop_list(struct sk_buff **listp) { kfree_skb_list(*listp); *listp = NULL; } static inline void skb_drop_fraglist(struct sk_buff *skb) { skb_drop_list(&skb_shinfo(skb)->frag_list); } static void skb_clone_fraglist(struct sk_buff *skb) { struct sk_buff *list; skb_walk_frags(skb, list) skb_get(list); } static void skb_free_head(struct sk_buff *skb) { if (skb->head_frag) put_page(virt_to_head_page(skb->head)); else kfree(skb->head); } static void skb_release_data(struct sk_buff *skb) { struct skb_shared_info *shinfo = skb_shinfo(skb); int i; if (skb->cloned && atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, &shinfo->dataref)) return; for (i = 0; i < shinfo->nr_frags; i++) __skb_frag_unref(&shinfo->frags[i]); /* * If skb buf is from userspace, we need to notify the caller * the lower device DMA has done; */ if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) { struct ubuf_info *uarg; uarg = shinfo->destructor_arg; if (uarg->callback) uarg->callback(uarg, true); } if (shinfo->frag_list) kfree_skb_list(shinfo->frag_list); skb_free_head(skb); } /* * Free an skbuff by memory without cleaning the state. */ static void kfree_skbmem(struct sk_buff *skb) { struct sk_buff_fclones *fclones; switch (skb->fclone) { case SKB_FCLONE_UNAVAILABLE: kmem_cache_free(skbuff_head_cache, skb); return; case SKB_FCLONE_ORIG: fclones = container_of(skb, struct sk_buff_fclones, skb1); /* We usually free the clone (TX completion) before original skb * This test would have no chance to be true for the clone, * while here, branch prediction will be good. */ if (atomic_read(&fclones->fclone_ref) == 1) goto fastpath; break; default: /* SKB_FCLONE_CLONE */ fclones = container_of(skb, struct sk_buff_fclones, skb2); break; } if (!atomic_dec_and_test(&fclones->fclone_ref)) return; fastpath: kmem_cache_free(skbuff_fclone_cache, fclones); } static void skb_release_head_state(struct sk_buff *skb) { skb_dst_drop(skb); #ifdef CONFIG_XFRM secpath_put(skb->sp); #endif if (skb->destructor) { WARN_ON(in_irq()); skb->destructor(skb); } #if IS_ENABLED(CONFIG_NF_CONNTRACK) nf_conntrack_put(skb->nfct); #endif #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) nf_bridge_put(skb->nf_bridge); #endif } /* Free everything but the sk_buff shell. */ static void skb_release_all(struct sk_buff *skb) { skb_release_head_state(skb); if (likely(skb->head)) skb_release_data(skb); } /** * __kfree_skb - private function * @skb: buffer * * Free an sk_buff. Release anything attached to the buffer. * Clean the state. This is an internal helper function. Users should * always call kfree_skb */ void __kfree_skb(struct sk_buff *skb) { skb_release_all(skb); kfree_skbmem(skb); } EXPORT_SYMBOL(__kfree_skb); /** * kfree_skb - free an sk_buff * @skb: buffer to free * * Drop a reference to the buffer and free it if the usage count has * hit zero. */ void kfree_skb(struct sk_buff *skb) { if (unlikely(!skb)) return; if (likely(atomic_read(&skb->users) == 1)) smp_rmb(); else if (likely(!atomic_dec_and_test(&skb->users))) return; trace_kfree_skb(skb, __builtin_return_address(0)); __kfree_skb(skb); } EXPORT_SYMBOL(kfree_skb); void kfree_skb_list(struct sk_buff *segs) { while (segs) { struct sk_buff *next = segs->next; kfree_skb(segs); segs = next; } } EXPORT_SYMBOL(kfree_skb_list); /** * skb_tx_error - report an sk_buff xmit error * @skb: buffer that triggered an error * * Report xmit error if a device callback is tracking this skb. * skb must be freed afterwards. */ void skb_tx_error(struct sk_buff *skb) { if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { struct ubuf_info *uarg; uarg = skb_shinfo(skb)->destructor_arg; if (uarg->callback) uarg->callback(uarg, false); skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; } } EXPORT_SYMBOL(skb_tx_error); /** * consume_skb - free an skbuff * @skb: buffer to free * * Drop a ref to the buffer and free it if the usage count has hit zero * Functions identically to kfree_skb, but kfree_skb assumes that the frame * is being dropped after a failure and notes that */ void consume_skb(struct sk_buff *skb) { if (unlikely(!skb)) return; if (likely(atomic_read(&skb->users) == 1)) smp_rmb(); else if (likely(!atomic_dec_and_test(&skb->users))) return; trace_consume_skb(skb); __kfree_skb(skb); } EXPORT_SYMBOL(consume_skb); /* Make sure a field is enclosed inside headers_start/headers_end section */ #define CHECK_SKB_FIELD(field) \ BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ offsetof(struct sk_buff, headers_start)); \ BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ offsetof(struct sk_buff, headers_end)); \ static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) { new->tstamp = old->tstamp; /* We do not copy old->sk */ new->dev = old->dev; memcpy(new->cb, old->cb, sizeof(old->cb)); skb_dst_copy(new, old); #ifdef CONFIG_XFRM new->sp = secpath_get(old->sp); #endif __nf_copy(new, old, false); /* Note : this field could be in headers_start/headers_end section * It is not yet because we do not want to have a 16 bit hole */ new->queue_mapping = old->queue_mapping; memcpy(&new->headers_start, &old->headers_start, offsetof(struct sk_buff, headers_end) - offsetof(struct sk_buff, headers_start)); CHECK_SKB_FIELD(protocol); CHECK_SKB_FIELD(csum); CHECK_SKB_FIELD(hash); CHECK_SKB_FIELD(priority); CHECK_SKB_FIELD(skb_iif); CHECK_SKB_FIELD(vlan_proto); CHECK_SKB_FIELD(vlan_tci); CHECK_SKB_FIELD(transport_header); CHECK_SKB_FIELD(network_header); CHECK_SKB_FIELD(mac_header); CHECK_SKB_FIELD(inner_protocol); CHECK_SKB_FIELD(inner_transport_header); CHECK_SKB_FIELD(inner_network_header); CHECK_SKB_FIELD(inner_mac_header); CHECK_SKB_FIELD(mark); #ifdef CONFIG_NETWORK_SECMARK CHECK_SKB_FIELD(secmark); #endif #ifdef CONFIG_NET_RX_BUSY_POLL CHECK_SKB_FIELD(napi_id); #endif #ifdef CONFIG_XPS CHECK_SKB_FIELD(sender_cpu); #endif #ifdef CONFIG_NET_SCHED CHECK_SKB_FIELD(tc_index); #ifdef CONFIG_NET_CLS_ACT CHECK_SKB_FIELD(tc_verd); #endif #endif } /* * You should not add any new code to this function. Add it to * __copy_skb_header above instead. */ static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) { #define C(x) n->x = skb->x n->next = n->prev = NULL; n->sk = NULL; __copy_skb_header(n, skb); C(len); C(data_len); C(mac_len); n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; n->cloned = 1; n->nohdr = 0; n->destructor = NULL; C(tail); C(end); C(head); C(head_frag); C(data); C(truesize); atomic_set(&n->users, 1); atomic_inc(&(skb_shinfo(skb)->dataref)); skb->cloned = 1; return n; #undef C } /** * skb_morph - morph one skb into another * @dst: the skb to receive the contents * @src: the skb to supply the contents * * This is identical to skb_clone except that the target skb is * supplied by the user. * * The target skb is returned upon exit. */ struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) { skb_release_all(dst); return __skb_clone(dst, src); } EXPORT_SYMBOL_GPL(skb_morph); /** * skb_copy_ubufs - copy userspace skb frags buffers to kernel * @skb: the skb to modify * @gfp_mask: allocation priority * * This must be called on SKBTX_DEV_ZEROCOPY skb. * It will copy all frags into kernel and drop the reference * to userspace pages. * * If this function is called from an interrupt gfp_mask() must be * %GFP_ATOMIC. * * Returns 0 on success or a negative error code on failure * to allocate kernel memory to copy to. */ int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) { int i; int num_frags = skb_shinfo(skb)->nr_frags; struct page *page, *head = NULL; struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; for (i = 0; i < num_frags; i++) { u8 *vaddr; skb_frag_t *f = &skb_shinfo(skb)->frags[i]; page = alloc_page(gfp_mask); if (!page) { while (head) { struct page *next = (struct page *)page_private(head); put_page(head); head = next; } return -ENOMEM; } vaddr = kmap_atomic(skb_frag_page(f)); memcpy(page_address(page), vaddr + f->page_offset, skb_frag_size(f)); kunmap_atomic(vaddr); set_page_private(page, (unsigned long)head); head = page; } /* skb frags release userspace buffers */ for (i = 0; i < num_frags; i++) skb_frag_unref(skb, i); uarg->callback(uarg, false); /* skb frags point to kernel buffers */ for (i = num_frags - 1; i >= 0; i--) { __skb_fill_page_desc(skb, i, head, 0, skb_shinfo(skb)->frags[i].size); head = (struct page *)page_private(head); } skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; return 0; } EXPORT_SYMBOL_GPL(skb_copy_ubufs); /** * skb_clone - duplicate an sk_buff * @skb: buffer to clone * @gfp_mask: allocation priority * * Duplicate an &sk_buff. The new one is not owned by a socket. Both * copies share the same packet data but not structure. The new * buffer has a reference count of 1. If the allocation fails the * function returns %NULL otherwise the new buffer is returned. * * If this function is called from an interrupt gfp_mask() must be * %GFP_ATOMIC. */ struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff_fclones *fclones = container_of(skb, struct sk_buff_fclones, skb1); struct sk_buff *n; if (skb_orphan_frags(skb, gfp_mask)) return NULL; if (skb->fclone == SKB_FCLONE_ORIG && atomic_read(&fclones->fclone_ref) == 1) { n = &fclones->skb2; atomic_set(&fclones->fclone_ref, 2); } else { if (skb_pfmemalloc(skb)) gfp_mask |= __GFP_MEMALLOC; n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); if (!n) return NULL; kmemcheck_annotate_bitfield(n, flags1); n->fclone = SKB_FCLONE_UNAVAILABLE; } return __skb_clone(n, skb); } EXPORT_SYMBOL(skb_clone); static void skb_headers_offset_update(struct sk_buff *skb, int off) { /* Only adjust this if it actually is csum_start rather than csum */ if (skb->ip_summed == CHECKSUM_PARTIAL) skb->csum_start += off; /* {transport,network,mac}_header and tail are relative to skb->head */ skb->transport_header += off; skb->network_header += off; if (skb_mac_header_was_set(skb)) skb->mac_header += off; skb->inner_transport_header += off; skb->inner_network_header += off; skb->inner_mac_header += off; } static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) { __copy_skb_header(new, old); skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; } static inline int skb_alloc_rx_flag(const struct sk_buff *skb) { if (skb_pfmemalloc(skb)) return SKB_ALLOC_RX; return 0; } /** * skb_copy - create private copy of an sk_buff * @skb: buffer to copy * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and its data. This is used when the * caller wishes to modify the data and needs a private copy of the * data to alter. Returns %NULL on failure or the pointer to the buffer * on success. The returned buffer has a reference count of 1. * * As by-product this function converts non-linear &sk_buff to linear * one, so that &sk_buff becomes completely private and caller is allowed * to modify all the data of returned buffer. This means that this * function is not recommended for use in circumstances when only * header is going to be modified. Use pskb_copy() instead. */ struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) { int headerlen = skb_headroom(skb); unsigned int size = skb_end_offset(skb) + skb->data_len; struct sk_buff *n = __alloc_skb(size, gfp_mask, skb_alloc_rx_flag(skb), NUMA_NO_NODE); if (!n) return NULL; /* Set the data pointer */ skb_reserve(n, headerlen); /* Set the tail pointer and length */ skb_put(n, skb->len); if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) BUG(); copy_skb_header(n, skb); return n; } EXPORT_SYMBOL(skb_copy); /** * __pskb_copy_fclone - create copy of an sk_buff with private head. * @skb: buffer to copy * @headroom: headroom of new skb * @gfp_mask: allocation priority * @fclone: if true allocate the copy of the skb from the fclone * cache instead of the head cache; it is recommended to set this * to true for the cases where the copy will likely be cloned * * Make a copy of both an &sk_buff and part of its data, located * in header. Fragmented data remain shared. This is used when * the caller wishes to modify only header of &sk_buff and needs * private copy of the header to alter. Returns %NULL on failure * or the pointer to the buffer on success. * The returned buffer has a reference count of 1. */ struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, gfp_t gfp_mask, bool fclone) { unsigned int size = skb_headlen(skb) + headroom; int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); if (!n) goto out; /* Set the data pointer */ skb_reserve(n, headroom); /* Set the tail pointer and length */ skb_put(n, skb_headlen(skb)); /* Copy the bytes */ skb_copy_from_linear_data(skb, n->data, n->len); n->truesize += skb->data_len; n->data_len = skb->data_len; n->len = skb->len; if (skb_shinfo(skb)->nr_frags) { int i; if (skb_orphan_frags(skb, gfp_mask)) { kfree_skb(n); n = NULL; goto out; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; skb_frag_ref(skb, i); } skb_shinfo(n)->nr_frags = i; } if (skb_has_frag_list(skb)) { skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; skb_clone_fraglist(n); } copy_skb_header(n, skb); out: return n; } EXPORT_SYMBOL(__pskb_copy_fclone); /** * pskb_expand_head - reallocate header of &sk_buff * @skb: buffer to reallocate * @nhead: room to add at head * @ntail: room to add at tail * @gfp_mask: allocation priority * * Expands (or creates identical copy, if @nhead and @ntail are zero) * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have * reference count of 1. Returns zero in the case of success or error, * if expansion failed. In the last case, &sk_buff is not changed. * * All the pointers pointing into skb header may change and must be * reloaded after call to this function. */ int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask) { int i; u8 *data; int size = nhead + skb_end_offset(skb) + ntail; long off; BUG_ON(nhead < 0); if (skb_shared(skb)) BUG(); size = SKB_DATA_ALIGN(size); if (skb_pfmemalloc(skb)) gfp_mask |= __GFP_MEMALLOC; data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), gfp_mask, NUMA_NO_NODE, NULL); if (!data) goto nodata; size = SKB_WITH_OVERHEAD(ksize(data)); /* Copy only real data... and, alas, header. This should be * optimized for the cases when header is void. */ memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); memcpy((struct skb_shared_info *)(data + size), skb_shinfo(skb), offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); /* * if shinfo is shared we must drop the old head gracefully, but if it * is not we can just drop the old head and let the existing refcount * be since all we did is relocate the values */ if (skb_cloned(skb)) { /* copy this zero copy skb frags */ if (skb_orphan_frags(skb, gfp_mask)) goto nofrags; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) skb_frag_ref(skb, i); if (skb_has_frag_list(skb)) skb_clone_fraglist(skb); skb_release_data(skb); } else { skb_free_head(skb); } off = (data + nhead) - skb->head; skb->head = data; skb->head_frag = 0; skb->data += off; #ifdef NET_SKBUFF_DATA_USES_OFFSET skb->end = size; off = nhead; #else skb->end = skb->head + size; #endif skb->tail += off; skb_headers_offset_update(skb, nhead); skb->cloned = 0; skb->hdr_len = 0; skb->nohdr = 0; atomic_set(&skb_shinfo(skb)->dataref, 1); return 0; nofrags: kfree(data); nodata: return -ENOMEM; } EXPORT_SYMBOL(pskb_expand_head); /* Make private copy of skb with writable head and some headroom */ struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) { struct sk_buff *skb2; int delta = headroom - skb_headroom(skb); if (delta <= 0) skb2 = pskb_copy(skb, GFP_ATOMIC); else { skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, GFP_ATOMIC)) { kfree_skb(skb2); skb2 = NULL; } } return skb2; } EXPORT_SYMBOL(skb_realloc_headroom); /** * skb_copy_expand - copy and expand sk_buff * @skb: buffer to copy * @newheadroom: new free bytes at head * @newtailroom: new free bytes at tail * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and its data and while doing so * allocate additional space. * * This is used when the caller wishes to modify the data and needs a * private copy of the data to alter as well as more space for new fields. * Returns %NULL on failure or the pointer to the buffer * on success. The returned buffer has a reference count of 1. * * You must pass %GFP_ATOMIC as the allocation priority if this function * is called from an interrupt. */ struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t gfp_mask) { /* * Allocate the copy buffer */ struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, gfp_mask, skb_alloc_rx_flag(skb), NUMA_NO_NODE); int oldheadroom = skb_headroom(skb); int head_copy_len, head_copy_off; if (!n) return NULL; skb_reserve(n, newheadroom); /* Set the tail pointer and length */ skb_put(n, skb->len); head_copy_len = oldheadroom; head_copy_off = 0; if (newheadroom <= head_copy_len) head_copy_len = newheadroom; else head_copy_off = newheadroom - head_copy_len; /* Copy the linear header and data. */ if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, skb->len + head_copy_len)) BUG(); copy_skb_header(n, skb); skb_headers_offset_update(n, newheadroom - oldheadroom); return n; } EXPORT_SYMBOL(skb_copy_expand); /** * skb_pad - zero pad the tail of an skb * @skb: buffer to pad * @pad: space to pad * * Ensure that a buffer is followed by a padding area that is zero * filled. Used by network drivers which may DMA or transfer data * beyond the buffer end onto the wire. * * May return error in out of memory cases. The skb is freed on error. */ int skb_pad(struct sk_buff *skb, int pad) { int err; int ntail; /* If the skbuff is non linear tailroom is always zero.. */ if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { memset(skb->data+skb->len, 0, pad); return 0; } ntail = skb->data_len + pad - (skb->end - skb->tail); if (likely(skb_cloned(skb) || ntail > 0)) { err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); if (unlikely(err)) goto free_skb; } /* FIXME: The use of this function with non-linear skb's really needs * to be audited. */ err = skb_linearize(skb); if (unlikely(err)) goto free_skb; memset(skb->data + skb->len, 0, pad); return 0; free_skb: kfree_skb(skb); return err; } EXPORT_SYMBOL(skb_pad); /** * pskb_put - add data to the tail of a potentially fragmented buffer * @skb: start of the buffer to use * @tail: tail fragment of the buffer to use * @len: amount of data to add * * This function extends the used data area of the potentially * fragmented buffer. @tail must be the last fragment of @skb -- or * @skb itself. If this would exceed the total buffer size the kernel * will panic. A pointer to the first byte of the extra data is * returned. */ unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) { if (tail != skb) { skb->data_len += len; skb->len += len; } return skb_put(tail, len); } EXPORT_SYMBOL_GPL(pskb_put); /** * skb_put - add data to a buffer * @skb: buffer to use * @len: amount of data to add * * This function extends the used data area of the buffer. If this would * exceed the total buffer size the kernel will panic. A pointer to the * first byte of the extra data is returned. */ unsigned char *skb_put(struct sk_buff *skb, unsigned int len) { unsigned char *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; if (unlikely(skb->tail > skb->end)) skb_over_panic(skb, len, __builtin_return_address(0)); return tmp; } EXPORT_SYMBOL(skb_put); /** * skb_push - add data to the start of a buffer * @skb: buffer to use * @len: amount of data to add * * This function extends the used data area of the buffer at the buffer * start. If this would exceed the total buffer headroom the kernel will * panic. A pointer to the first byte of the extra data is returned. */ unsigned char *skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; if (unlikely(skb->datahead)) skb_under_panic(skb, len, __builtin_return_address(0)); return skb->data; } EXPORT_SYMBOL(skb_push); /** * skb_pull - remove data from the start of a buffer * @skb: buffer to use * @len: amount of data to remove * * This function removes data from the start of a buffer, returning * the memory to the headroom. A pointer to the next data in the buffer * is returned. Once the data has been pulled future pushes will overwrite * the old data. */ unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) { return skb_pull_inline(skb, len); } EXPORT_SYMBOL(skb_pull); /** * skb_trim - remove end from a buffer * @skb: buffer to alter * @len: new length * * Cut the length of a buffer down by removing data from the tail. If * the buffer is already under the length specified it is not modified. * The skb must be linear. */ void skb_trim(struct sk_buff *skb, unsigned int len) { if (skb->len > len) __skb_trim(skb, len); } EXPORT_SYMBOL(skb_trim); /* Trims skb to length len. It can change skb pointers. */ int ___pskb_trim(struct sk_buff *skb, unsigned int len) { struct sk_buff **fragp; struct sk_buff *frag; int offset = skb_headlen(skb); int nfrags = skb_shinfo(skb)->nr_frags; int i; int err; if (skb_cloned(skb) && unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) return err; i = 0; if (offset >= len) goto drop_pages; for (; i < nfrags; i++) { int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); if (end < len) { offset = end; continue; } skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); drop_pages: skb_shinfo(skb)->nr_frags = i; for (; i < nfrags; i++) skb_frag_unref(skb, i); if (skb_has_frag_list(skb)) skb_drop_fraglist(skb); goto done; } for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); fragp = &frag->next) { int end = offset + frag->len; if (skb_shared(frag)) { struct sk_buff *nfrag; nfrag = skb_clone(frag, GFP_ATOMIC); if (unlikely(!nfrag)) return -ENOMEM; nfrag->next = frag->next; consume_skb(frag); frag = nfrag; *fragp = frag; } if (end < len) { offset = end; continue; } if (end > len && unlikely((err = pskb_trim(frag, len - offset)))) return err; if (frag->next) skb_drop_list(&frag->next); break; } done: if (len > skb_headlen(skb)) { skb->data_len -= skb->len - len; skb->len = len; } else { skb->len = len; skb->data_len = 0; skb_set_tail_pointer(skb, len); } return 0; } EXPORT_SYMBOL(___pskb_trim); /** * __pskb_pull_tail - advance tail of skb header * @skb: buffer to reallocate * @delta: number of bytes to advance tail * * The function makes a sense only on a fragmented &sk_buff, * it expands header moving its tail forward and copying necessary * data from fragmented part. * * &sk_buff MUST have reference count of 1. * * Returns %NULL (and &sk_buff does not change) if pull failed * or value of new tail of skb in the case of success. * * All the pointers pointing into skb header may change and must be * reloaded after call to this function. */ /* Moves tail of skb head forward, copying data from fragmented part, * when it is necessary. * 1. It may fail due to malloc failure. * 2. It may change skb pointers. * * It is pretty complicated. Luckily, it is called only in exceptional cases. */ unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) { /* If skb has not enough free space at tail, get new one * plus 128 bytes for future expansions. If we have enough * room at tail, reallocate without expansion only if skb is cloned. */ int i, k, eat = (skb->tail + delta) - skb->end; if (eat > 0 || skb_cloned(skb)) { if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, GFP_ATOMIC)) return NULL; } if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) BUG(); /* Optimization: no fragments, no reasons to preestimate * size of pulled pages. Superb. */ if (!skb_has_frag_list(skb)) goto pull_pages; /* Estimate size of pulled pages. */ eat = delta; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (size >= eat) goto pull_pages; eat -= size; } /* If we need update frag list, we are in troubles. * Certainly, it possible to add an offset to skb data, * but taking into account that pulling is expected to * be very rare operation, it is worth to fight against * further bloating skb head and crucify ourselves here instead. * Pure masohism, indeed. 8)8) */ if (eat) { struct sk_buff *list = skb_shinfo(skb)->frag_list; struct sk_buff *clone = NULL; struct sk_buff *insp = NULL; do { BUG_ON(!list); if (list->len <= eat) { /* Eaten as whole. */ eat -= list->len; list = list->next; insp = list; } else { /* Eaten partially. */ if (skb_shared(list)) { /* Sucks! We need to fork list. :-( */ clone = skb_clone(list, GFP_ATOMIC); if (!clone) return NULL; insp = list->next; list = clone; } else { /* This may be pulled without * problems. */ insp = list; } if (!pskb_pull(list, eat)) { kfree_skb(clone); return NULL; } break; } } while (eat); /* Free pulled out fragments. */ while ((list = skb_shinfo(skb)->frag_list) != insp) { skb_shinfo(skb)->frag_list = list->next; kfree_skb(list); } /* And insert new clone at head. */ if (clone) { clone->next = list; skb_shinfo(skb)->frag_list = clone; } } /* Success! Now we may commit changes to skb data. */ pull_pages: eat = delta; k = 0; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (size <= eat) { skb_frag_unref(skb, i); eat -= size; } else { skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; if (eat) { skb_shinfo(skb)->frags[k].page_offset += eat; skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); eat = 0; } k++; } } skb_shinfo(skb)->nr_frags = k; skb->tail += delta; skb->data_len -= delta; return skb_tail_pointer(skb); } EXPORT_SYMBOL(__pskb_pull_tail); /** * skb_copy_bits - copy bits from skb to kernel buffer * @skb: source skb * @offset: offset in source * @to: destination buffer * @len: number of bytes to copy * * Copy the specified number of bytes from the source skb to the * destination buffer. * * CAUTION ! : * If its prototype is ever changed, * check arch/{*}/net/{*}.S files, * since it is called from BPF assembly code. */ int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) { int start = skb_headlen(skb); struct sk_buff *frag_iter; int i, copy; if (offset > (int)skb->len - len) goto fault; /* Copy header. */ if ((copy = start - offset) > 0) { if (copy > len) copy = len; skb_copy_from_linear_data_offset(skb, offset, to, copy); if ((len -= copy) == 0) return 0; offset += copy; to += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; skb_frag_t *f = &skb_shinfo(skb)->frags[i]; WARN_ON(start > offset + len); end = start + skb_frag_size(f); if ((copy = end - offset) > 0) { u8 *vaddr; if (copy > len) copy = len; vaddr = kmap_atomic(skb_frag_page(f)); memcpy(to, vaddr + f->page_offset + offset - start, copy); kunmap_atomic(vaddr); if ((len -= copy) == 0) return 0; offset += copy; to += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; if (skb_copy_bits(frag_iter, offset - start, to, copy)) goto fault; if ((len -= copy) == 0) return 0; offset += copy; to += copy; } start = end; } if (!len) return 0; fault: return -EFAULT; } EXPORT_SYMBOL(skb_copy_bits); /* * Callback from splice_to_pipe(), if we need to release some pages * at the end of the spd in case we error'ed out in filling the pipe. */ static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) { put_page(spd->pages[i]); } static struct page *linear_to_page(struct page *page, unsigned int *len, unsigned int *offset, struct sock *sk) { struct page_frag *pfrag = sk_page_frag(sk); if (!sk_page_frag_refill(sk, pfrag)) return NULL; *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); memcpy(page_address(pfrag->page) + pfrag->offset, page_address(page) + *offset, *len); *offset = pfrag->offset; pfrag->offset += *len; return pfrag->page; } static bool spd_can_coalesce(const struct splice_pipe_desc *spd, struct page *page, unsigned int offset) { return spd->nr_pages && spd->pages[spd->nr_pages - 1] == page && (spd->partial[spd->nr_pages - 1].offset + spd->partial[spd->nr_pages - 1].len == offset); } /* * Fill page/offset/length into spd, if it can hold more pages. */ static bool spd_fill_page(struct splice_pipe_desc *spd, struct pipe_inode_info *pipe, struct page *page, unsigned int *len, unsigned int offset, bool linear, struct sock *sk) { if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) return true; if (linear) { page = linear_to_page(page, len, &offset, sk); if (!page) return true; } if (spd_can_coalesce(spd, page, offset)) { spd->partial[spd->nr_pages - 1].len += *len; return false; } get_page(page); spd->pages[spd->nr_pages] = page; spd->partial[spd->nr_pages].len = *len; spd->partial[spd->nr_pages].offset = offset; spd->nr_pages++; return false; } static bool __splice_segment(struct page *page, unsigned int poff, unsigned int plen, unsigned int *off, unsigned int *len, struct splice_pipe_desc *spd, bool linear, struct sock *sk, struct pipe_inode_info *pipe) { if (!*len) return true; /* skip this segment if already processed */ if (*off >= plen) { *off -= plen; return false; } /* ignore any bits we already processed */ poff += *off; plen -= *off; *off = 0; do { unsigned int flen = min(*len, plen); if (spd_fill_page(spd, pipe, page, &flen, poff, linear, sk)) return true; poff += flen; plen -= flen; *len -= flen; } while (*len && plen); return false; } /* * Map linear and fragment data from the skb to spd. It reports true if the * pipe is full or if we already spliced the requested length. */ static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, unsigned int *offset, unsigned int *len, struct splice_pipe_desc *spd, struct sock *sk) { int seg; /* map the linear part : * If skb->head_frag is set, this 'linear' part is backed by a * fragment, and if the head is not shared with any clones then * we can avoid a copy since we own the head portion of this page. */ if (__splice_segment(virt_to_page(skb->data), (unsigned long) skb->data & (PAGE_SIZE - 1), skb_headlen(skb), offset, len, spd, skb_head_is_locked(skb), sk, pipe)) return true; /* * then map the fragments */ for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; if (__splice_segment(skb_frag_page(f), f->page_offset, skb_frag_size(f), offset, len, spd, false, sk, pipe)) return true; } return false; } /* * Map data from the skb to a pipe. Should handle both the linear part, * the fragments, and the frag list. It does NOT handle frag lists within * the frag list, if such a thing exists. We'd probably need to recurse to * handle that cleanly. */ int skb_splice_bits(struct sk_buff *skb, unsigned int offset, struct pipe_inode_info *pipe, unsigned int tlen, unsigned int flags) { struct partial_page partial[MAX_SKB_FRAGS]; struct page *pages[MAX_SKB_FRAGS]; struct splice_pipe_desc spd = { .pages = pages, .partial = partial, .nr_pages_max = MAX_SKB_FRAGS, .flags = flags, .ops = &nosteal_pipe_buf_ops, .spd_release = sock_spd_release, }; struct sk_buff *frag_iter; struct sock *sk = skb->sk; int ret = 0; /* * __skb_splice_bits() only fails if the output has no room left, * so no point in going over the frag_list for the error case. */ if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk)) goto done; else if (!tlen) goto done; /* * now see if we have a frag_list to map */ skb_walk_frags(skb, frag_iter) { if (!tlen) break; if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk)) break; } done: if (spd.nr_pages) { /* * Drop the socket lock, otherwise we have reverse * locking dependencies between sk_lock and i_mutex * here as compared to sendfile(). We enter here * with the socket lock held, and splice_to_pipe() will * grab the pipe inode lock. For sendfile() emulation, * we call into ->sendpage() with the i_mutex lock held * and networking will grab the socket lock. */ release_sock(sk); ret = splice_to_pipe(pipe, &spd); lock_sock(sk); } return ret; } /** * skb_store_bits - store bits from kernel buffer to skb * @skb: destination buffer * @offset: offset in destination * @from: source buffer * @len: number of bytes to copy * * Copy the specified number of bytes from the source buffer to the * destination skb. This function handles all the messy bits of * traversing fragment lists and such. */ int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) { int start = skb_headlen(skb); struct sk_buff *frag_iter; int i, copy; if (offset > (int)skb->len - len) goto fault; if ((copy = start - offset) > 0) { if (copy > len) copy = len; skb_copy_to_linear_data_offset(skb, offset, from, copy); if ((len -= copy) == 0) return 0; offset += copy; from += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; int end; WARN_ON(start > offset + len); end = start + skb_frag_size(frag); if ((copy = end - offset) > 0) { u8 *vaddr; if (copy > len) copy = len; vaddr = kmap_atomic(skb_frag_page(frag)); memcpy(vaddr + frag->page_offset + offset - start, from, copy); kunmap_atomic(vaddr); if ((len -= copy) == 0) return 0; offset += copy; from += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; if (skb_store_bits(frag_iter, offset - start, from, copy)) goto fault; if ((len -= copy) == 0) return 0; offset += copy; from += copy; } start = end; } if (!len) return 0; fault: return -EFAULT; } EXPORT_SYMBOL(skb_store_bits); /* Checksum skb data. */ __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum, const struct skb_checksum_ops *ops) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int pos = 0; /* Checksum header. */ if (copy > 0) { if (copy > len) copy = len; csum = ops->update(skb->data + offset, copy, csum); if ((len -= copy) == 0) return csum; offset += copy; pos = copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; WARN_ON(start > offset + len); end = start + skb_frag_size(frag); if ((copy = end - offset) > 0) { __wsum csum2; u8 *vaddr; if (copy > len) copy = len; vaddr = kmap_atomic(skb_frag_page(frag)); csum2 = ops->update(vaddr + frag->page_offset + offset - start, copy, 0); kunmap_atomic(vaddr); csum = ops->combine(csum, csum2, pos, copy); if (!(len -= copy)) return csum; offset += copy; pos += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { __wsum csum2; if (copy > len) copy = len; csum2 = __skb_checksum(frag_iter, offset - start, copy, 0, ops); csum = ops->combine(csum, csum2, pos, copy); if ((len -= copy) == 0) return csum; offset += copy; pos += copy; } start = end; } BUG_ON(len); return csum; } EXPORT_SYMBOL(__skb_checksum); __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) { const struct skb_checksum_ops ops = { .update = csum_partial_ext, .combine = csum_block_add_ext, }; return __skb_checksum(skb, offset, len, csum, &ops); } EXPORT_SYMBOL(skb_checksum); /* Both of above in one bottle. */ __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len, __wsum csum) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int pos = 0; /* Copy header. */ if (copy > 0) { if (copy > len) copy = len; csum = csum_partial_copy_nocheck(skb->data + offset, to, copy, csum); if ((len -= copy) == 0) return csum; offset += copy; to += copy; pos = copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); if ((copy = end - offset) > 0) { __wsum csum2; u8 *vaddr; skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (copy > len) copy = len; vaddr = kmap_atomic(skb_frag_page(frag)); csum2 = csum_partial_copy_nocheck(vaddr + frag->page_offset + offset - start, to, copy, 0); kunmap_atomic(vaddr); csum = csum_block_add(csum, csum2, pos); if (!(len -= copy)) return csum; offset += copy; to += copy; pos += copy; } start = end; } skb_walk_frags(skb, frag_iter) { __wsum csum2; int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; csum2 = skb_copy_and_csum_bits(frag_iter, offset - start, to, copy, 0); csum = csum_block_add(csum, csum2, pos); if ((len -= copy) == 0) return csum; offset += copy; to += copy; pos += copy; } start = end; } BUG_ON(len); return csum; } EXPORT_SYMBOL(skb_copy_and_csum_bits); /** * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() * @from: source buffer * * Calculates the amount of linear headroom needed in the 'to' skb passed * into skb_zerocopy(). */ unsigned int skb_zerocopy_headlen(const struct sk_buff *from) { unsigned int hlen = 0; if (!from->head_frag || skb_headlen(from) < L1_CACHE_BYTES || skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) hlen = skb_headlen(from); if (skb_has_frag_list(from)) hlen = from->len; return hlen; } EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); /** * skb_zerocopy - Zero copy skb to skb * @to: destination buffer * @from: source buffer * @len: number of bytes to copy from source buffer * @hlen: size of linear headroom in destination buffer * * Copies up to `len` bytes from `from` to `to` by creating references * to the frags in the source buffer. * * The `hlen` as calculated by skb_zerocopy_headlen() specifies the * headroom in the `to` buffer. * * Return value: * 0: everything is OK * -ENOMEM: couldn't orphan frags of @from due to lack of memory * -EFAULT: skb_copy_bits() found some problem with skb geometry */ int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) { int i, j = 0; int plen = 0; /* length of skb->head fragment */ int ret; struct page *page; unsigned int offset; BUG_ON(!from->head_frag && !hlen); /* dont bother with small payloads */ if (len <= skb_tailroom(to)) return skb_copy_bits(from, 0, skb_put(to, len), len); if (hlen) { ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); if (unlikely(ret)) return ret; len -= hlen; } else { plen = min_t(int, skb_headlen(from), len); if (plen) { page = virt_to_head_page(from->head); offset = from->data - (unsigned char *)page_address(page); __skb_fill_page_desc(to, 0, page, offset, plen); get_page(page); j = 1; len -= plen; } } to->truesize += len + plen; to->len += len + plen; to->data_len += len + plen; if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { skb_tx_error(from); return -ENOMEM; } for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { if (!len) break; skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); len -= skb_shinfo(to)->frags[j].size; skb_frag_ref(to, j); j++; } skb_shinfo(to)->nr_frags = j; return 0; } EXPORT_SYMBOL_GPL(skb_zerocopy); void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) { __wsum csum; long csstart; if (skb->ip_summed == CHECKSUM_PARTIAL) csstart = skb_checksum_start_offset(skb); else csstart = skb_headlen(skb); BUG_ON(csstart > skb_headlen(skb)); skb_copy_from_linear_data(skb, to, csstart); csum = 0; if (csstart != skb->len) csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, skb->len - csstart, 0); if (skb->ip_summed == CHECKSUM_PARTIAL) { long csstuff = csstart + skb->csum_offset; *((__sum16 *)(to + csstuff)) = csum_fold(csum); } } EXPORT_SYMBOL(skb_copy_and_csum_dev); /** * skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. The list lock is taken so the function * may be used safely with other locking list functions. The head item is * returned or %NULL if the list is empty. */ struct sk_buff *skb_dequeue(struct sk_buff_head *list) { unsigned long flags; struct sk_buff *result; spin_lock_irqsave(&list->lock, flags); result = __skb_dequeue(list); spin_unlock_irqrestore(&list->lock, flags); return result; } EXPORT_SYMBOL(skb_dequeue); /** * skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. The list lock is taken so the function * may be used safely with other locking list functions. The tail item is * returned or %NULL if the list is empty. */ struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) { unsigned long flags; struct sk_buff *result; spin_lock_irqsave(&list->lock, flags); result = __skb_dequeue_tail(list); spin_unlock_irqrestore(&list->lock, flags); return result; } EXPORT_SYMBOL(skb_dequeue_tail); /** * skb_queue_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function takes the list * lock and is atomic with respect to other list locking functions. */ void skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = skb_dequeue(list)) != NULL) kfree_skb(skb); } EXPORT_SYMBOL(skb_queue_purge); /** * skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of the list. This function takes the * list lock and can be used safely with other locking &sk_buff functions * safely. * * A buffer cannot be placed on two lists at the same time. */ void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_head(list, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_queue_head); /** * skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the tail of the list. This function takes the * list lock and can be used safely with other locking &sk_buff functions * safely. * * A buffer cannot be placed on two lists at the same time. */ void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_tail(list, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_queue_tail); /** * skb_unlink - remove a buffer from a list * @skb: buffer to remove * @list: list to use * * Remove a packet from a list. The list locks are taken and this * function is atomic with respect to other list locked calls * * You must know what list the SKB is on. */ void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_unlink(skb, list); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_unlink); /** * skb_append - append a buffer * @old: buffer to insert after * @newsk: buffer to insert * @list: list to use * * Place a packet after a given packet in a list. The list locks are taken * and this function is atomic with respect to other list locked calls. * A buffer cannot be placed on two lists at the same time. */ void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_after(list, old, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_append); /** * skb_insert - insert a buffer * @old: buffer to insert before * @newsk: buffer to insert * @list: list to use * * Place a packet before a given packet in a list. The list locks are * taken and this function is atomic with respect to other list locked * calls. * * A buffer cannot be placed on two lists at the same time. */ void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_insert(newsk, old->prev, old, list); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_insert); static inline void skb_split_inside_header(struct sk_buff *skb, struct sk_buff* skb1, const u32 len, const int pos) { int i; skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), pos - len); /* And move data appendix as is. */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; skb_shinfo(skb)->nr_frags = 0; skb1->data_len = skb->data_len; skb1->len += skb1->data_len; skb->data_len = 0; skb->len = len; skb_set_tail_pointer(skb, len); } static inline void skb_split_no_header(struct sk_buff *skb, struct sk_buff* skb1, const u32 len, int pos) { int i, k = 0; const int nfrags = skb_shinfo(skb)->nr_frags; skb_shinfo(skb)->nr_frags = 0; skb1->len = skb1->data_len = skb->len - len; skb->len = len; skb->data_len = len - pos; for (i = 0; i < nfrags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (pos + size > len) { skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; if (pos < len) { /* Split frag. * We have two variants in this case: * 1. Move all the frag to the second * part, if it is possible. F.e. * this approach is mandatory for TUX, * where splitting is expensive. * 2. Split is accurately. We make this. */ skb_frag_ref(skb, i); skb_shinfo(skb1)->frags[0].page_offset += len - pos; skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); skb_shinfo(skb)->nr_frags++; } k++; } else skb_shinfo(skb)->nr_frags++; pos += size; } skb_shinfo(skb1)->nr_frags = k; } /** * skb_split - Split fragmented skb to two parts at length len. * @skb: the buffer to split * @skb1: the buffer to receive the second part * @len: new length for skb */ void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) { int pos = skb_headlen(skb); skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; if (len < pos) /* Split line is inside header. */ skb_split_inside_header(skb, skb1, len, pos); else /* Second chunk has no header, nothing to copy. */ skb_split_no_header(skb, skb1, len, pos); } EXPORT_SYMBOL(skb_split); /* Shifting from/to a cloned skb is a no-go. * * Caller cannot keep skb_shinfo related pointers past calling here! */ static int skb_prepare_for_shift(struct sk_buff *skb) { return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } /** * skb_shift - Shifts paged data partially from skb to another * @tgt: buffer into which tail data gets added * @skb: buffer from which the paged data comes from * @shiftlen: shift up to this many bytes * * Attempts to shift up to shiftlen worth of bytes, which may be less than * the length of the skb, from skb to tgt. Returns number bytes shifted. * It's up to caller to free skb if everything was shifted. * * If @tgt runs out of frags, the whole operation is aborted. * * Skb cannot include anything else but paged data while tgt is allowed * to have non-paged data as well. * * TODO: full sized shift could be optimized but that would need * specialized skb free'er to handle frags without up-to-date nr_frags. */ int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) { int from, to, merge, todo; struct skb_frag_struct *fragfrom, *fragto; BUG_ON(shiftlen > skb->len); BUG_ON(skb_headlen(skb)); /* Would corrupt stream */ todo = shiftlen; from = 0; to = skb_shinfo(tgt)->nr_frags; fragfrom = &skb_shinfo(skb)->frags[from]; /* Actual merge is delayed until the point when we know we can * commit all, so that we don't have to undo partial changes */ if (!to || !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), fragfrom->page_offset)) { merge = -1; } else { merge = to - 1; todo -= skb_frag_size(fragfrom); if (todo < 0) { if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) return 0; /* All previous frag pointers might be stale! */ fragfrom = &skb_shinfo(skb)->frags[from]; fragto = &skb_shinfo(tgt)->frags[merge]; skb_frag_size_add(fragto, shiftlen); skb_frag_size_sub(fragfrom, shiftlen); fragfrom->page_offset += shiftlen; goto onlymerged; } from++; } /* Skip full, not-fitting skb to avoid expensive operations */ if ((shiftlen == skb->len) && (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) return 0; if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) return 0; while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { if (to == MAX_SKB_FRAGS) return 0; fragfrom = &skb_shinfo(skb)->frags[from]; fragto = &skb_shinfo(tgt)->frags[to]; if (todo >= skb_frag_size(fragfrom)) { *fragto = *fragfrom; todo -= skb_frag_size(fragfrom); from++; to++; } else { __skb_frag_ref(fragfrom); fragto->page = fragfrom->page; fragto->page_offset = fragfrom->page_offset; skb_frag_size_set(fragto, todo); fragfrom->page_offset += todo; skb_frag_size_sub(fragfrom, todo); todo = 0; to++; break; } } /* Ready to "commit" this state change to tgt */ skb_shinfo(tgt)->nr_frags = to; if (merge >= 0) { fragfrom = &skb_shinfo(skb)->frags[0]; fragto = &skb_shinfo(tgt)->frags[merge]; skb_frag_size_add(fragto, skb_frag_size(fragfrom)); __skb_frag_unref(fragfrom); } /* Reposition in the original skb */ to = 0; while (from < skb_shinfo(skb)->nr_frags) skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; skb_shinfo(skb)->nr_frags = to; BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); onlymerged: /* Most likely the tgt won't ever need its checksum anymore, skb on * the other hand might need it if it needs to be resent */ tgt->ip_summed = CHECKSUM_PARTIAL; skb->ip_summed = CHECKSUM_PARTIAL; /* Yak, is it really working this way? Some helper please? */ skb->len -= shiftlen; skb->data_len -= shiftlen; skb->truesize -= shiftlen; tgt->len += shiftlen; tgt->data_len += shiftlen; tgt->truesize += shiftlen; return shiftlen; } /** * skb_prepare_seq_read - Prepare a sequential read of skb data * @skb: the buffer to read * @from: lower offset of data to be read * @to: upper offset of data to be read * @st: state variable * * Initializes the specified state variable. Must be called before * invoking skb_seq_read() for the first time. */ void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st) { st->lower_offset = from; st->upper_offset = to; st->root_skb = st->cur_skb = skb; st->frag_idx = st->stepped_offset = 0; st->frag_data = NULL; } EXPORT_SYMBOL(skb_prepare_seq_read); /** * skb_seq_read - Sequentially read skb data * @consumed: number of bytes consumed by the caller so far * @data: destination pointer for data to be returned * @st: state variable * * Reads a block of skb data at @consumed relative to the * lower offset specified to skb_prepare_seq_read(). Assigns * the head of the data block to @data and returns the length * of the block or 0 if the end of the skb data or the upper * offset has been reached. * * The caller is not required to consume all of the data * returned, i.e. @consumed is typically set to the number * of bytes already consumed and the next call to * skb_seq_read() will return the remaining part of the block. * * Note 1: The size of each block of data returned can be arbitrary, * this limitation is the cost for zerocopy sequential * reads of potentially non linear data. * * Note 2: Fragment lists within fragments are not implemented * at the moment, state->root_skb could be replaced with * a stack for this purpose. */ unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st) { unsigned int block_limit, abs_offset = consumed + st->lower_offset; skb_frag_t *frag; if (unlikely(abs_offset >= st->upper_offset)) { if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } return 0; } next_skb: block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; if (abs_offset < block_limit && !st->frag_data) { *data = st->cur_skb->data + (abs_offset - st->stepped_offset); return block_limit - abs_offset; } if (st->frag_idx == 0 && !st->frag_data) st->stepped_offset += skb_headlen(st->cur_skb); while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; block_limit = skb_frag_size(frag) + st->stepped_offset; if (abs_offset < block_limit) { if (!st->frag_data) st->frag_data = kmap_atomic(skb_frag_page(frag)); *data = (u8 *) st->frag_data + frag->page_offset + (abs_offset - st->stepped_offset); return block_limit - abs_offset; } if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } st->frag_idx++; st->stepped_offset += skb_frag_size(frag); } if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { st->cur_skb = skb_shinfo(st->root_skb)->frag_list; st->frag_idx = 0; goto next_skb; } else if (st->cur_skb->next) { st->cur_skb = st->cur_skb->next; st->frag_idx = 0; goto next_skb; } return 0; } EXPORT_SYMBOL(skb_seq_read); /** * skb_abort_seq_read - Abort a sequential read of skb data * @st: state variable * * Must be called if skb_seq_read() was not called until it * returned 0. */ void skb_abort_seq_read(struct skb_seq_state *st) { if (st->frag_data) kunmap_atomic(st->frag_data); } EXPORT_SYMBOL(skb_abort_seq_read); #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, struct ts_config *conf, struct ts_state *state) { return skb_seq_read(offset, text, TS_SKB_CB(state)); } static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) { skb_abort_seq_read(TS_SKB_CB(state)); } /** * skb_find_text - Find a text pattern in skb data * @skb: the buffer to look in * @from: search offset * @to: search limit * @config: textsearch configuration * * Finds a pattern in the skb data according to the specified * textsearch configuration. Use textsearch_next() to retrieve * subsequent occurrences of the pattern. Returns the offset * to the first occurrence or UINT_MAX if no match was found. */ unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config) { struct ts_state state; unsigned int ret; config->get_next_block = skb_ts_get_next_block; config->finish = skb_ts_finish; skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); ret = textsearch_find(config, &state); return (ret <= to - from ? ret : UINT_MAX); } EXPORT_SYMBOL(skb_find_text); /** * skb_append_datato_frags - append the user data to a skb * @sk: sock structure * @skb: skb structure to be appended with user data. * @getfrag: call back function to be used for getting the user data * @from: pointer to user message iov * @length: length of the iov message * * Description: This procedure append the user data in the fragment part * of the skb if any page alloc fails user this procedure returns -ENOMEM */ int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, int (*getfrag)(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length) { int frg_cnt = skb_shinfo(skb)->nr_frags; int copy; int offset = 0; int ret; struct page_frag *pfrag = ¤t->task_frag; do { /* Return error if we don't have space for new frag */ if (frg_cnt >= MAX_SKB_FRAGS) return -EMSGSIZE; if (!sk_page_frag_refill(sk, pfrag)) return -ENOMEM; /* copy the user data to page */ copy = min_t(int, length, pfrag->size - pfrag->offset); ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, offset, copy, 0, skb); if (ret < 0) return -EFAULT; /* copy was successful so update the size parameters */ skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, copy); frg_cnt++; pfrag->offset += copy; get_page(pfrag->page); skb->truesize += copy; atomic_add(copy, &sk->sk_wmem_alloc); skb->len += copy; skb->data_len += copy; offset += copy; length -= copy; } while (length > 0); return 0; } EXPORT_SYMBOL(skb_append_datato_frags); /** * skb_pull_rcsum - pull skb and update receive checksum * @skb: buffer to update * @len: length of data pulled * * This function performs an skb_pull on the packet and updates * the CHECKSUM_COMPLETE checksum. It should be used on * receive path processing instead of skb_pull unless you know * that the checksum difference is zero (e.g., a valid IP header) * or you are setting ip_summed to CHECKSUM_NONE. */ unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) { BUG_ON(len > skb->len); skb->len -= len; BUG_ON(skb->len < skb->data_len); skb_postpull_rcsum(skb, skb->data, len); return skb->data += len; } EXPORT_SYMBOL_GPL(skb_pull_rcsum); /** * skb_segment - Perform protocol segmentation on skb. * @head_skb: buffer to segment * @features: features for the output path (see dev->features) * * This function performs segmentation on the given skb. It returns * a pointer to the first in a list of new skbs for the segments. * In case of error it returns ERR_PTR(err). */ struct sk_buff *skb_segment(struct sk_buff *head_skb, netdev_features_t features) { struct sk_buff *segs = NULL; struct sk_buff *tail = NULL; struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; skb_frag_t *frag = skb_shinfo(head_skb)->frags; unsigned int mss = skb_shinfo(head_skb)->gso_size; unsigned int doffset = head_skb->data - skb_mac_header(head_skb); struct sk_buff *frag_skb = head_skb; unsigned int offset = doffset; unsigned int tnl_hlen = skb_tnl_header_len(head_skb); unsigned int headroom; unsigned int len; __be16 proto; bool csum; int sg = !!(features & NETIF_F_SG); int nfrags = skb_shinfo(head_skb)->nr_frags; int err = -ENOMEM; int i = 0; int pos; int dummy; __skb_push(head_skb, doffset); proto = skb_network_protocol(head_skb, &dummy); if (unlikely(!proto)) return ERR_PTR(-EINVAL); csum = !head_skb->encap_hdr_csum && !!can_checksum_protocol(features, proto); headroom = skb_headroom(head_skb); pos = skb_headlen(head_skb); do { struct sk_buff *nskb; skb_frag_t *nskb_frag; int hsize; int size; len = head_skb->len - offset; if (len > mss) len = mss; hsize = skb_headlen(head_skb) - offset; if (hsize < 0) hsize = 0; if (hsize > len || !sg) hsize = len; if (!hsize && i >= nfrags && skb_headlen(list_skb) && (skb_headlen(list_skb) == len || sg)) { BUG_ON(skb_headlen(list_skb) > len); i = 0; nfrags = skb_shinfo(list_skb)->nr_frags; frag = skb_shinfo(list_skb)->frags; frag_skb = list_skb; pos += skb_headlen(list_skb); while (pos < offset + len) { BUG_ON(i >= nfrags); size = skb_frag_size(frag); if (pos + size > offset + len) break; i++; pos += size; frag++; } nskb = skb_clone(list_skb, GFP_ATOMIC); list_skb = list_skb->next; if (unlikely(!nskb)) goto err; if (unlikely(pskb_trim(nskb, len))) { kfree_skb(nskb); goto err; } hsize = skb_end_offset(nskb); if (skb_cow_head(nskb, doffset + headroom)) { kfree_skb(nskb); goto err; } nskb->truesize += skb_end_offset(nskb) - hsize; skb_release_head_state(nskb); __skb_push(nskb, doffset); } else { nskb = __alloc_skb(hsize + doffset + headroom, GFP_ATOMIC, skb_alloc_rx_flag(head_skb), NUMA_NO_NODE); if (unlikely(!nskb)) goto err; skb_reserve(nskb, headroom); __skb_put(nskb, doffset); } if (segs) tail->next = nskb; else segs = nskb; tail = nskb; __copy_skb_header(nskb, head_skb); skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); skb_reset_mac_len(nskb); skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, nskb->data - tnl_hlen, doffset + tnl_hlen); if (nskb->len == len + doffset) goto perform_csum_check; if (!sg && !nskb->remcsum_offload) { nskb->ip_summed = CHECKSUM_NONE; nskb->csum = skb_copy_and_csum_bits(head_skb, offset, skb_put(nskb, len), len, 0); SKB_GSO_CB(nskb)->csum_start = skb_headroom(nskb) + doffset; continue; } nskb_frag = skb_shinfo(nskb)->frags; skb_copy_from_linear_data_offset(head_skb, offset, skb_put(nskb, hsize), hsize); skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & SKBTX_SHARED_FRAG; while (pos < offset + len) { if (i >= nfrags) { BUG_ON(skb_headlen(list_skb)); i = 0; nfrags = skb_shinfo(list_skb)->nr_frags; frag = skb_shinfo(list_skb)->frags; frag_skb = list_skb; BUG_ON(!nfrags); list_skb = list_skb->next; } if (unlikely(skb_shinfo(nskb)->nr_frags >= MAX_SKB_FRAGS)) { net_warn_ratelimited( "skb_segment: too many frags: %u %u\n", pos, mss); goto err; } if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) goto err; *nskb_frag = *frag; __skb_frag_ref(nskb_frag); size = skb_frag_size(nskb_frag); if (pos < offset) { nskb_frag->page_offset += offset - pos; skb_frag_size_sub(nskb_frag, offset - pos); } skb_shinfo(nskb)->nr_frags++; if (pos + size <= offset + len) { i++; frag++; pos += size; } else { skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); goto skip_fraglist; } nskb_frag++; } skip_fraglist: nskb->data_len = len - hsize; nskb->len += nskb->data_len; nskb->truesize += nskb->data_len; perform_csum_check: if (!csum && !nskb->remcsum_offload) { nskb->csum = skb_checksum(nskb, doffset, nskb->len - doffset, 0); nskb->ip_summed = CHECKSUM_NONE; SKB_GSO_CB(nskb)->csum_start = skb_headroom(nskb) + doffset; } } while ((offset += len) < head_skb->len); /* Some callers want to get the end of the list. * Put it in segs->prev to avoid walking the list. * (see validate_xmit_skb_list() for example) */ segs->prev = tail; /* Following permits correct backpressure, for protocols * using skb_set_owner_w(). * Idea is to tranfert ownership from head_skb to last segment. */ if (head_skb->destructor == sock_wfree) { swap(tail->truesize, head_skb->truesize); swap(tail->destructor, head_skb->destructor); swap(tail->sk, head_skb->sk); } return segs; err: kfree_skb_list(segs); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(skb_segment); int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) { struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); unsigned int offset = skb_gro_offset(skb); unsigned int headlen = skb_headlen(skb); unsigned int len = skb_gro_len(skb); struct sk_buff *lp, *p = *head; unsigned int delta_truesize; if (unlikely(p->len + len >= 65536)) return -E2BIG; lp = NAPI_GRO_CB(p)->last; pinfo = skb_shinfo(lp); if (headlen <= offset) { skb_frag_t *frag; skb_frag_t *frag2; int i = skbinfo->nr_frags; int nr_frags = pinfo->nr_frags + i; if (nr_frags > MAX_SKB_FRAGS) goto merge; offset -= headlen; pinfo->nr_frags = nr_frags; skbinfo->nr_frags = 0; frag = pinfo->frags + nr_frags; frag2 = skbinfo->frags + i; do { *--frag = *--frag2; } while (--i); frag->page_offset += offset; skb_frag_size_sub(frag, offset); /* all fragments truesize : remove (head size + sk_buff) */ delta_truesize = skb->truesize - SKB_TRUESIZE(skb_end_offset(skb)); skb->truesize -= skb->data_len; skb->len -= skb->data_len; skb->data_len = 0; NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; goto done; } else if (skb->head_frag) { int nr_frags = pinfo->nr_frags; skb_frag_t *frag = pinfo->frags + nr_frags; struct page *page = virt_to_head_page(skb->head); unsigned int first_size = headlen - offset; unsigned int first_offset; if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) goto merge; first_offset = skb->data - (unsigned char *)page_address(page) + offset; pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; frag->page.p = page; frag->page_offset = first_offset; skb_frag_size_set(frag, first_size); memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); /* We dont need to clear skbinfo->nr_frags here */ delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; goto done; } merge: delta_truesize = skb->truesize; if (offset > headlen) { unsigned int eat = offset - headlen; skbinfo->frags[0].page_offset += eat; skb_frag_size_sub(&skbinfo->frags[0], eat); skb->data_len -= eat; skb->len -= eat; offset = headlen; } __skb_pull(skb, offset); if (NAPI_GRO_CB(p)->last == p) skb_shinfo(p)->frag_list = skb; else NAPI_GRO_CB(p)->last->next = skb; NAPI_GRO_CB(p)->last = skb; __skb_header_release(skb); lp = p; done: NAPI_GRO_CB(p)->count++; p->data_len += len; p->truesize += delta_truesize; p->len += len; if (lp != p) { lp->data_len += len; lp->truesize += delta_truesize; lp->len += len; } NAPI_GRO_CB(skb)->same_flow = 1; return 0; } void __init skb_init(void) { skbuff_head_cache = kmem_cache_create("skbuff_head_cache", sizeof(struct sk_buff), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", sizeof(struct sk_buff_fclones), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); } /** * skb_to_sgvec - Fill a scatter-gather list from a socket buffer * @skb: Socket buffer containing the buffers to be mapped * @sg: The scatter-gather list to map into * @offset: The offset into the buffer's contents to start mapping * @len: Length of buffer space to be mapped * * Fill the specified scatter-gather list with mappings/pointers into a * region of the buffer space attached to a socket buffer. */ static int __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int elt = 0; if (copy > 0) { if (copy > len) copy = len; sg_set_buf(sg, skb->data + offset, copy); elt++; if ((len -= copy) == 0) return elt; offset += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); if ((copy = end - offset) > 0) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (copy > len) copy = len; sg_set_page(&sg[elt], skb_frag_page(frag), copy, frag->page_offset+offset-start); elt++; if (!(len -= copy)) return elt; offset += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, copy); if ((len -= copy) == 0) return elt; offset += copy; } start = end; } BUG_ON(len); return elt; } /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given * sglist without mark the sg which contain last skb data as the end. * So the caller can mannipulate sg list as will when padding new data after * the first call without calling sg_unmark_end to expend sg list. * * Scenario to use skb_to_sgvec_nomark: * 1. sg_init_table * 2. skb_to_sgvec_nomark(payload1) * 3. skb_to_sgvec_nomark(payload2) * * This is equivalent to: * 1. sg_init_table * 2. skb_to_sgvec(payload1) * 3. sg_unmark_end * 4. skb_to_sgvec(payload2) * * When mapping mutilple payload conditionally, skb_to_sgvec_nomark * is more preferable. */ int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) { return __skb_to_sgvec(skb, sg, offset, len); } EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) { int nsg = __skb_to_sgvec(skb, sg, offset, len); sg_mark_end(&sg[nsg - 1]); return nsg; } EXPORT_SYMBOL_GPL(skb_to_sgvec); /** * skb_cow_data - Check that a socket buffer's data buffers are writable * @skb: The socket buffer to check. * @tailbits: Amount of trailing space to be added * @trailer: Returned pointer to the skb where the @tailbits space begins * * Make sure that the data buffers attached to a socket buffer are * writable. If they are not, private copies are made of the data buffers * and the socket buffer is set to use these instead. * * If @tailbits is given, make sure that there is space to write @tailbits * bytes of data beyond current end of socket buffer. @trailer will be * set to point to the skb in which this space begins. * * The number of scatterlist elements required to completely map the * COW'd and extended socket buffer will be returned. */ int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) { int copyflag; int elt; struct sk_buff *skb1, **skb_p; /* If skb is cloned or its head is paged, reallocate * head pulling out all the pages (pages are considered not writable * at the moment even if they are anonymous). */ if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) return -ENOMEM; /* Easy case. Most of packets will go this way. */ if (!skb_has_frag_list(skb)) { /* A little of trouble, not enough of space for trailer. * This should not happen, when stack is tuned to generate * good frames. OK, on miss we reallocate and reserve even more * space, 128 bytes is fair. */ if (skb_tailroom(skb) < tailbits && pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) return -ENOMEM; /* Voila! */ *trailer = skb; return 1; } /* Misery. We are in troubles, going to mincer fragments... */ elt = 1; skb_p = &skb_shinfo(skb)->frag_list; copyflag = 0; while ((skb1 = *skb_p) != NULL) { int ntail = 0; /* The fragment is partially pulled by someone, * this can happen on input. Copy it and everything * after it. */ if (skb_shared(skb1)) copyflag = 1; /* If the skb is the last, worry about trailer. */ if (skb1->next == NULL && tailbits) { if (skb_shinfo(skb1)->nr_frags || skb_has_frag_list(skb1) || skb_tailroom(skb1) < tailbits) ntail = tailbits + 128; } if (copyflag || skb_cloned(skb1) || ntail || skb_shinfo(skb1)->nr_frags || skb_has_frag_list(skb1)) { struct sk_buff *skb2; /* Fuck, we are miserable poor guys... */ if (ntail == 0) skb2 = skb_copy(skb1, GFP_ATOMIC); else skb2 = skb_copy_expand(skb1, skb_headroom(skb1), ntail, GFP_ATOMIC); if (unlikely(skb2 == NULL)) return -ENOMEM; if (skb1->sk) skb_set_owner_w(skb2, skb1->sk); /* Looking around. Are we still alive? * OK, link new skb, drop old one */ skb2->next = skb1->next; *skb_p = skb2; kfree_skb(skb1); skb1 = skb2; } elt++; *trailer = skb1; skb_p = &skb1->next; } return elt; } EXPORT_SYMBOL_GPL(skb_cow_data); static void sock_rmem_free(struct sk_buff *skb) { struct sock *sk = skb->sk; atomic_sub(skb->truesize, &sk->sk_rmem_alloc); } /* * Note: We dont mem charge error packets (no sk_forward_alloc changes) */ int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) { if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= (unsigned int)sk->sk_rcvbuf) return -ENOMEM; skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rmem_free; atomic_add(skb->truesize, &sk->sk_rmem_alloc); /* before exiting rcu section, make sure dst is refcounted */ skb_dst_force(skb); skb_queue_tail(&sk->sk_error_queue, skb); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); return 0; } EXPORT_SYMBOL(sock_queue_err_skb); struct sk_buff *sock_dequeue_err_skb(struct sock *sk) { struct sk_buff_head *q = &sk->sk_error_queue; struct sk_buff *skb, *skb_next; unsigned long flags; int err = 0; spin_lock_irqsave(&q->lock, flags); skb = __skb_dequeue(q); if (skb && (skb_next = skb_peek(q))) err = SKB_EXT_ERR(skb_next)->ee.ee_errno; spin_unlock_irqrestore(&q->lock, flags); sk->sk_err = err; if (err) sk->sk_error_report(sk); return skb; } EXPORT_SYMBOL(sock_dequeue_err_skb); /** * skb_clone_sk - create clone of skb, and take reference to socket * @skb: the skb to clone * * This function creates a clone of a buffer that holds a reference on * sk_refcnt. Buffers created via this function are meant to be * returned using sock_queue_err_skb, or free via kfree_skb. * * When passing buffers allocated with this function to sock_queue_err_skb * it is necessary to wrap the call with sock_hold/sock_put in order to * prevent the socket from being released prior to being enqueued on * the sk_error_queue. */ struct sk_buff *skb_clone_sk(struct sk_buff *skb) { struct sock *sk = skb->sk; struct sk_buff *clone; if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt)) return NULL; clone = skb_clone(skb, GFP_ATOMIC); if (!clone) { sock_put(sk); return NULL; } clone->sk = sk; clone->destructor = sock_efree; return clone; } EXPORT_SYMBOL(skb_clone_sk); static void __skb_complete_tx_timestamp(struct sk_buff *skb, struct sock *sk, int tstype) { struct sock_exterr_skb *serr; int err; serr = SKB_EXT_ERR(skb); memset(serr, 0, sizeof(*serr)); serr->ee.ee_errno = ENOMSG; serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; serr->ee.ee_info = tstype; if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { serr->ee.ee_data = skb_shinfo(skb)->tskey; if (sk->sk_protocol == IPPROTO_TCP) serr->ee.ee_data -= sk->sk_tskey; } err = sock_queue_err_skb(sk, skb); if (err) kfree_skb(skb); } static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) { bool ret; if (likely(sysctl_tstamp_allow_data || tsonly)) return true; read_lock_bh(&sk->sk_callback_lock); ret = sk->sk_socket && sk->sk_socket->file && file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); read_unlock_bh(&sk->sk_callback_lock); return ret; } void skb_complete_tx_timestamp(struct sk_buff *skb, struct skb_shared_hwtstamps *hwtstamps) { struct sock *sk = skb->sk; if (!skb_may_tx_timestamp(sk, false)) return; /* take a reference to prevent skb_orphan() from freeing the socket */ sock_hold(sk); *skb_hwtstamps(skb) = *hwtstamps; __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND); sock_put(sk); } EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); void __skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps, struct sock *sk, int tstype) { struct sk_buff *skb; bool tsonly; if (!sk) return; tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; if (!skb_may_tx_timestamp(sk, tsonly)) return; if (tsonly) skb = alloc_skb(0, GFP_ATOMIC); else skb = skb_clone(orig_skb, GFP_ATOMIC); if (!skb) return; if (tsonly) { skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags; skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; } if (hwtstamps) *skb_hwtstamps(skb) = *hwtstamps; else skb->tstamp = ktime_get_real(); __skb_complete_tx_timestamp(skb, sk, tstype); } EXPORT_SYMBOL_GPL(__skb_tstamp_tx); void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps) { return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, SCM_TSTAMP_SND); } EXPORT_SYMBOL_GPL(skb_tstamp_tx); void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) { struct sock *sk = skb->sk; struct sock_exterr_skb *serr; int err; skb->wifi_acked_valid = 1; skb->wifi_acked = acked; serr = SKB_EXT_ERR(skb); memset(serr, 0, sizeof(*serr)); serr->ee.ee_errno = ENOMSG; serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; /* take a reference to prevent skb_orphan() from freeing the socket */ sock_hold(sk); err = sock_queue_err_skb(sk, skb); if (err) kfree_skb(skb); sock_put(sk); } EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); /** * skb_partial_csum_set - set up and verify partial csum values for packet * @skb: the skb to set * @start: the number of bytes after skb->data to start checksumming. * @off: the offset from start to place the checksum. * * For untrusted partially-checksummed packets, we need to make sure the values * for skb->csum_start and skb->csum_offset are valid so we don't oops. * * This function checks and sets those values and skb->ip_summed: if this * returns false you should drop the packet. */ bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) { if (unlikely(start > skb_headlen(skb)) || unlikely((int)start + off > skb_headlen(skb) - 2)) { net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", start, off, skb_headlen(skb)); return false; } skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_headroom(skb) + start; skb->csum_offset = off; skb_set_transport_header(skb, start); return true; } EXPORT_SYMBOL_GPL(skb_partial_csum_set); static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, unsigned int max) { if (skb_headlen(skb) >= len) return 0; /* If we need to pullup then pullup to the max, so we * won't need to do it again. */ if (max > skb->len) max = skb->len; if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) return -ENOMEM; if (skb_headlen(skb) < len) return -EPROTO; return 0; } #define MAX_TCP_HDR_LEN (15 * 4) static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, typeof(IPPROTO_IP) proto, unsigned int off) { switch (proto) { int err; case IPPROTO_TCP: err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), off + MAX_TCP_HDR_LEN); if (!err && !skb_partial_csum_set(skb, off, offsetof(struct tcphdr, check))) err = -EPROTO; return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; case IPPROTO_UDP: err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), off + sizeof(struct udphdr)); if (!err && !skb_partial_csum_set(skb, off, offsetof(struct udphdr, check))) err = -EPROTO; return err ? ERR_PTR(err) : &udp_hdr(skb)->check; } return ERR_PTR(-EPROTO); } /* This value should be large enough to cover a tagged ethernet header plus * maximally sized IP and TCP or UDP headers. */ #define MAX_IP_HDR_LEN 128 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) { unsigned int off; bool fragment; __sum16 *csum; int err; fragment = false; err = skb_maybe_pull_tail(skb, sizeof(struct iphdr), MAX_IP_HDR_LEN); if (err < 0) goto out; if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) fragment = true; off = ip_hdrlen(skb); err = -EPROTO; if (fragment) goto out; csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); if (IS_ERR(csum)) return PTR_ERR(csum); if (recalculate) *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, skb->len - off, ip_hdr(skb)->protocol, 0); err = 0; out: return err; } /* This value should be large enough to cover a tagged ethernet header plus * an IPv6 header, all options, and a maximal TCP or UDP header. */ #define MAX_IPV6_HDR_LEN 256 #define OPT_HDR(type, skb, off) \ (type *)(skb_network_header(skb) + (off)) static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) { int err; u8 nexthdr; unsigned int off; unsigned int len; bool fragment; bool done; __sum16 *csum; fragment = false; done = false; off = sizeof(struct ipv6hdr); err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); if (err < 0) goto out; nexthdr = ipv6_hdr(skb)->nexthdr; len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); while (off <= len && !done) { switch (nexthdr) { case IPPROTO_DSTOPTS: case IPPROTO_HOPOPTS: case IPPROTO_ROUTING: { struct ipv6_opt_hdr *hp; err = skb_maybe_pull_tail(skb, off + sizeof(struct ipv6_opt_hdr), MAX_IPV6_HDR_LEN); if (err < 0) goto out; hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); nexthdr = hp->nexthdr; off += ipv6_optlen(hp); break; } case IPPROTO_AH: { struct ip_auth_hdr *hp; err = skb_maybe_pull_tail(skb, off + sizeof(struct ip_auth_hdr), MAX_IPV6_HDR_LEN); if (err < 0) goto out; hp = OPT_HDR(struct ip_auth_hdr, skb, off); nexthdr = hp->nexthdr; off += ipv6_authlen(hp); break; } case IPPROTO_FRAGMENT: { struct frag_hdr *hp; err = skb_maybe_pull_tail(skb, off + sizeof(struct frag_hdr), MAX_IPV6_HDR_LEN); if (err < 0) goto out; hp = OPT_HDR(struct frag_hdr, skb, off); if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) fragment = true; nexthdr = hp->nexthdr; off += sizeof(struct frag_hdr); break; } default: done = true; break; } } err = -EPROTO; if (!done || fragment) goto out; csum = skb_checksum_setup_ip(skb, nexthdr, off); if (IS_ERR(csum)) return PTR_ERR(csum); if (recalculate) *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len - off, nexthdr, 0); err = 0; out: return err; } /** * skb_checksum_setup - set up partial checksum offset * @skb: the skb to set up * @recalculate: if true the pseudo-header checksum will be recalculated */ int skb_checksum_setup(struct sk_buff *skb, bool recalculate) { int err; switch (skb->protocol) { case htons(ETH_P_IP): err = skb_checksum_setup_ipv4(skb, recalculate); break; case htons(ETH_P_IPV6): err = skb_checksum_setup_ipv6(skb, recalculate); break; default: err = -EPROTO; break; } return err; } EXPORT_SYMBOL(skb_checksum_setup); void __skb_warn_lro_forwarding(const struct sk_buff *skb) { net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", skb->dev->name); } EXPORT_SYMBOL(__skb_warn_lro_forwarding); void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) { if (head_stolen) { skb_release_head_state(skb); kmem_cache_free(skbuff_head_cache, skb); } else { __kfree_skb(skb); } } EXPORT_SYMBOL(kfree_skb_partial); /** * skb_try_coalesce - try to merge skb to prior one * @to: prior buffer * @from: buffer to add * @fragstolen: pointer to boolean * @delta_truesize: how much more was allocated than was requested */ bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, bool *fragstolen, int *delta_truesize) { int i, delta, len = from->len; *fragstolen = false; if (skb_cloned(to)) return false; if (len <= skb_tailroom(to)) { if (len) BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); *delta_truesize = 0; return true; } if (skb_has_frag_list(to) || skb_has_frag_list(from)) return false; if (skb_headlen(from) != 0) { struct page *page; unsigned int offset; if (skb_shinfo(to)->nr_frags + skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) return false; if (skb_head_is_locked(from)) return false; delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); page = virt_to_head_page(from->head); offset = from->data - (unsigned char *)page_address(page); skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, page, offset, skb_headlen(from)); *fragstolen = true; } else { if (skb_shinfo(to)->nr_frags + skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) return false; delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); } WARN_ON_ONCE(delta < len); memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, skb_shinfo(from)->frags, skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; if (!skb_cloned(from)) skb_shinfo(from)->nr_frags = 0; /* if the skb is not cloned this does nothing * since we set nr_frags to 0. */ for (i = 0; i < skb_shinfo(from)->nr_frags; i++) skb_frag_ref(from, i); to->truesize += delta; to->len += len; to->data_len += len; *delta_truesize = delta; return true; } EXPORT_SYMBOL(skb_try_coalesce); /** * skb_scrub_packet - scrub an skb * * @skb: buffer to clean * @xnet: packet is crossing netns * * skb_scrub_packet can be used after encapsulating or decapsulting a packet * into/from a tunnel. Some information have to be cleared during these * operations. * skb_scrub_packet can also be used to clean a skb before injecting it in * another namespace (@xnet == true). We have to clear all information in the * skb that could impact namespace isolation. */ void skb_scrub_packet(struct sk_buff *skb, bool xnet) { skb->tstamp.tv64 = 0; skb->pkt_type = PACKET_HOST; skb->skb_iif = 0; skb->ignore_df = 0; skb_dst_drop(skb); skb_sender_cpu_clear(skb); secpath_reset(skb); nf_reset(skb); nf_reset_trace(skb); if (!xnet) return; skb_orphan(skb); skb->mark = 0; } EXPORT_SYMBOL_GPL(skb_scrub_packet); /** * skb_gso_transport_seglen - Return length of individual segments of a gso packet * * @skb: GSO skb * * skb_gso_transport_seglen is used to determine the real size of the * individual segments, including Layer4 headers (TCP/UDP). * * The MAC/L2 or network (IP, IPv6) headers are not accounted for. */ unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) { const struct skb_shared_info *shinfo = skb_shinfo(skb); unsigned int thlen = 0; if (skb->encapsulation) { thlen = skb_inner_transport_header(skb) - skb_transport_header(skb); if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) thlen += inner_tcp_hdrlen(skb); } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { thlen = tcp_hdrlen(skb); } /* UFO sets gso_size to the size of the fragmentation * payload, i.e. the size of the L4 (UDP) header is already * accounted for. */ return thlen + shinfo->gso_size; } EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) { if (skb_cow(skb, skb_headroom(skb)) < 0) { kfree_skb(skb); return NULL; } memmove(skb->data - ETH_HLEN, skb->data - VLAN_ETH_HLEN, 2 * ETH_ALEN); skb->mac_header += VLAN_HLEN; return skb; } struct sk_buff *skb_vlan_untag(struct sk_buff *skb) { struct vlan_hdr *vhdr; u16 vlan_tci; if (unlikely(skb_vlan_tag_present(skb))) { /* vlan_tci is already set-up so leave this for another time */ return skb; } skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) goto err_free; if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) goto err_free; vhdr = (struct vlan_hdr *)skb->data; vlan_tci = ntohs(vhdr->h_vlan_TCI); __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); skb_pull_rcsum(skb, VLAN_HLEN); vlan_set_encap_proto(skb, vhdr); skb = skb_reorder_vlan_header(skb); if (unlikely(!skb)) goto err_free; skb_reset_network_header(skb); skb_reset_transport_header(skb); skb_reset_mac_len(skb); return skb; err_free: kfree_skb(skb); return NULL; } EXPORT_SYMBOL(skb_vlan_untag); int skb_ensure_writable(struct sk_buff *skb, int write_len) { if (!pskb_may_pull(skb, write_len)) return -ENOMEM; if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) return 0; return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } EXPORT_SYMBOL(skb_ensure_writable); /* remove VLAN header from packet and update csum accordingly. */ static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) { struct vlan_hdr *vhdr; unsigned int offset = skb->data - skb_mac_header(skb); int err; __skb_push(skb, offset); err = skb_ensure_writable(skb, VLAN_ETH_HLEN); if (unlikely(err)) goto pull; skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); *vlan_tci = ntohs(vhdr->h_vlan_TCI); memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); __skb_pull(skb, VLAN_HLEN); vlan_set_encap_proto(skb, vhdr); skb->mac_header += VLAN_HLEN; if (skb_network_offset(skb) < ETH_HLEN) skb_set_network_header(skb, ETH_HLEN); skb_reset_mac_len(skb); pull: __skb_pull(skb, offset); return err; } int skb_vlan_pop(struct sk_buff *skb) { u16 vlan_tci; __be16 vlan_proto; int err; if (likely(skb_vlan_tag_present(skb))) { skb->vlan_tci = 0; } else { if (unlikely((skb->protocol != htons(ETH_P_8021Q) && skb->protocol != htons(ETH_P_8021AD)) || skb->len < VLAN_ETH_HLEN)) return 0; err = __skb_vlan_pop(skb, &vlan_tci); if (err) return err; } /* move next vlan tag to hw accel tag */ if (likely((skb->protocol != htons(ETH_P_8021Q) && skb->protocol != htons(ETH_P_8021AD)) || skb->len < VLAN_ETH_HLEN)) return 0; vlan_proto = skb->protocol; err = __skb_vlan_pop(skb, &vlan_tci); if (unlikely(err)) return err; __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); return 0; } EXPORT_SYMBOL(skb_vlan_pop); int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { if (skb_vlan_tag_present(skb)) { unsigned int offset = skb->data - skb_mac_header(skb); int err; /* __vlan_insert_tag expect skb->data pointing to mac header. * So change skb->data before calling it and change back to * original position later */ __skb_push(skb, offset); err = __vlan_insert_tag(skb, skb->vlan_proto, skb_vlan_tag_get(skb)); if (err) return err; skb->protocol = skb->vlan_proto; skb->mac_len += VLAN_HLEN; __skb_pull(skb, offset); if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + (2 * ETH_ALEN), VLAN_HLEN, 0)); } __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); return 0; } EXPORT_SYMBOL(skb_vlan_push); /** * alloc_skb_with_frags - allocate skb with page frags * * @header_len: size of linear part * @data_len: needed length in frags * @max_page_order: max page order desired. * @errcode: pointer to error code if any * @gfp_mask: allocation mask * * This can be used to allocate a paged skb, given a maximal order for frags. */ struct sk_buff *alloc_skb_with_frags(unsigned long header_len, unsigned long data_len, int max_page_order, int *errcode, gfp_t gfp_mask) { int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; unsigned long chunk; struct sk_buff *skb; struct page *page; gfp_t gfp_head; int i; *errcode = -EMSGSIZE; /* Note this test could be relaxed, if we succeed to allocate * high order pages... */ if (npages > MAX_SKB_FRAGS) return NULL; gfp_head = gfp_mask; if (gfp_head & __GFP_WAIT) gfp_head |= __GFP_REPEAT; *errcode = -ENOBUFS; skb = alloc_skb(header_len, gfp_head); if (!skb) return NULL; skb->truesize += npages << PAGE_SHIFT; for (i = 0; npages > 0; i++) { int order = max_page_order; while (order) { if (npages >= 1 << order) { page = alloc_pages(gfp_mask | __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY, order); if (page) goto fill_page; /* Do not retry other high order allocations */ order = 1; max_page_order = 0; } order--; } page = alloc_page(gfp_mask); if (!page) goto failure; fill_page: chunk = min_t(unsigned long, data_len, PAGE_SIZE << order); skb_fill_page_desc(skb, i, page, 0, chunk); data_len -= chunk; npages -= 1 << order; } return skb; failure: kfree_skb(skb); return NULL; } EXPORT_SYMBOL(alloc_skb_with_frags);