// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2007-2017 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "flow.h" #include "datapath.h" #include <linux/uaccess.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <net/llc_pdu.h> #include <linux/kernel.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/llc.h> #include <linux/module.h> #include <linux/in.h> #include <linux/rcupdate.h> #include <linux/if_arp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/sctp.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/icmp.h> #include <linux/icmpv6.h> #include <linux/rculist.h> #include <net/geneve.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/mpls.h> #include <net/vxlan.h> #include <net/tun_proto.h> #include <net/erspan.h> #include "flow_netlink.h" struct ovs_len_tbl { int len; const struct ovs_len_tbl *next; }; #define OVS_ATTR_NESTED -1 #define OVS_ATTR_VARIABLE -2 static bool actions_may_change_flow(const struct nlattr *actions) { struct nlattr *nla; int rem; nla_for_each_nested(nla, actions, rem) { u16 action = nla_type(nla); switch (action) { case OVS_ACTION_ATTR_OUTPUT: case OVS_ACTION_ATTR_RECIRC: case OVS_ACTION_ATTR_TRUNC: case OVS_ACTION_ATTR_USERSPACE: break; case OVS_ACTION_ATTR_CT: case OVS_ACTION_ATTR_CT_CLEAR: case OVS_ACTION_ATTR_HASH: case OVS_ACTION_ATTR_POP_ETH: case OVS_ACTION_ATTR_POP_MPLS: case OVS_ACTION_ATTR_POP_NSH: case OVS_ACTION_ATTR_POP_VLAN: case OVS_ACTION_ATTR_PUSH_ETH: case OVS_ACTION_ATTR_PUSH_MPLS: case OVS_ACTION_ATTR_PUSH_NSH: case OVS_ACTION_ATTR_PUSH_VLAN: case OVS_ACTION_ATTR_SAMPLE: case OVS_ACTION_ATTR_SET: case OVS_ACTION_ATTR_SET_MASKED: case OVS_ACTION_ATTR_METER: case OVS_ACTION_ATTR_CHECK_PKT_LEN: case OVS_ACTION_ATTR_ADD_MPLS: case OVS_ACTION_ATTR_DEC_TTL: default: return true; } } return false; } static void update_range(struct sw_flow_match *match, size_t offset, size_t size, bool is_mask) { struct sw_flow_key_range *range; size_t start = rounddown(offset, sizeof(long)); size_t end = roundup(offset + size, sizeof(long)); if (!is_mask) range = &match->range; else range = &match->mask->range; if (range->start == range->end) { range->start = start; range->end = end; return; } if (range->start > start) range->start = start; if (range->end < end) range->end = end; } #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ do { \ update_range(match, offsetof(struct sw_flow_key, field), \ sizeof((match)->key->field), is_mask); \ if (is_mask) \ (match)->mask->key.field = value; \ else \ (match)->key->field = value; \ } while (0) #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ do { \ update_range(match, offset, len, is_mask); \ if (is_mask) \ memcpy((u8 *)&(match)->mask->key + offset, value_p, \ len); \ else \ memcpy((u8 *)(match)->key + offset, value_p, len); \ } while (0) #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ value_p, len, is_mask) #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ do { \ update_range(match, offsetof(struct sw_flow_key, field), \ sizeof((match)->key->field), is_mask); \ if (is_mask) \ memset((u8 *)&(match)->mask->key.field, value, \ sizeof((match)->mask->key.field)); \ else \ memset((u8 *)&(match)->key->field, value, \ sizeof((match)->key->field)); \ } while (0) static bool match_validate(const struct sw_flow_match *match, u64 key_attrs, u64 mask_attrs, bool log) { u64 key_expected = 0; u64 mask_allowed = key_attrs; /* At most allow all key attributes */ /* The following mask attributes allowed only if they * pass the validation tests. */ mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) | (1 << OVS_KEY_ATTR_IPV6) | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) | (1 << OVS_KEY_ATTR_TCP) | (1 << OVS_KEY_ATTR_TCP_FLAGS) | (1 << OVS_KEY_ATTR_UDP) | (1 << OVS_KEY_ATTR_SCTP) | (1 << OVS_KEY_ATTR_ICMP) | (1 << OVS_KEY_ATTR_ICMPV6) | (1 << OVS_KEY_ATTR_ARP) | (1 << OVS_KEY_ATTR_ND) | (1 << OVS_KEY_ATTR_MPLS) | (1 << OVS_KEY_ATTR_NSH)); /* Always allowed mask fields. */ mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) | (1 << OVS_KEY_ATTR_IN_PORT) | (1 << OVS_KEY_ATTR_ETHERTYPE)); /* Check key attributes. */ if (match->key->eth.type == htons(ETH_P_ARP) || match->key->eth.type == htons(ETH_P_RARP)) { key_expected |= 1 << OVS_KEY_ATTR_ARP; if (match->mask && (match->mask->key.eth.type == htons(0xffff))) mask_allowed |= 1 << OVS_KEY_ATTR_ARP; } if (eth_p_mpls(match->key->eth.type)) { key_expected |= 1 << OVS_KEY_ATTR_MPLS; if (match->mask && (match->mask->key.eth.type == htons(0xffff))) mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; } if (match->key->eth.type == htons(ETH_P_IP)) { key_expected |= 1 << OVS_KEY_ATTR_IPV4; if (match->mask && match->mask->key.eth.type == htons(0xffff)) { mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; } if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { if (match->key->ip.proto == IPPROTO_UDP) { key_expected |= 1 << OVS_KEY_ATTR_UDP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_UDP; } if (match->key->ip.proto == IPPROTO_SCTP) { key_expected |= 1 << OVS_KEY_ATTR_SCTP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; } if (match->key->ip.proto == IPPROTO_TCP) { key_expected |= 1 << OVS_KEY_ATTR_TCP; key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; if (match->mask && (match->mask->key.ip.proto == 0xff)) { mask_allowed |= 1 << OVS_KEY_ATTR_TCP; mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; } } if (match->key->ip.proto == IPPROTO_ICMP) { key_expected |= 1 << OVS_KEY_ATTR_ICMP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; } } } if (match->key->eth.type == htons(ETH_P_IPV6)) { key_expected |= 1 << OVS_KEY_ATTR_IPV6; if (match->mask && match->mask->key.eth.type == htons(0xffff)) { mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; } if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { if (match->key->ip.proto == IPPROTO_UDP) { key_expected |= 1 << OVS_KEY_ATTR_UDP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_UDP; } if (match->key->ip.proto == IPPROTO_SCTP) { key_expected |= 1 << OVS_KEY_ATTR_SCTP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; } if (match->key->ip.proto == IPPROTO_TCP) { key_expected |= 1 << OVS_KEY_ATTR_TCP; key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; if (match->mask && (match->mask->key.ip.proto == 0xff)) { mask_allowed |= 1 << OVS_KEY_ATTR_TCP; mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; } } if (match->key->ip.proto == IPPROTO_ICMPV6) { key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; if (match->key->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { key_expected |= 1 << OVS_KEY_ATTR_ND; /* Original direction conntrack tuple * uses the same space as the ND fields * in the key, so both are not allowed * at the same time. */ mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); if (match->mask && (match->mask->key.tp.src == htons(0xff))) mask_allowed |= 1 << OVS_KEY_ATTR_ND; } } } } if (match->key->eth.type == htons(ETH_P_NSH)) { key_expected |= 1 << OVS_KEY_ATTR_NSH; if (match->mask && match->mask->key.eth.type == htons(0xffff)) { mask_allowed |= 1 << OVS_KEY_ATTR_NSH; } } if ((key_attrs & key_expected) != key_expected) { /* Key attributes check failed. */ OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", (unsigned long long)key_attrs, (unsigned long long)key_expected); return false; } if ((mask_attrs & mask_allowed) != mask_attrs) { /* Mask attributes check failed. */ OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", (unsigned long long)mask_attrs, (unsigned long long)mask_allowed); return false; } return true; } size_t ovs_tun_key_attr_size(void) { /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider * updating this function. */ return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. */ + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ } static size_t ovs_nsh_key_attr_size(void) { /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider * updating this function. */ return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */ /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are * mutually exclusive, so the bigger one can cover * the small one. */ + nla_total_size(NSH_CTX_HDRS_MAX_LEN); } size_t ovs_key_attr_size(void) { /* Whenever adding new OVS_KEY_ FIELDS, we should consider * updating this function. */ BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29); return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ + ovs_tun_key_attr_size() + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ + nla_total_size(0) /* OVS_KEY_ATTR_NSH */ + ovs_nsh_key_attr_size() + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ + nla_total_size(28); /* OVS_KEY_ATTR_ND */ } static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, }; static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, .next = ovs_vxlan_ext_key_lens }, [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE }, [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 }, }; static const struct ovs_len_tbl ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = { [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) }, [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) }, [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE }, }; /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, .next = ovs_tunnel_key_lens, }, [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE }, [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { .len = sizeof(struct ovs_key_ct_tuple_ipv4) }, [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { .len = sizeof(struct ovs_key_ct_tuple_ipv6) }, [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED, .next = ovs_nsh_key_attr_lens, }, }; static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) { return expected_len == attr_len || expected_len == OVS_ATTR_NESTED || expected_len == OVS_ATTR_VARIABLE; } static bool is_all_zero(const u8 *fp, size_t size) { int i; if (!fp) return false; for (i = 0; i < size; i++) if (fp[i]) return false; return true; } static int __parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp, bool log, bool nz) { const struct nlattr *nla; u64 attrs; int rem; attrs = *attrsp; nla_for_each_nested(nla, attr, rem) { u16 type = nla_type(nla); int expected_len; if (type > OVS_KEY_ATTR_MAX) { OVS_NLERR(log, "Key type %d is out of range max %d", type, OVS_KEY_ATTR_MAX); return -EINVAL; } if (attrs & (1 << type)) { OVS_NLERR(log, "Duplicate key (type %d).", type); return -EINVAL; } expected_len = ovs_key_lens[type].len; if (!check_attr_len(nla_len(nla), expected_len)) { OVS_NLERR(log, "Key %d has unexpected len %d expected %d", type, nla_len(nla), expected_len); return -EINVAL; } if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) { attrs |= 1 << type; a[type] = nla; } } if (rem) { OVS_NLERR(log, "Message has %d unknown bytes.", rem); return -EINVAL; } *attrsp = attrs; return 0; } static int parse_flow_mask_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp, bool log) { return __parse_flow_nlattrs(attr, a, attrsp, log, true); } int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp, bool log) { return __parse_flow_nlattrs(attr, a, attrsp, log, false); } static int genev_tun_opt_from_nlattr(const struct nlattr *a, struct sw_flow_match *match, bool is_mask, bool log) { unsigned long opt_key_offset; if (nla_len(a) > sizeof(match->key->tun_opts)) { OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", nla_len(a), sizeof(match->key->tun_opts)); return -EINVAL; } if (nla_len(a) % 4 != 0) { OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", nla_len(a)); return -EINVAL; } /* We need to record the length of the options passed * down, otherwise packets with the same format but * additional options will be silently matched. */ if (!is_mask) { SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), false); } else { /* This is somewhat unusual because it looks at * both the key and mask while parsing the * attributes (and by extension assumes the key * is parsed first). Normally, we would verify * that each is the correct length and that the * attributes line up in the validate function. * However, that is difficult because this is * variable length and we won't have the * information later. */ if (match->key->tun_opts_len != nla_len(a)) { OVS_NLERR(log, "Geneve option len %d != mask len %d", match->key->tun_opts_len, nla_len(a)); return -EINVAL; } SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); } opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), nla_len(a), is_mask); return 0; } static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, struct sw_flow_match *match, bool is_mask, bool log) { struct nlattr *a; int rem; unsigned long opt_key_offset; struct vxlan_metadata opts; BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); memset(&opts, 0, sizeof(opts)); nla_for_each_nested(a, attr, rem) { int type = nla_type(a); if (type > OVS_VXLAN_EXT_MAX) { OVS_NLERR(log, "VXLAN extension %d out of range max %d", type, OVS_VXLAN_EXT_MAX); return -EINVAL; } if (!check_attr_len(nla_len(a), ovs_vxlan_ext_key_lens[type].len)) { OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", type, nla_len(a), ovs_vxlan_ext_key_lens[type].len); return -EINVAL; } switch (type) { case OVS_VXLAN_EXT_GBP: opts.gbp = nla_get_u32(a); break; default: OVS_NLERR(log, "Unknown VXLAN extension attribute %d", type); return -EINVAL; } } if (rem) { OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", rem); return -EINVAL; } if (!is_mask) SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); else SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), is_mask); return 0; } static int erspan_tun_opt_from_nlattr(const struct nlattr *a, struct sw_flow_match *match, bool is_mask, bool log) { unsigned long opt_key_offset; BUILD_BUG_ON(sizeof(struct erspan_metadata) > sizeof(match->key->tun_opts)); if (nla_len(a) > sizeof(match->key->tun_opts)) { OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).", nla_len(a), sizeof(match->key->tun_opts)); return -EINVAL; } if (!is_mask) SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(struct erspan_metadata), false); else SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), nla_len(a), is_mask); return 0; } static int ip_tun_from_nlattr(const struct nlattr *attr, struct sw_flow_match *match, bool is_mask, bool log) { bool ttl = false, ipv4 = false, ipv6 = false; bool info_bridge_mode = false; __be16 tun_flags = 0; int opts_type = 0; struct nlattr *a; int rem; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); int err; if (type > OVS_TUNNEL_KEY_ATTR_MAX) { OVS_NLERR(log, "Tunnel attr %d out of range max %d", type, OVS_TUNNEL_KEY_ATTR_MAX); return -EINVAL; } if (!check_attr_len(nla_len(a), ovs_tunnel_key_lens[type].len)) { OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", type, nla_len(a), ovs_tunnel_key_lens[type].len); return -EINVAL; } switch (type) { case OVS_TUNNEL_KEY_ATTR_ID: SW_FLOW_KEY_PUT(match, tun_key.tun_id, nla_get_be64(a), is_mask); tun_flags |= TUNNEL_KEY; break; case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, nla_get_in_addr(a), is_mask); ipv4 = true; break; case OVS_TUNNEL_KEY_ATTR_IPV4_DST: SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, nla_get_in_addr(a), is_mask); ipv4 = true; break; case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src, nla_get_in6_addr(a), is_mask); ipv6 = true; break; case OVS_TUNNEL_KEY_ATTR_IPV6_DST: SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, nla_get_in6_addr(a), is_mask); ipv6 = true; break; case OVS_TUNNEL_KEY_ATTR_TOS: SW_FLOW_KEY_PUT(match, tun_key.tos, nla_get_u8(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_TTL: SW_FLOW_KEY_PUT(match, tun_key.ttl, nla_get_u8(a), is_mask); ttl = true; break; case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: tun_flags |= TUNNEL_DONT_FRAGMENT; break; case OVS_TUNNEL_KEY_ATTR_CSUM: tun_flags |= TUNNEL_CSUM; break; case OVS_TUNNEL_KEY_ATTR_TP_SRC: SW_FLOW_KEY_PUT(match, tun_key.tp_src, nla_get_be16(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_TP_DST: SW_FLOW_KEY_PUT(match, tun_key.tp_dst, nla_get_be16(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_OAM: tun_flags |= TUNNEL_OAM; break; case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: if (opts_type) { OVS_NLERR(log, "Multiple metadata blocks provided"); return -EINVAL; } err = genev_tun_opt_from_nlattr(a, match, is_mask, log); if (err) return err; tun_flags |= TUNNEL_GENEVE_OPT; opts_type = type; break; case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: if (opts_type) { OVS_NLERR(log, "Multiple metadata blocks provided"); return -EINVAL; } err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); if (err) return err; tun_flags |= TUNNEL_VXLAN_OPT; opts_type = type; break; case OVS_TUNNEL_KEY_ATTR_PAD: break; case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: if (opts_type) { OVS_NLERR(log, "Multiple metadata blocks provided"); return -EINVAL; } err = erspan_tun_opt_from_nlattr(a, match, is_mask, log); if (err) return err; tun_flags |= TUNNEL_ERSPAN_OPT; opts_type = type; break; case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE: info_bridge_mode = true; ipv4 = true; break; default: OVS_NLERR(log, "Unknown IP tunnel attribute %d", type); return -EINVAL; } } SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); if (is_mask) SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); else SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, false); if (rem > 0) { OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", rem); return -EINVAL; } if (ipv4 && ipv6) { OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); return -EINVAL; } if (!is_mask) { if (!ipv4 && !ipv6) { OVS_NLERR(log, "IP tunnel dst address not specified"); return -EINVAL; } if (ipv4) { if (info_bridge_mode) { if (match->key->tun_key.u.ipv4.src || match->key->tun_key.u.ipv4.dst || match->key->tun_key.tp_src || match->key->tun_key.tp_dst || match->key->tun_key.ttl || match->key->tun_key.tos || tun_flags & ~TUNNEL_KEY) { OVS_NLERR(log, "IPv4 tun info is not correct"); return -EINVAL; } } else if (!match->key->tun_key.u.ipv4.dst) { OVS_NLERR(log, "IPv4 tunnel dst address is zero"); return -EINVAL; } } if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { OVS_NLERR(log, "IPv6 tunnel dst address is zero"); return -EINVAL; } if (!ttl && !info_bridge_mode) { OVS_NLERR(log, "IP tunnel TTL not specified."); return -EINVAL; } } return opts_type; } static int vxlan_opt_to_nlattr(struct sk_buff *skb, const void *tun_opts, int swkey_tun_opts_len) { const struct vxlan_metadata *opts = tun_opts; struct nlattr *nla; nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); if (!nla) return -EMSGSIZE; if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) return -EMSGSIZE; nla_nest_end(skb, nla); return 0; } static int __ip_tun_to_nlattr(struct sk_buff *skb, const struct ip_tunnel_key *output, const void *tun_opts, int swkey_tun_opts_len, unsigned short tun_proto, u8 mode) { if (output->tun_flags & TUNNEL_KEY && nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, OVS_TUNNEL_KEY_ATTR_PAD)) return -EMSGSIZE; if (mode & IP_TUNNEL_INFO_BRIDGE) return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE) ? -EMSGSIZE : 0; switch (tun_proto) { case AF_INET: if (output->u.ipv4.src && nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->u.ipv4.src)) return -EMSGSIZE; if (output->u.ipv4.dst && nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->u.ipv4.dst)) return -EMSGSIZE; break; case AF_INET6: if (!ipv6_addr_any(&output->u.ipv6.src) && nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, &output->u.ipv6.src)) return -EMSGSIZE; if (!ipv6_addr_any(&output->u.ipv6.dst) && nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, &output->u.ipv6.dst)) return -EMSGSIZE; break; } if (output->tos && nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) return -EMSGSIZE; if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) return -EMSGSIZE; if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) return -EMSGSIZE; if ((output->tun_flags & TUNNEL_CSUM) && nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) return -EMSGSIZE; if (output->tp_src && nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) return -EMSGSIZE; if (output->tp_dst && nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) return -EMSGSIZE; if ((output->tun_flags & TUNNEL_OAM) && nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) return -EMSGSIZE; if (swkey_tun_opts_len) { if (output->tun_flags & TUNNEL_GENEVE_OPT && nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, swkey_tun_opts_len, tun_opts)) return -EMSGSIZE; else if (output->tun_flags & TUNNEL_VXLAN_OPT && vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) return -EMSGSIZE; else if (output->tun_flags & TUNNEL_ERSPAN_OPT && nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS, swkey_tun_opts_len, tun_opts)) return -EMSGSIZE; } return 0; } static int ip_tun_to_nlattr(struct sk_buff *skb, const struct ip_tunnel_key *output, const void *tun_opts, int swkey_tun_opts_len, unsigned short tun_proto, u8 mode) { struct nlattr *nla; int err; nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL); if (!nla) return -EMSGSIZE; err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, tun_proto, mode); if (err) return err; nla_nest_end(skb, nla); return 0; } int ovs_nla_put_tunnel_info(struct sk_buff *skb, struct ip_tunnel_info *tun_info) { return __ip_tun_to_nlattr(skb, &tun_info->key, ip_tunnel_info_opts(tun_info), tun_info->options_len, ip_tunnel_info_af(tun_info), tun_info->mode); } static int encode_vlan_from_nlattrs(struct sw_flow_match *match, const struct nlattr *a[], bool is_mask, bool inner) { __be16 tci = 0; __be16 tpid = 0; if (a[OVS_KEY_ATTR_VLAN]) tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (a[OVS_KEY_ATTR_ETHERTYPE]) tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (likely(!inner)) { SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); } else { SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); } return 0; } static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, u64 key_attrs, bool inner, const struct nlattr **a, bool log) { __be16 tci = 0; if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { /* Not a VLAN. */ return 0; } if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } if (a[OVS_KEY_ATTR_VLAN]) tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (!(tci & htons(VLAN_CFI_MASK))) { if (tci) { OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { /* Corner case for truncated VLAN header. */ OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } } return 1; } static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, u64 key_attrs, bool inner, const struct nlattr **a, bool log) { __be16 tci = 0; __be16 tpid = 0; bool encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK)); bool i_encap_valid = !!(match->key->eth.cvlan.tci & htons(VLAN_CFI_MASK)); if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { /* Not a VLAN. */ return 0; } if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } if (a[OVS_KEY_ATTR_VLAN]) tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (a[OVS_KEY_ATTR_ETHERTYPE]) tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (tpid != htons(0xffff)) { OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); return -EINVAL; } if (!(tci & htons(VLAN_CFI_MASK))) { OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.", (inner) ? "C-VLAN" : "VLAN"); return -EINVAL; } return 1; } static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, u64 *key_attrs, bool inner, const struct nlattr **a, bool is_mask, bool log) { int err; const struct nlattr *encap; if (!is_mask) err = validate_vlan_from_nlattrs(match, *key_attrs, inner, a, log); else err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, a, log); if (err <= 0) return err; err = encode_vlan_from_nlattrs(match, a, is_mask, inner); if (err) return err; *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); encap = a[OVS_KEY_ATTR_ENCAP]; if (!is_mask) err = parse_flow_nlattrs(encap, a, key_attrs, log); else err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); return err; } static int parse_vlan_from_nlattrs(struct sw_flow_match *match, u64 *key_attrs, const struct nlattr **a, bool is_mask, bool log) { int err; bool encap_valid = false; err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, is_mask, log); if (err) return err; encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK)); if (encap_valid) { err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, is_mask, log); if (err) return err; } return 0; } static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, u64 *attrs, const struct nlattr **a, bool is_mask, bool log) { __be16 eth_type; eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (is_mask) { /* Always exact match EtherType. */ eth_type = htons(0xffff); } else if (!eth_proto_is_802_3(eth_type)) { OVS_NLERR(log, "EtherType %x is less than min %x", ntohs(eth_type), ETH_P_802_3_MIN); return -EINVAL; } SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); return 0; } static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, u64 *attrs, const struct nlattr **a, bool is_mask, bool log) { u8 mac_proto = MAC_PROTO_ETHERNET; if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); } if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); } if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { SW_FLOW_KEY_PUT(match, phy.priority, nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); } if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); if (is_mask) { in_port = 0xffffffff; /* Always exact match in_port. */ } else if (in_port >= DP_MAX_PORTS) { OVS_NLERR(log, "Port %d exceeds max allowable %d", in_port, DP_MAX_PORTS); return -EINVAL; } SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); } else if (!is_mask) { SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); } if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); } if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, is_mask, log) < 0) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); } if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); if (ct_state & ~CT_SUPPORTED_MASK) { OVS_NLERR(log, "ct_state flags %08x unsupported", ct_state); return -EINVAL; } SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); } if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); } if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); } if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { const struct ovs_key_ct_labels *cl; cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, sizeof(*cl), is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); } if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { const struct ovs_key_ct_tuple_ipv4 *ct; ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); } if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { const struct ovs_key_ct_tuple_ipv6 *ct; ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, sizeof(match->key->ipv6.ct_orig.src), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, sizeof(match->key->ipv6.ct_orig.dst), is_mask); SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); } /* For layer 3 packets the Ethernet type is provided * and treated as metadata but no MAC addresses are provided. */ if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) mac_proto = MAC_PROTO_NONE; /* Always exact match mac_proto */ SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); if (mac_proto == MAC_PROTO_NONE) return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, log); return 0; } int nsh_hdr_from_nlattr(const struct nlattr *attr, struct nshhdr *nh, size_t size) { struct nlattr *a; int rem; u8 flags = 0; u8 ttl = 0; int mdlen = 0; /* validate_nsh has check this, so we needn't do duplicate check here */ if (size < NSH_BASE_HDR_LEN) return -ENOBUFS; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); switch (type) { case OVS_NSH_KEY_ATTR_BASE: { const struct ovs_nsh_key_base *base = nla_data(a); flags = base->flags; ttl = base->ttl; nh->np = base->np; nh->mdtype = base->mdtype; nh->path_hdr = base->path_hdr; break; } case OVS_NSH_KEY_ATTR_MD1: mdlen = nla_len(a); if (mdlen > size - NSH_BASE_HDR_LEN) return -ENOBUFS; memcpy(&nh->md1, nla_data(a), mdlen); break; case OVS_NSH_KEY_ATTR_MD2: mdlen = nla_len(a); if (mdlen > size - NSH_BASE_HDR_LEN) return -ENOBUFS; memcpy(&nh->md2, nla_data(a), mdlen); break; default: return -EINVAL; } } /* nsh header length = NSH_BASE_HDR_LEN + mdlen */ nh->ver_flags_ttl_len = 0; nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen); return 0; } int nsh_key_from_nlattr(const struct nlattr *attr, struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask) { struct nlattr *a; int rem; /* validate_nsh has check this, so we needn't do duplicate check here */ nla_for_each_nested(a, attr, rem) { int type = nla_type(a); switch (type) { case OVS_NSH_KEY_ATTR_BASE: { const struct ovs_nsh_key_base *base = nla_data(a); const struct ovs_nsh_key_base *base_mask = base + 1; nsh->base = *base; nsh_mask->base = *base_mask; break; } case OVS_NSH_KEY_ATTR_MD1: { const struct ovs_nsh_key_md1 *md1 = nla_data(a); const struct ovs_nsh_key_md1 *md1_mask = md1 + 1; memcpy(nsh->context, md1->context, sizeof(*md1)); memcpy(nsh_mask->context, md1_mask->context, sizeof(*md1_mask)); break; } case OVS_NSH_KEY_ATTR_MD2: /* Not supported yet */ return -ENOTSUPP; default: return -EINVAL; } } return 0; } static int nsh_key_put_from_nlattr(const struct nlattr *attr, struct sw_flow_match *match, bool is_mask, bool is_push_nsh, bool log) { struct nlattr *a; int rem; bool has_base = false; bool has_md1 = false; bool has_md2 = false; u8 mdtype = 0; int mdlen = 0; if (WARN_ON(is_push_nsh && is_mask)) return -EINVAL; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); int i; if (type > OVS_NSH_KEY_ATTR_MAX) { OVS_NLERR(log, "nsh attr %d is out of range max %d", type, OVS_NSH_KEY_ATTR_MAX); return -EINVAL; } if (!check_attr_len(nla_len(a), ovs_nsh_key_attr_lens[type].len)) { OVS_NLERR( log, "nsh attr %d has unexpected len %d expected %d", type, nla_len(a), ovs_nsh_key_attr_lens[type].len ); return -EINVAL; } switch (type) { case OVS_NSH_KEY_ATTR_BASE: { const struct ovs_nsh_key_base *base = nla_data(a); has_base = true; mdtype = base->mdtype; SW_FLOW_KEY_PUT(match, nsh.base.flags, base->flags, is_mask); SW_FLOW_KEY_PUT(match, nsh.base.ttl, base->ttl, is_mask); SW_FLOW_KEY_PUT(match, nsh.base.mdtype, base->mdtype, is_mask); SW_FLOW_KEY_PUT(match, nsh.base.np, base->np, is_mask); SW_FLOW_KEY_PUT(match, nsh.base.path_hdr, base->path_hdr, is_mask); break; } case OVS_NSH_KEY_ATTR_MD1: { const struct ovs_nsh_key_md1 *md1 = nla_data(a); has_md1 = true; for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) SW_FLOW_KEY_PUT(match, nsh.context[i], md1->context[i], is_mask); break; } case OVS_NSH_KEY_ATTR_MD2: if (!is_push_nsh) /* Not supported MD type 2 yet */ return -ENOTSUPP; has_md2 = true; mdlen = nla_len(a); if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) { OVS_NLERR( log, "Invalid MD length %d for MD type %d", mdlen, mdtype ); return -EINVAL; } break; default: OVS_NLERR(log, "Unknown nsh attribute %d", type); return -EINVAL; } } if (rem > 0) { OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem); return -EINVAL; } if (has_md1 && has_md2) { OVS_NLERR( 1, "invalid nsh attribute: md1 and md2 are exclusive." ); return -EINVAL; } if (!is_mask) { if ((has_md1 && mdtype != NSH_M_TYPE1) || (has_md2 && mdtype != NSH_M_TYPE2)) { OVS_NLERR(1, "nsh attribute has unmatched MD type %d.", mdtype); return -EINVAL; } if (is_push_nsh && (!has_base || (!has_md1 && !has_md2))) { OVS_NLERR( 1, "push_nsh: missing base or metadata attributes" ); return -EINVAL; } } return 0; } static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, u64 attrs, const struct nlattr **a, bool is_mask, bool log) { int err; err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); if (err) return err; if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { const struct ovs_key_ethernet *eth_key; eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); SW_FLOW_KEY_MEMCPY(match, eth.src, eth_key->eth_src, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, eth.dst, eth_key->eth_dst, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { /* VLAN attribute is always parsed before getting here since it * may occur multiple times. */ OVS_NLERR(log, "VLAN attribute unexpected."); return -EINVAL; } if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, log); if (err) return err; } else if (!is_mask) { SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); } } else if (!match->key->eth.type) { OVS_NLERR(log, "Either Ethernet header or EtherType is required."); return -EINVAL; } if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { const struct ovs_key_ipv4 *ipv4_key; ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); return -EINVAL; } SW_FLOW_KEY_PUT(match, ip.proto, ipv4_key->ipv4_proto, is_mask); SW_FLOW_KEY_PUT(match, ip.tos, ipv4_key->ipv4_tos, is_mask); SW_FLOW_KEY_PUT(match, ip.ttl, ipv4_key->ipv4_ttl, is_mask); SW_FLOW_KEY_PUT(match, ip.frag, ipv4_key->ipv4_frag, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.src, ipv4_key->ipv4_src, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.dst, ipv4_key->ipv4_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_IPV4); } if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { const struct ovs_key_ipv6 *ipv6_key; ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); return -EINVAL; } if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)", ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); return -EINVAL; } SW_FLOW_KEY_PUT(match, ipv6.label, ipv6_key->ipv6_label, is_mask); SW_FLOW_KEY_PUT(match, ip.proto, ipv6_key->ipv6_proto, is_mask); SW_FLOW_KEY_PUT(match, ip.tos, ipv6_key->ipv6_tclass, is_mask); SW_FLOW_KEY_PUT(match, ip.ttl, ipv6_key->ipv6_hlimit, is_mask); SW_FLOW_KEY_PUT(match, ip.frag, ipv6_key->ipv6_frag, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, ipv6_key->ipv6_src, sizeof(match->key->ipv6.addr.src), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, ipv6_key->ipv6_dst, sizeof(match->key->ipv6.addr.dst), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_IPV6); } if (attrs & (1 << OVS_KEY_ATTR_ARP)) { const struct ovs_key_arp *arp_key; arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); if (!is_mask && (arp_key->arp_op & htons(0xff00))) { OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", arp_key->arp_op); return -EINVAL; } SW_FLOW_KEY_PUT(match, ipv4.addr.src, arp_key->arp_sip, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.dst, arp_key->arp_tip, is_mask); SW_FLOW_KEY_PUT(match, ip.proto, ntohs(arp_key->arp_op), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ARP); } if (attrs & (1 << OVS_KEY_ATTR_NSH)) { if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match, is_mask, false, log) < 0) return -EINVAL; attrs &= ~(1 << OVS_KEY_ATTR_NSH); } if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { const struct ovs_key_mpls *mpls_key; u32 hdr_len; u32 label_count, label_count_mask, i; mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]); label_count = hdr_len / sizeof(struct ovs_key_mpls); if (label_count == 0 || label_count > MPLS_LABEL_DEPTH || hdr_len % sizeof(struct ovs_key_mpls)) return -EINVAL; label_count_mask = GENMASK(label_count - 1, 0); for (i = 0 ; i < label_count; i++) SW_FLOW_KEY_PUT(match, mpls.lse[i], mpls_key[i].mpls_lse, is_mask); SW_FLOW_KEY_PUT(match, mpls.num_labels_mask, label_count_mask, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_MPLS); } if (attrs & (1 << OVS_KEY_ATTR_TCP)) { const struct ovs_key_tcp *tcp_key; tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_TCP); } if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { SW_FLOW_KEY_PUT(match, tp.flags, nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); } if (attrs & (1 << OVS_KEY_ATTR_UDP)) { const struct ovs_key_udp *udp_key; udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_UDP); } if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { const struct ovs_key_sctp *sctp_key; sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_SCTP); } if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { const struct ovs_key_icmp *icmp_key; icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); SW_FLOW_KEY_PUT(match, tp.src, htons(icmp_key->icmp_type), is_mask); SW_FLOW_KEY_PUT(match, tp.dst, htons(icmp_key->icmp_code), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ICMP); } if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { const struct ovs_key_icmpv6 *icmpv6_key; icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); SW_FLOW_KEY_PUT(match, tp.src, htons(icmpv6_key->icmpv6_type), is_mask); SW_FLOW_KEY_PUT(match, tp.dst, htons(icmpv6_key->icmpv6_code), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); } if (attrs & (1 << OVS_KEY_ATTR_ND)) { const struct ovs_key_nd *nd_key; nd_key = nla_data(a[OVS_KEY_ATTR_ND]); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, nd_key->nd_target, sizeof(match->key->ipv6.nd.target), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ND); } if (attrs != 0) { OVS_NLERR(log, "Unknown key attributes %llx", (unsigned long long)attrs); return -EINVAL; } return 0; } static void nlattr_set(struct nlattr *attr, u8 val, const struct ovs_len_tbl *tbl) { struct nlattr *nla; int rem; /* The nlattr stream should already have been validated */ nla_for_each_nested(nla, attr, rem) { if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl); else memset(nla_data(nla), val, nla_len(nla)); if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; } } static void mask_set_nlattr(struct nlattr *attr, u8 val) { nlattr_set(attr, val, ovs_key_lens); } /** * ovs_nla_get_match - parses Netlink attributes into a flow key and * mask. In case the 'mask' is NULL, the flow is treated as exact match * flow. Otherwise, it is treated as a wildcarded flow, except the mask * does not include any don't care bit. * @net: Used to determine per-namespace field support. * @match: receives the extracted flow match information. * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute * sequence. The fields should of the packet that triggered the creation * of this flow. * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink * attribute specifies the mask field of the wildcarded flow. * @log: Boolean to allow kernel error logging. Normally true, but when * probing for feature compatibility this should be passed in as false to * suppress unnecessary error logging. */ int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, const struct nlattr *nla_key, const struct nlattr *nla_mask, bool log) { const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; struct nlattr *newmask = NULL; u64 key_attrs = 0; u64 mask_attrs = 0; int err; err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); if (err) return err; err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); if (err) return err; err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); if (err) return err; if (match->mask) { if (!nla_mask) { /* Create an exact match mask. We need to set to 0xff * all the 'match->mask' fields that have been touched * in 'match->key'. We cannot simply memset * 'match->mask', because padding bytes and fields not * specified in 'match->key' should be left to 0. * Instead, we use a stream of netlink attributes, * copied from 'key' and set to 0xff. * ovs_key_from_nlattrs() will take care of filling * 'match->mask' appropriately. */ newmask = kmemdup(nla_key, nla_total_size(nla_len(nla_key)), GFP_KERNEL); if (!newmask) return -ENOMEM; mask_set_nlattr(newmask, 0xff); /* The userspace does not send tunnel attributes that * are 0, but we should not wildcard them nonetheless. */ if (match->key->tun_proto) SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 0xff, true); nla_mask = newmask; } err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); if (err) goto free_newmask; /* Always match on tci. */ SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); if (err) goto free_newmask; err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, log); if (err) goto free_newmask; } if (!match_validate(match, key_attrs, mask_attrs, log)) err = -EINVAL; free_newmask: kfree(newmask); return err; } static size_t get_ufid_len(const struct nlattr *attr, bool log) { size_t len; if (!attr) return 0; len = nla_len(attr); if (len < 1 || len > MAX_UFID_LENGTH) { OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", nla_len(attr), MAX_UFID_LENGTH); return 0; } return len; } /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, * or false otherwise. */ bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, bool log) { sfid->ufid_len = get_ufid_len(attr, log); if (sfid->ufid_len) memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); return sfid->ufid_len; } int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, const struct sw_flow_key *key, bool log) { struct sw_flow_key *new_key; if (ovs_nla_get_ufid(sfid, ufid, log)) return 0; /* If UFID was not provided, use unmasked key. */ new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); if (!new_key) return -ENOMEM; memcpy(new_key, key, sizeof(*key)); sfid->unmasked_key = new_key; return 0; } u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) { return attr ? nla_get_u32(attr) : 0; } /** * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. * @net: Network namespace. * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack * metadata. * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink * attributes. * @attrs: Bit mask for the netlink attributes included in @a. * @log: Boolean to allow kernel error logging. Normally true, but when * probing for feature compatibility this should be passed in as false to * suppress unnecessary error logging. * * This parses a series of Netlink attributes that form a flow key, which must * take the same form accepted by flow_from_nlattrs(), but only enough of it to * get the metadata, that is, the parts of the flow key that cannot be * extracted from the packet itself. * * This must be called before the packet key fields are filled in 'key'. */ int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], u64 attrs, struct sw_flow_key *key, bool log) { struct sw_flow_match match; memset(&match, 0, sizeof(match)); match.key = key; key->ct_state = 0; key->ct_zone = 0; key->ct_orig_proto = 0; memset(&key->ct, 0, sizeof(key->ct)); memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); key->phy.in_port = DP_MAX_PORTS; return metadata_from_nlattrs(net, &match, &attrs, a, false, log); } static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, bool is_mask) { __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) return -EMSGSIZE; return 0; } static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask, struct sk_buff *skb) { struct nlattr *start; start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH); if (!start) return -EMSGSIZE; if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base)) goto nla_put_failure; if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) { if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1, sizeof(nsh->context), nsh->context)) goto nla_put_failure; } /* Don't support MD type 2 yet */ nla_nest_end(skb, start); return 0; nla_put_failure: return -EMSGSIZE; } static int __ovs_nla_put_key(const struct sw_flow_key *swkey, const struct sw_flow_key *output, bool is_mask, struct sk_buff *skb) { struct ovs_key_ethernet *eth_key; struct nlattr *nla; struct nlattr *encap = NULL; struct nlattr *in_encap = NULL; if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) goto nla_put_failure; if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) goto nla_put_failure; if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) goto nla_put_failure; if ((swkey->tun_proto || is_mask)) { const void *opts = NULL; if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); if (ip_tun_to_nlattr(skb, &output->tun_key, opts, swkey->tun_opts_len, swkey->tun_proto, 0)) goto nla_put_failure; } if (swkey->phy.in_port == DP_MAX_PORTS) { if (is_mask && (output->phy.in_port == 0xffff)) if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) goto nla_put_failure; } else { u16 upper_u16; upper_u16 = !is_mask ? 0 : 0xffff; if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, (upper_u16 << 16) | output->phy.in_port)) goto nla_put_failure; } if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) goto nla_put_failure; if (ovs_ct_put_key(swkey, output, skb)) goto nla_put_failure; if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); if (!nla) goto nla_put_failure; eth_key = nla_data(nla); ether_addr_copy(eth_key->eth_src, output->eth.src); ether_addr_copy(eth_key->eth_dst, output->eth.dst); if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) goto nla_put_failure; encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP); if (!swkey->eth.vlan.tci) goto unencap; if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) goto nla_put_failure; in_encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP); if (!swkey->eth.cvlan.tci) goto unencap; } } if (swkey->eth.type == htons(ETH_P_802_2)) { /* * Ethertype 802.2 is represented in the netlink with omitted * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and * 0xffff in the mask attribute. Ethertype can also * be wildcarded. */ if (is_mask && output->eth.type) if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) goto nla_put_failure; goto unencap; } } if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) goto nla_put_failure; if (eth_type_vlan(swkey->eth.type)) { /* There are 3 VLAN tags, we don't know anything about the rest * of the packet, so truncate here. */ WARN_ON_ONCE(!(encap && in_encap)); goto unencap; } if (swkey->eth.type == htons(ETH_P_IP)) { struct ovs_key_ipv4 *ipv4_key; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); if (!nla) goto nla_put_failure; ipv4_key = nla_data(nla); ipv4_key->ipv4_src = output->ipv4.addr.src; ipv4_key->ipv4_dst = output->ipv4.addr.dst; ipv4_key->ipv4_proto = output->ip.proto; ipv4_key->ipv4_tos = output->ip.tos; ipv4_key->ipv4_ttl = output->ip.ttl; ipv4_key->ipv4_frag = output->ip.frag; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { struct ovs_key_ipv6 *ipv6_key; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); if (!nla) goto nla_put_failure; ipv6_key = nla_data(nla); memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, sizeof(ipv6_key->ipv6_src)); memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, sizeof(ipv6_key->ipv6_dst)); ipv6_key->ipv6_label = output->ipv6.label; ipv6_key->ipv6_proto = output->ip.proto; ipv6_key->ipv6_tclass = output->ip.tos; ipv6_key->ipv6_hlimit = output->ip.ttl; ipv6_key->ipv6_frag = output->ip.frag; } else if (swkey->eth.type == htons(ETH_P_NSH)) { if (nsh_key_to_nlattr(&output->nsh, is_mask, skb)) goto nla_put_failure; } else if (swkey->eth.type == htons(ETH_P_ARP) || swkey->eth.type == htons(ETH_P_RARP)) { struct ovs_key_arp *arp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); if (!nla) goto nla_put_failure; arp_key = nla_data(nla); memset(arp_key, 0, sizeof(struct ovs_key_arp)); arp_key->arp_sip = output->ipv4.addr.src; arp_key->arp_tip = output->ipv4.addr.dst; arp_key->arp_op = htons(output->ip.proto); ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); } else if (eth_p_mpls(swkey->eth.type)) { u8 i, num_labels; struct ovs_key_mpls *mpls_key; num_labels = hweight_long(output->mpls.num_labels_mask); nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, num_labels * sizeof(*mpls_key)); if (!nla) goto nla_put_failure; mpls_key = nla_data(nla); for (i = 0; i < num_labels; i++) mpls_key[i].mpls_lse = output->mpls.lse[i]; } if ((swkey->eth.type == htons(ETH_P_IP) || swkey->eth.type == htons(ETH_P_IPV6)) && swkey->ip.frag != OVS_FRAG_TYPE_LATER) { if (swkey->ip.proto == IPPROTO_TCP) { struct ovs_key_tcp *tcp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); if (!nla) goto nla_put_failure; tcp_key = nla_data(nla); tcp_key->tcp_src = output->tp.src; tcp_key->tcp_dst = output->tp.dst; if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, output->tp.flags)) goto nla_put_failure; } else if (swkey->ip.proto == IPPROTO_UDP) { struct ovs_key_udp *udp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); if (!nla) goto nla_put_failure; udp_key = nla_data(nla); udp_key->udp_src = output->tp.src; udp_key->udp_dst = output->tp.dst; } else if (swkey->ip.proto == IPPROTO_SCTP) { struct ovs_key_sctp *sctp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); if (!nla) goto nla_put_failure; sctp_key = nla_data(nla); sctp_key->sctp_src = output->tp.src; sctp_key->sctp_dst = output->tp.dst; } else if (swkey->eth.type == htons(ETH_P_IP) && swkey->ip.proto == IPPROTO_ICMP) { struct ovs_key_icmp *icmp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); if (!nla) goto nla_put_failure; icmp_key = nla_data(nla); icmp_key->icmp_type = ntohs(output->tp.src); icmp_key->icmp_code = ntohs(output->tp.dst); } else if (swkey->eth.type == htons(ETH_P_IPV6) && swkey->ip.proto == IPPROTO_ICMPV6) { struct ovs_key_icmpv6 *icmpv6_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, sizeof(*icmpv6_key)); if (!nla) goto nla_put_failure; icmpv6_key = nla_data(nla); icmpv6_key->icmpv6_type = ntohs(output->tp.src); icmpv6_key->icmpv6_code = ntohs(output->tp.dst); if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { struct ovs_key_nd *nd_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); if (!nla) goto nla_put_failure; nd_key = nla_data(nla); memcpy(nd_key->nd_target, &output->ipv6.nd.target, sizeof(nd_key->nd_target)); ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); } } } unencap: if (in_encap) nla_nest_end(skb, in_encap); if (encap) nla_nest_end(skb, encap); return 0; nla_put_failure: return -EMSGSIZE; } int ovs_nla_put_key(const struct sw_flow_key *swkey, const struct sw_flow_key *output, int attr, bool is_mask, struct sk_buff *skb) { int err; struct nlattr *nla; nla = nla_nest_start_noflag(skb, attr); if (!nla) return -EMSGSIZE; err = __ovs_nla_put_key(swkey, output, is_mask, skb); if (err) return err; nla_nest_end(skb, nla); return 0; } /* Called with ovs_mutex or RCU read lock. */ int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) { if (ovs_identifier_is_ufid(&flow->id)) return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, flow->id.ufid); return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, OVS_FLOW_ATTR_KEY, false, skb); } /* Called with ovs_mutex or RCU read lock. */ int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) { return ovs_nla_put_key(&flow->key, &flow->key, OVS_FLOW_ATTR_KEY, false, skb); } /* Called with ovs_mutex or RCU read lock. */ int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) { return ovs_nla_put_key(&flow->key, &flow->mask->key, OVS_FLOW_ATTR_MASK, true, skb); } #define MAX_ACTIONS_BUFSIZE (32 * 1024) static struct sw_flow_actions *nla_alloc_flow_actions(int size) { struct sw_flow_actions *sfa; WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE); sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); if (!sfa) return ERR_PTR(-ENOMEM); sfa->actions_len = 0; return sfa; } static void ovs_nla_free_set_action(const struct nlattr *a) { const struct nlattr *ovs_key = nla_data(a); struct ovs_tunnel_info *ovs_tun; switch (nla_type(ovs_key)) { case OVS_KEY_ATTR_TUNNEL_INFO: ovs_tun = nla_data(ovs_key); dst_release((struct dst_entry *)ovs_tun->tun_dst); break; } } void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) { const struct nlattr *a; int rem; if (!sf_acts) return; nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { switch (nla_type(a)) { case OVS_ACTION_ATTR_SET: ovs_nla_free_set_action(a); break; case OVS_ACTION_ATTR_CT: ovs_ct_free_action(a); break; } } kfree(sf_acts); } static void __ovs_nla_free_flow_actions(struct rcu_head *head) { ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); } /* Schedules 'sf_acts' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) { call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); } static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, int attr_len, bool log) { struct sw_flow_actions *acts; int new_acts_size; size_t req_size = NLA_ALIGN(attr_len); int next_offset = offsetof(struct sw_flow_actions, actions) + (*sfa)->actions_len; if (req_size <= (ksize(*sfa) - next_offset)) goto out; new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2); if (new_acts_size > MAX_ACTIONS_BUFSIZE) { if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) { OVS_NLERR(log, "Flow action size exceeds max %u", MAX_ACTIONS_BUFSIZE); return ERR_PTR(-EMSGSIZE); } new_acts_size = MAX_ACTIONS_BUFSIZE; } acts = nla_alloc_flow_actions(new_acts_size); if (IS_ERR(acts)) return (void *)acts; memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); acts->actions_len = (*sfa)->actions_len; acts->orig_len = (*sfa)->orig_len; kfree(*sfa); *sfa = acts; out: (*sfa)->actions_len += req_size; return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); } static struct nlattr *__add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len, bool log) { struct nlattr *a; a = reserve_sfa_size(sfa, nla_attr_size(len), log); if (IS_ERR(a)) return a; a->nla_type = attrtype; a->nla_len = nla_attr_size(len); if (data) memcpy(nla_data(a), data, len); memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); return a; } int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, int len, bool log) { struct nlattr *a; a = __add_action(sfa, attrtype, data, len, log); return PTR_ERR_OR_ZERO(a); } static inline int add_nested_action_start(struct sw_flow_actions **sfa, int attrtype, bool log) { int used = (*sfa)->actions_len; int err; err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); if (err) return err; return used; } static inline void add_nested_action_end(struct sw_flow_actions *sfa, int st_offset) { struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + st_offset); a->nla_len = sfa->actions_len - st_offset; } static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log); static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log, bool last) { const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; const struct nlattr *probability, *actions; const struct nlattr *a; int rem, start, err; struct sample_arg arg; memset(attrs, 0, sizeof(attrs)); nla_for_each_nested(a, attr, rem) { int type = nla_type(a); if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) return -EINVAL; attrs[type] = a; } if (rem) return -EINVAL; probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; if (!probability || nla_len(probability) != sizeof(u32)) return -EINVAL; actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) return -EINVAL; /* validation done, copy sample action. */ start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); if (start < 0) return start; /* When both skb and flow may be changed, put the sample * into a deferred fifo. On the other hand, if only skb * may be modified, the actions can be executed in place. * * Do this analysis at the flow installation time. * Set 'clone_action->exec' to true if the actions can be * executed without being deferred. * * If the sample is the last action, it can always be excuted * rather than deferred. */ arg.exec = last || !actions_may_change_flow(actions); arg.probability = nla_get_u32(probability); err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg), log); if (err) return err; err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, start); return 0; } static int validate_and_copy_dec_ttl(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log) { int start, err; u32 nested = true; if (!nla_len(attr)) return ovs_nla_add_action(sfa, OVS_ACTION_ATTR_DEC_TTL, NULL, 0, log); start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log); if (start < 0) return start; err = ovs_nla_add_action(sfa, OVS_DEC_TTL_ATTR_ACTION, &nested, sizeof(nested), log); if (err) return err; err = __ovs_nla_copy_actions(net, attr, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, start); return 0; } static int validate_and_copy_clone(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log, bool last) { int start, err; u32 exec; if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN) return -EINVAL; start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log); if (start < 0) return start; exec = last || !actions_may_change_flow(attr); err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec, sizeof(exec), log); if (err) return err; err = __ovs_nla_copy_actions(net, attr, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, start); return 0; } void ovs_match_init(struct sw_flow_match *match, struct sw_flow_key *key, bool reset_key, struct sw_flow_mask *mask) { memset(match, 0, sizeof(*match)); match->key = key; match->mask = mask; if (reset_key) memset(key, 0, sizeof(*key)); if (mask) { memset(&mask->key, 0, sizeof(mask->key)); mask->range.start = mask->range.end = 0; } } static int validate_geneve_opts(struct sw_flow_key *key) { struct geneve_opt *option; int opts_len = key->tun_opts_len; bool crit_opt = false; option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); while (opts_len > 0) { int len; if (opts_len < sizeof(*option)) return -EINVAL; len = sizeof(*option) + option->length * 4; if (len > opts_len) return -EINVAL; crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); option = (struct geneve_opt *)((u8 *)option + len); opts_len -= len; } key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; return 0; } static int validate_and_copy_set_tun(const struct nlattr *attr, struct sw_flow_actions **sfa, bool log) { struct sw_flow_match match; struct sw_flow_key key; struct metadata_dst *tun_dst; struct ip_tunnel_info *tun_info; struct ovs_tunnel_info *ovs_tun; struct nlattr *a; int err = 0, start, opts_type; __be16 dst_opt_type; dst_opt_type = 0; ovs_match_init(&match, &key, true, NULL); opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); if (opts_type < 0) return opts_type; if (key.tun_opts_len) { switch (opts_type) { case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: err = validate_geneve_opts(&key); if (err < 0) return err; dst_opt_type = TUNNEL_GENEVE_OPT; break; case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: dst_opt_type = TUNNEL_VXLAN_OPT; break; case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: dst_opt_type = TUNNEL_ERSPAN_OPT; break; } } start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); if (start < 0) return start; tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL, GFP_KERNEL); if (!tun_dst) return -ENOMEM; err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); if (err) { dst_release((struct dst_entry *)tun_dst); return err; } a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, sizeof(*ovs_tun), log); if (IS_ERR(a)) { dst_release((struct dst_entry *)tun_dst); return PTR_ERR(a); } ovs_tun = nla_data(a); ovs_tun->tun_dst = tun_dst; tun_info = &tun_dst->u.tun_info; tun_info->mode = IP_TUNNEL_INFO_TX; if (key.tun_proto == AF_INET6) tun_info->mode |= IP_TUNNEL_INFO_IPV6; else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0) tun_info->mode |= IP_TUNNEL_INFO_BRIDGE; tun_info->key = key.tun_key; /* We need to store the options in the action itself since * everything else will go away after flow setup. We can append * it to tun_info and then point there. */ ip_tunnel_info_opts_set(tun_info, TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len, dst_opt_type); add_nested_action_end(*sfa, start); return err; } static bool validate_nsh(const struct nlattr *attr, bool is_mask, bool is_push_nsh, bool log) { struct sw_flow_match match; struct sw_flow_key key; int ret = 0; ovs_match_init(&match, &key, true, NULL); ret = nsh_key_put_from_nlattr(attr, &match, is_mask, is_push_nsh, log); return !ret; } /* Return false if there are any non-masked bits set. * Mask follows data immediately, before any netlink padding. */ static bool validate_masked(u8 *data, int len) { u8 *mask = data + len; while (len--) if (*data++ & ~*mask++) return false; return true; } static int validate_set(const struct nlattr *a, const struct sw_flow_key *flow_key, struct sw_flow_actions **sfa, bool *skip_copy, u8 mac_proto, __be16 eth_type, bool masked, bool log) { const struct nlattr *ovs_key = nla_data(a); int key_type = nla_type(ovs_key); size_t key_len; /* There can be only one key in a action */ if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) return -EINVAL; key_len = nla_len(ovs_key); if (masked) key_len /= 2; if (key_type > OVS_KEY_ATTR_MAX || !check_attr_len(key_len, ovs_key_lens[key_type].len)) return -EINVAL; if (masked && !validate_masked(nla_data(ovs_key), key_len)) return -EINVAL; switch (key_type) { case OVS_KEY_ATTR_PRIORITY: case OVS_KEY_ATTR_SKB_MARK: case OVS_KEY_ATTR_CT_MARK: case OVS_KEY_ATTR_CT_LABELS: break; case OVS_KEY_ATTR_ETHERNET: if (mac_proto != MAC_PROTO_ETHERNET) return -EINVAL; break; case OVS_KEY_ATTR_TUNNEL: { int err; if (masked) return -EINVAL; /* Masked tunnel set not supported. */ *skip_copy = true; err = validate_and_copy_set_tun(a, sfa, log); if (err) return err; break; } case OVS_KEY_ATTR_IPV4: { const struct ovs_key_ipv4 *ipv4_key; if (eth_type != htons(ETH_P_IP)) return -EINVAL; ipv4_key = nla_data(ovs_key); if (masked) { const struct ovs_key_ipv4 *mask = ipv4_key + 1; /* Non-writeable fields. */ if (mask->ipv4_proto || mask->ipv4_frag) return -EINVAL; } else { if (ipv4_key->ipv4_proto != flow_key->ip.proto) return -EINVAL; if (ipv4_key->ipv4_frag != flow_key->ip.frag) return -EINVAL; } break; } case OVS_KEY_ATTR_IPV6: { const struct ovs_key_ipv6 *ipv6_key; if (eth_type != htons(ETH_P_IPV6)) return -EINVAL; ipv6_key = nla_data(ovs_key); if (masked) { const struct ovs_key_ipv6 *mask = ipv6_key + 1; /* Non-writeable fields. */ if (mask->ipv6_proto || mask->ipv6_frag) return -EINVAL; /* Invalid bits in the flow label mask? */ if (ntohl(mask->ipv6_label) & 0xFFF00000) return -EINVAL; } else { if (ipv6_key->ipv6_proto != flow_key->ip.proto) return -EINVAL; if (ipv6_key->ipv6_frag != flow_key->ip.frag) return -EINVAL; } if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) return -EINVAL; break; } case OVS_KEY_ATTR_TCP: if ((eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6)) || flow_key->ip.proto != IPPROTO_TCP) return -EINVAL; break; case OVS_KEY_ATTR_UDP: if ((eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6)) || flow_key->ip.proto != IPPROTO_UDP) return -EINVAL; break; case OVS_KEY_ATTR_MPLS: if (!eth_p_mpls(eth_type)) return -EINVAL; break; case OVS_KEY_ATTR_SCTP: if ((eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6)) || flow_key->ip.proto != IPPROTO_SCTP) return -EINVAL; break; case OVS_KEY_ATTR_NSH: if (eth_type != htons(ETH_P_NSH)) return -EINVAL; if (!validate_nsh(nla_data(a), masked, false, log)) return -EINVAL; break; default: return -EINVAL; } /* Convert non-masked non-tunnel set actions to masked set actions. */ if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { int start, len = key_len * 2; struct nlattr *at; *skip_copy = true; start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET_TO_MASKED, log); if (start < 0) return start; at = __add_action(sfa, key_type, NULL, len, log); if (IS_ERR(at)) return PTR_ERR(at); memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ /* Clear non-writeable bits from otherwise writeable fields. */ if (key_type == OVS_KEY_ATTR_IPV6) { struct ovs_key_ipv6 *mask = nla_data(at) + key_len; mask->ipv6_label &= htonl(0x000FFFFF); } add_nested_action_end(*sfa, start); } return 0; } static int validate_userspace(const struct nlattr *attr) { static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, }; struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; int error; error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr, userspace_policy, NULL); if (error) return error; if (!a[OVS_USERSPACE_ATTR_PID] || !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) return -EINVAL; return 0; } static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = { [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 }, [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED }, [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED }, }; static int validate_and_copy_check_pkt_len(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log, bool last) { const struct nlattr *acts_if_greater, *acts_if_lesser_eq; struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1]; struct check_pkt_len_arg arg; int nested_acts_start; int start, err; err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX, nla_data(attr), nla_len(attr), cpl_policy, NULL); if (err) return err; if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] || !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN])) return -EINVAL; acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL]; acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER]; /* Both the nested action should be present. */ if (!acts_if_greater || !acts_if_lesser_eq) return -EINVAL; /* validation done, copy the nested actions. */ start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN, log); if (start < 0) return start; arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]); arg.exec_for_lesser_equal = last || !actions_may_change_flow(acts_if_lesser_eq); arg.exec_for_greater = last || !actions_may_change_flow(acts_if_greater); err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg, sizeof(arg), log); if (err) return err; nested_acts_start = add_nested_action_start(sfa, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log); if (nested_acts_start < 0) return nested_acts_start; err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, nested_acts_start); nested_acts_start = add_nested_action_start(sfa, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log); if (nested_acts_start < 0) return nested_acts_start; err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; add_nested_action_end(*sfa, nested_acts_start); add_nested_action_end(*sfa, start); return 0; } static int copy_action(const struct nlattr *from, struct sw_flow_actions **sfa, bool log) { int totlen = NLA_ALIGN(from->nla_len); struct nlattr *to; to = reserve_sfa_size(sfa, from->nla_len, log); if (IS_ERR(to)) return PTR_ERR(to); memcpy(to, from, totlen); return 0; } static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, __be16 eth_type, __be16 vlan_tci, u32 mpls_label_count, bool log) { u8 mac_proto = ovs_key_mac_proto(key); const struct nlattr *a; int rem, err; nla_for_each_nested(a, attr, rem) { /* Expected argument lengths, (u32)-1 for variable length. */ static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), [OVS_ACTION_ATTR_POP_VLAN] = 0, [OVS_ACTION_ATTR_SET] = (u32)-1, [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), [OVS_ACTION_ATTR_CT] = (u32)-1, [OVS_ACTION_ATTR_CT_CLEAR] = 0, [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), [OVS_ACTION_ATTR_POP_ETH] = 0, [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1, [OVS_ACTION_ATTR_POP_NSH] = 0, [OVS_ACTION_ATTR_METER] = sizeof(u32), [OVS_ACTION_ATTR_CLONE] = (u32)-1, [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1, [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls), [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1, }; const struct ovs_action_push_vlan *vlan; int type = nla_type(a); bool skip_copy; if (type > OVS_ACTION_ATTR_MAX || (action_lens[type] != nla_len(a) && action_lens[type] != (u32)-1)) return -EINVAL; skip_copy = false; switch (type) { case OVS_ACTION_ATTR_UNSPEC: return -EINVAL; case OVS_ACTION_ATTR_USERSPACE: err = validate_userspace(a); if (err) return err; break; case OVS_ACTION_ATTR_OUTPUT: if (nla_get_u32(a) >= DP_MAX_PORTS) return -EINVAL; break; case OVS_ACTION_ATTR_TRUNC: { const struct ovs_action_trunc *trunc = nla_data(a); if (trunc->max_len < ETH_HLEN) return -EINVAL; break; } case OVS_ACTION_ATTR_HASH: { const struct ovs_action_hash *act_hash = nla_data(a); switch (act_hash->hash_alg) { case OVS_HASH_ALG_L4: break; default: return -EINVAL; } break; } case OVS_ACTION_ATTR_POP_VLAN: if (mac_proto != MAC_PROTO_ETHERNET) return -EINVAL; vlan_tci = htons(0); break; case OVS_ACTION_ATTR_PUSH_VLAN: if (mac_proto != MAC_PROTO_ETHERNET) return -EINVAL; vlan = nla_data(a); if (!eth_type_vlan(vlan->vlan_tpid)) return -EINVAL; if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK))) return -EINVAL; vlan_tci = vlan->vlan_tci; break; case OVS_ACTION_ATTR_RECIRC: break; case OVS_ACTION_ATTR_ADD_MPLS: { const struct ovs_action_add_mpls *mpls = nla_data(a); if (!eth_p_mpls(mpls->mpls_ethertype)) return -EINVAL; if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) { if (vlan_tci & htons(VLAN_CFI_MASK) || (eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6) && eth_type != htons(ETH_P_ARP) && eth_type != htons(ETH_P_RARP) && !eth_p_mpls(eth_type))) return -EINVAL; mpls_label_count++; } else { if (mac_proto == MAC_PROTO_ETHERNET) { mpls_label_count = 1; mac_proto = MAC_PROTO_NONE; } else { mpls_label_count++; } } eth_type = mpls->mpls_ethertype; break; } case OVS_ACTION_ATTR_PUSH_MPLS: { const struct ovs_action_push_mpls *mpls = nla_data(a); if (!eth_p_mpls(mpls->mpls_ethertype)) return -EINVAL; /* Prohibit push MPLS other than to a white list * for packets that have a known tag order. */ if (vlan_tci & htons(VLAN_CFI_MASK) || (eth_type != htons(ETH_P_IP) && eth_type != htons(ETH_P_IPV6) && eth_type != htons(ETH_P_ARP) && eth_type != htons(ETH_P_RARP) && !eth_p_mpls(eth_type))) return -EINVAL; eth_type = mpls->mpls_ethertype; mpls_label_count++; break; } case OVS_ACTION_ATTR_POP_MPLS: { __be16 proto; if (vlan_tci & htons(VLAN_CFI_MASK) || !eth_p_mpls(eth_type)) return -EINVAL; /* Disallow subsequent L2.5+ set actions and mpls_pop * actions once the last MPLS label in the packet is * is popped as there is no check here to ensure that * the new eth type is valid and thus set actions could * write off the end of the packet or otherwise corrupt * it. * * Support for these actions is planned using packet * recirculation. */ proto = nla_get_be16(a); if (proto == htons(ETH_P_TEB) && mac_proto != MAC_PROTO_NONE) return -EINVAL; mpls_label_count--; if (!eth_p_mpls(proto) || !mpls_label_count) eth_type = htons(0); else eth_type = proto; break; } case OVS_ACTION_ATTR_SET: err = validate_set(a, key, sfa, &skip_copy, mac_proto, eth_type, false, log); if (err) return err; break; case OVS_ACTION_ATTR_SET_MASKED: err = validate_set(a, key, sfa, &skip_copy, mac_proto, eth_type, true, log); if (err) return err; break; case OVS_ACTION_ATTR_SAMPLE: { bool last = nla_is_last(a, rem); err = validate_and_copy_sample(net, a, key, sfa, eth_type, vlan_tci, mpls_label_count, log, last); if (err) return err; skip_copy = true; break; } case OVS_ACTION_ATTR_CT: err = ovs_ct_copy_action(net, a, key, sfa, log); if (err) return err; skip_copy = true; break; case OVS_ACTION_ATTR_CT_CLEAR: break; case OVS_ACTION_ATTR_PUSH_ETH: /* Disallow pushing an Ethernet header if one * is already present */ if (mac_proto != MAC_PROTO_NONE) return -EINVAL; mac_proto = MAC_PROTO_ETHERNET; break; case OVS_ACTION_ATTR_POP_ETH: if (mac_proto != MAC_PROTO_ETHERNET) return -EINVAL; if (vlan_tci & htons(VLAN_CFI_MASK)) return -EINVAL; mac_proto = MAC_PROTO_NONE; break; case OVS_ACTION_ATTR_PUSH_NSH: if (mac_proto != MAC_PROTO_ETHERNET) { u8 next_proto; next_proto = tun_p_from_eth_p(eth_type); if (!next_proto) return -EINVAL; } mac_proto = MAC_PROTO_NONE; if (!validate_nsh(nla_data(a), false, true, true)) return -EINVAL; break; case OVS_ACTION_ATTR_POP_NSH: { __be16 inner_proto; if (eth_type != htons(ETH_P_NSH)) return -EINVAL; inner_proto = tun_p_to_eth_p(key->nsh.base.np); if (!inner_proto) return -EINVAL; if (key->nsh.base.np == TUN_P_ETHERNET) mac_proto = MAC_PROTO_ETHERNET; else mac_proto = MAC_PROTO_NONE; break; } case OVS_ACTION_ATTR_METER: /* Non-existent meters are simply ignored. */ break; case OVS_ACTION_ATTR_CLONE: { bool last = nla_is_last(a, rem); err = validate_and_copy_clone(net, a, key, sfa, eth_type, vlan_tci, mpls_label_count, log, last); if (err) return err; skip_copy = true; break; } case OVS_ACTION_ATTR_CHECK_PKT_LEN: { bool last = nla_is_last(a, rem); err = validate_and_copy_check_pkt_len(net, a, key, sfa, eth_type, vlan_tci, mpls_label_count, log, last); if (err) return err; skip_copy = true; break; } case OVS_ACTION_ATTR_DEC_TTL: err = validate_and_copy_dec_ttl(net, a, key, sfa, eth_type, vlan_tci, mpls_label_count, log); if (err) return err; skip_copy = true; break; default: OVS_NLERR(log, "Unknown Action type %d", type); return -EINVAL; } if (!skip_copy) { err = copy_action(a, sfa, log); if (err) return err; } } if (rem > 0) return -EINVAL; return 0; } /* 'key' must be the masked key. */ int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, const struct sw_flow_key *key, struct sw_flow_actions **sfa, bool log) { int err; u32 mpls_label_count = 0; *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE)); if (IS_ERR(*sfa)) return PTR_ERR(*sfa); if (eth_p_mpls(key->eth.type)) mpls_label_count = hweight_long(key->mpls.num_labels_mask); (*sfa)->orig_len = nla_len(attr); err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type, key->eth.vlan.tci, mpls_label_count, log); if (err) ovs_nla_free_flow_actions(*sfa); return err; } static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) { struct nlattr *start, *ac_start = NULL, *sample_arg; int err = 0, rem = nla_len(attr); const struct sample_arg *arg; struct nlattr *actions; start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE); if (!start) return -EMSGSIZE; sample_arg = nla_data(attr); arg = nla_data(sample_arg); actions = nla_next(sample_arg, &rem); if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) { err = -EMSGSIZE; goto out; } ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS); if (!ac_start) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_actions(actions, rem, skb); out: if (err) { nla_nest_cancel(skb, ac_start); nla_nest_cancel(skb, start); } else { nla_nest_end(skb, ac_start); nla_nest_end(skb, start); } return err; } static int clone_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) { struct nlattr *start; int err = 0, rem = nla_len(attr); start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE); if (!start) return -EMSGSIZE; err = ovs_nla_put_actions(nla_data(attr), rem, skb); if (err) nla_nest_cancel(skb, start); else nla_nest_end(skb, start); return err; } static int check_pkt_len_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) { struct nlattr *start, *ac_start = NULL; const struct check_pkt_len_arg *arg; const struct nlattr *a, *cpl_arg; int err = 0, rem = nla_len(attr); start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN); if (!start) return -EMSGSIZE; /* The first nested attribute in 'attr' is always * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. */ cpl_arg = nla_data(attr); arg = nla_data(cpl_arg); if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) { err = -EMSGSIZE; goto out; } /* Second nested attribute in 'attr' is always * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. */ a = nla_next(cpl_arg, &rem); ac_start = nla_nest_start_noflag(skb, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL); if (!ac_start) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); if (err) { nla_nest_cancel(skb, ac_start); goto out; } else { nla_nest_end(skb, ac_start); } /* Third nested attribute in 'attr' is always * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER. */ a = nla_next(a, &rem); ac_start = nla_nest_start_noflag(skb, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER); if (!ac_start) { err = -EMSGSIZE; goto out; } err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); if (err) { nla_nest_cancel(skb, ac_start); goto out; } else { nla_nest_end(skb, ac_start); } nla_nest_end(skb, start); return 0; out: nla_nest_cancel(skb, start); return err; } static int dec_ttl_action_to_attr(const struct nlattr *attr, struct sk_buff *skb) { int err = 0, rem = nla_len(attr); struct nlattr *start; start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL); if (!start) return -EMSGSIZE; err = ovs_nla_put_actions(nla_data(attr), rem, skb); if (err) nla_nest_cancel(skb, start); else nla_nest_end(skb, start); return err; } static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) { const struct nlattr *ovs_key = nla_data(a); int key_type = nla_type(ovs_key); struct nlattr *start; int err; switch (key_type) { case OVS_KEY_ATTR_TUNNEL_INFO: { struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET); if (!start) return -EMSGSIZE; err = ip_tun_to_nlattr(skb, &tun_info->key, ip_tunnel_info_opts(tun_info), tun_info->options_len, ip_tunnel_info_af(tun_info), tun_info->mode); if (err) return err; nla_nest_end(skb, start); break; } default: if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) return -EMSGSIZE; break; } return 0; } static int masked_set_action_to_set_action_attr(const struct nlattr *a, struct sk_buff *skb) { const struct nlattr *ovs_key = nla_data(a); struct nlattr *nla; size_t key_len = nla_len(ovs_key) / 2; /* Revert the conversion we did from a non-masked set action to * masked set action. */ nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET); if (!nla) return -EMSGSIZE; if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) return -EMSGSIZE; nla_nest_end(skb, nla); return 0; } int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) { const struct nlattr *a; int rem, err; nla_for_each_attr(a, attr, len, rem) { int type = nla_type(a); switch (type) { case OVS_ACTION_ATTR_SET: err = set_action_to_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_SET_TO_MASKED: err = masked_set_action_to_set_action_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_SAMPLE: err = sample_action_to_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_CT: err = ovs_ct_action_to_attr(nla_data(a), skb); if (err) return err; break; case OVS_ACTION_ATTR_CLONE: err = clone_action_to_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_CHECK_PKT_LEN: err = check_pkt_len_action_to_attr(a, skb); if (err) return err; break; case OVS_ACTION_ATTR_DEC_TTL: err = dec_ttl_action_to_attr(a, skb); if (err) return err; break; default: if (nla_put(skb, type, nla_len(a), nla_data(a))) return -EMSGSIZE; break; } } return 0; }