/* * sound/oss/sequencer.c * * The sequencer personality manager. */ /* * Copyright (C) by Hannu Savolainen 1993-1997 * * OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL) * Version 2 (June 1991). See the "COPYING" file distributed with this software * for more info. */ /* * Thomas Sailer : ioctl code reworked (vmalloc/vfree removed) * Alan Cox : reformatted and fixed a pair of null pointer bugs */ #include <linux/kmod.h> #include <linux/spinlock.h> #include "sound_config.h" #include "midi_ctrl.h" static int sequencer_ok; static struct sound_timer_operations *tmr; static int tmr_no = -1; /* Currently selected timer */ static int pending_timer = -1; /* For timer change operation */ extern unsigned long seq_time; static int obsolete_api_used; static DEFINE_SPINLOCK(lock); /* * Local counts for number of synth and MIDI devices. These are initialized * by the sequencer_open. */ static int max_mididev; static int max_synthdev; /* * The seq_mode gives the operating mode of the sequencer: * 1 = level1 (the default) * 2 = level2 (extended capabilities) */ #define SEQ_1 1 #define SEQ_2 2 static int seq_mode = SEQ_1; static DECLARE_WAIT_QUEUE_HEAD(seq_sleeper); static DECLARE_WAIT_QUEUE_HEAD(midi_sleeper); static int midi_opened[MAX_MIDI_DEV]; static int midi_written[MAX_MIDI_DEV]; static unsigned long prev_input_time; static int prev_event_time; #include "tuning.h" #define EV_SZ 8 #define IEV_SZ 8 static unsigned char *queue; static unsigned char *iqueue; static volatile int qhead, qtail, qlen; static volatile int iqhead, iqtail, iqlen; static volatile int seq_playing; static volatile int sequencer_busy; static int output_threshold; static long pre_event_timeout; static unsigned synth_open_mask; static int seq_queue(unsigned char *note, char nonblock); static void seq_startplay(void); static int seq_sync(void); static void seq_reset(void); #if MAX_SYNTH_DEV > 15 #error Too many synthesizer devices enabled. #endif int sequencer_read(int dev, struct file *file, char __user *buf, int count) { int c = count, p = 0; int ev_len; unsigned long flags; dev = dev >> 4; ev_len = seq_mode == SEQ_1 ? 4 : 8; spin_lock_irqsave(&lock,flags); if (!iqlen) { spin_unlock_irqrestore(&lock,flags); if (file->f_flags & O_NONBLOCK) { return -EAGAIN; } interruptible_sleep_on_timeout(&midi_sleeper, pre_event_timeout); spin_lock_irqsave(&lock,flags); if (!iqlen) { spin_unlock_irqrestore(&lock,flags); return 0; } } while (iqlen && c >= ev_len) { char *fixit = (char *) &iqueue[iqhead * IEV_SZ]; spin_unlock_irqrestore(&lock,flags); if (copy_to_user(&(buf)[p], fixit, ev_len)) return count - c; p += ev_len; c -= ev_len; spin_lock_irqsave(&lock,flags); iqhead = (iqhead + 1) % SEQ_MAX_QUEUE; iqlen--; } spin_unlock_irqrestore(&lock,flags); return count - c; } static void sequencer_midi_output(int dev) { /* * Currently NOP */ } void seq_copy_to_input(unsigned char *event_rec, int len) { unsigned long flags; /* * Verify that the len is valid for the current mode. */ if (len != 4 && len != 8) return; if ((seq_mode == SEQ_1) != (len == 4)) return; if (iqlen >= (SEQ_MAX_QUEUE - 1)) return; /* Overflow */ spin_lock_irqsave(&lock,flags); memcpy(&iqueue[iqtail * IEV_SZ], event_rec, len); iqlen++; iqtail = (iqtail + 1) % SEQ_MAX_QUEUE; wake_up(&midi_sleeper); spin_unlock_irqrestore(&lock,flags); } EXPORT_SYMBOL(seq_copy_to_input); static void sequencer_midi_input(int dev, unsigned char data) { unsigned int tstamp; unsigned char event_rec[4]; if (data == 0xfe) /* Ignore active sensing */ return; tstamp = jiffies - seq_time; if (tstamp != prev_input_time) { tstamp = (tstamp << 8) | SEQ_WAIT; seq_copy_to_input((unsigned char *) &tstamp, 4); prev_input_time = tstamp; } event_rec[0] = SEQ_MIDIPUTC; event_rec[1] = data; event_rec[2] = dev; event_rec[3] = 0; seq_copy_to_input(event_rec, 4); } void seq_input_event(unsigned char *event_rec, int len) { unsigned long this_time; if (seq_mode == SEQ_2) this_time = tmr->get_time(tmr_no); else this_time = jiffies - seq_time; if (this_time != prev_input_time) { unsigned char tmp_event[8]; tmp_event[0] = EV_TIMING; tmp_event[1] = TMR_WAIT_ABS; tmp_event[2] = 0; tmp_event[3] = 0; *(unsigned int *) &tmp_event[4] = this_time; seq_copy_to_input(tmp_event, 8); prev_input_time = this_time; } seq_copy_to_input(event_rec, len); } EXPORT_SYMBOL(seq_input_event); int sequencer_write(int dev, struct file *file, const char __user *buf, int count) { unsigned char event_rec[EV_SZ], ev_code; int p = 0, c, ev_size; int mode = translate_mode(file); dev = dev >> 4; DEB(printk("sequencer_write(dev=%d, count=%d)\n", dev, count)); if (mode == OPEN_READ) return -EIO; c = count; while (c >= 4) { if (copy_from_user((char *) event_rec, &(buf)[p], 4)) goto out; ev_code = event_rec[0]; if (ev_code == SEQ_FULLSIZE) { int err, fmt; dev = *(unsigned short *) &event_rec[2]; if (dev < 0 || dev >= max_synthdev || synth_devs[dev] == NULL) return -ENXIO; if (!(synth_open_mask & (1 << dev))) return -ENXIO; fmt = (*(short *) &event_rec[0]) & 0xffff; err = synth_devs[dev]->load_patch(dev, fmt, buf, p + 4, c, 0); if (err < 0) return err; return err; } if (ev_code >= 128) { if (seq_mode == SEQ_2 && ev_code == SEQ_EXTENDED) { printk(KERN_WARNING "Sequencer: Invalid level 2 event %x\n", ev_code); return -EINVAL; } ev_size = 8; if (c < ev_size) { if (!seq_playing) seq_startplay(); return count - c; } if (copy_from_user((char *)&event_rec[4], &(buf)[p + 4], 4)) goto out; } else { if (seq_mode == SEQ_2) { printk(KERN_WARNING "Sequencer: 4 byte event in level 2 mode\n"); return -EINVAL; } ev_size = 4; if (event_rec[0] != SEQ_MIDIPUTC) obsolete_api_used = 1; } if (event_rec[0] == SEQ_MIDIPUTC) { if (!midi_opened[event_rec[2]]) { int err, mode; int dev = event_rec[2]; if (dev >= max_mididev || midi_devs[dev]==NULL) { /*printk("Sequencer Error: Nonexistent MIDI device %d\n", dev);*/ return -ENXIO; } mode = translate_mode(file); if ((err = midi_devs[dev]->open(dev, mode, sequencer_midi_input, sequencer_midi_output)) < 0) { seq_reset(); printk(KERN_WARNING "Sequencer Error: Unable to open Midi #%d\n", dev); return err; } midi_opened[dev] = 1; } } if (!seq_queue(event_rec, (file->f_flags & (O_NONBLOCK) ? 1 : 0))) { int processed = count - c; if (!seq_playing) seq_startplay(); if (!processed && (file->f_flags & O_NONBLOCK)) return -EAGAIN; else return processed; } p += ev_size; c -= ev_size; } if (!seq_playing) seq_startplay(); out: return count; } static int seq_queue(unsigned char *note, char nonblock) { /* * Test if there is space in the queue */ if (qlen >= SEQ_MAX_QUEUE) if (!seq_playing) seq_startplay(); /* * Give chance to drain the queue */ if (!nonblock && qlen >= SEQ_MAX_QUEUE && !waitqueue_active(&seq_sleeper)) { /* * Sleep until there is enough space on the queue */ interruptible_sleep_on(&seq_sleeper); } if (qlen >= SEQ_MAX_QUEUE) { return 0; /* * To be sure */ } memcpy(&queue[qtail * EV_SZ], note, EV_SZ); qtail = (qtail + 1) % SEQ_MAX_QUEUE; qlen++; return 1; } static int extended_event(unsigned char *q) { int dev = q[2]; if (dev < 0 || dev >= max_synthdev) return -ENXIO; if (!(synth_open_mask & (1 << dev))) return -ENXIO; switch (q[1]) { case SEQ_NOTEOFF: synth_devs[dev]->kill_note(dev, q[3], q[4], q[5]); break; case SEQ_NOTEON: if (q[4] > 127 && q[4] != 255) return 0; if (q[5] == 0) { synth_devs[dev]->kill_note(dev, q[3], q[4], q[5]); break; } synth_devs[dev]->start_note(dev, q[3], q[4], q[5]); break; case SEQ_PGMCHANGE: synth_devs[dev]->set_instr(dev, q[3], q[4]); break; case SEQ_AFTERTOUCH: synth_devs[dev]->aftertouch(dev, q[3], q[4]); break; case SEQ_BALANCE: synth_devs[dev]->panning(dev, q[3], (char) q[4]); break; case SEQ_CONTROLLER: synth_devs[dev]->controller(dev, q[3], q[4], (short) (q[5] | (q[6] << 8))); break; case SEQ_VOLMODE: if (synth_devs[dev]->volume_method != NULL) synth_devs[dev]->volume_method(dev, q[3]); break; default: return -EINVAL; } return 0; } static int find_voice(int dev, int chn, int note) { unsigned short key; int i; key = (chn << 8) | (note + 1); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if (synth_devs[dev]->alloc.map[i] == key) return i; return -1; } static int alloc_voice(int dev, int chn, int note) { unsigned short key; int voice; key = (chn << 8) | (note + 1); voice = synth_devs[dev]->alloc_voice(dev, chn, note, &synth_devs[dev]->alloc); synth_devs[dev]->alloc.map[voice] = key; synth_devs[dev]->alloc.alloc_times[voice] = synth_devs[dev]->alloc.timestamp++; return voice; } static void seq_chn_voice_event(unsigned char *event_rec) { #define dev event_rec[1] #define cmd event_rec[2] #define chn event_rec[3] #define note event_rec[4] #define parm event_rec[5] int voice = -1; if ((int) dev > max_synthdev || synth_devs[dev] == NULL) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; if (seq_mode == SEQ_2) { if (synth_devs[dev]->alloc_voice) voice = find_voice(dev, chn, note); if (cmd == MIDI_NOTEON && parm == 0) { cmd = MIDI_NOTEOFF; parm = 64; } } switch (cmd) { case MIDI_NOTEON: if (note > 127 && note != 255) /* Not a seq2 feature */ return; if (voice == -1 && seq_mode == SEQ_2 && synth_devs[dev]->alloc_voice) { /* Internal synthesizer (FM, GUS, etc) */ voice = alloc_voice(dev, chn, note); } if (voice == -1) voice = chn; if (seq_mode == SEQ_2 && (int) dev < num_synths) { /* * The MIDI channel 10 is a percussive channel. Use the note * number to select the proper patch (128 to 255) to play. */ if (chn == 9) { synth_devs[dev]->set_instr(dev, voice, 128 + note); synth_devs[dev]->chn_info[chn].pgm_num = 128 + note; } synth_devs[dev]->setup_voice(dev, voice, chn); } synth_devs[dev]->start_note(dev, voice, note, parm); break; case MIDI_NOTEOFF: if (voice == -1) voice = chn; synth_devs[dev]->kill_note(dev, voice, note, parm); break; case MIDI_KEY_PRESSURE: if (voice == -1) voice = chn; synth_devs[dev]->aftertouch(dev, voice, parm); break; default:; } #undef dev #undef cmd #undef chn #undef note #undef parm } static void seq_chn_common_event(unsigned char *event_rec) { unsigned char dev = event_rec[1]; unsigned char cmd = event_rec[2]; unsigned char chn = event_rec[3]; unsigned char p1 = event_rec[4]; /* unsigned char p2 = event_rec[5]; */ unsigned short w14 = *(short *) &event_rec[6]; if ((int) dev > max_synthdev || synth_devs[dev] == NULL) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; switch (cmd) { case MIDI_PGM_CHANGE: if (seq_mode == SEQ_2) { synth_devs[dev]->chn_info[chn].pgm_num = p1; if ((int) dev >= num_synths) synth_devs[dev]->set_instr(dev, chn, p1); } else synth_devs[dev]->set_instr(dev, chn, p1); break; case MIDI_CTL_CHANGE: if (seq_mode == SEQ_2) { if (chn > 15 || p1 > 127) break; synth_devs[dev]->chn_info[chn].controllers[p1] = w14 & 0x7f; if (p1 < 32) /* Setting MSB should clear LSB to 0 */ synth_devs[dev]->chn_info[chn].controllers[p1 + 32] = 0; if ((int) dev < num_synths) { int val = w14 & 0x7f; int i, key; if (p1 < 64) /* Combine MSB and LSB */ { val = ((synth_devs[dev]-> chn_info[chn].controllers[p1 & ~32] & 0x7f) << 7) | (synth_devs[dev]-> chn_info[chn].controllers[p1 | 32] & 0x7f); p1 &= ~32; } /* Handle all playing notes on this channel */ key = ((int) chn << 8); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key) synth_devs[dev]->controller(dev, i, p1, val); } else synth_devs[dev]->controller(dev, chn, p1, w14); } else /* Mode 1 */ synth_devs[dev]->controller(dev, chn, p1, w14); break; case MIDI_PITCH_BEND: if (seq_mode == SEQ_2) { synth_devs[dev]->chn_info[chn].bender_value = w14; if ((int) dev < num_synths) { /* Handle all playing notes on this channel */ int i, key; key = (chn << 8); for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++) if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key) synth_devs[dev]->bender(dev, i, w14); } else synth_devs[dev]->bender(dev, chn, w14); } else /* MODE 1 */ synth_devs[dev]->bender(dev, chn, w14); break; default:; } } static int seq_timing_event(unsigned char *event_rec) { unsigned char cmd = event_rec[1]; unsigned int parm = *(int *) &event_rec[4]; if (seq_mode == SEQ_2) { int ret; if ((ret = tmr->event(tmr_no, event_rec)) == TIMER_ARMED) if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) wake_up(&seq_sleeper); return ret; } switch (cmd) { case TMR_WAIT_REL: parm += prev_event_time; /* * NOTE! No break here. Execution of TMR_WAIT_REL continues in the * next case (TMR_WAIT_ABS) */ case TMR_WAIT_ABS: if (parm > 0) { long time; time = parm; prev_event_time = time; seq_playing = 1; request_sound_timer(time); if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) wake_up(&seq_sleeper); return TIMER_ARMED; } break; case TMR_START: seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; break; case TMR_STOP: break; case TMR_CONTINUE: break; case TMR_TEMPO: break; case TMR_ECHO: if (seq_mode == SEQ_2) seq_copy_to_input(event_rec, 8); else { parm = (parm << 8 | SEQ_ECHO); seq_copy_to_input((unsigned char *) &parm, 4); } break; default:; } return TIMER_NOT_ARMED; } static void seq_local_event(unsigned char *event_rec) { unsigned char cmd = event_rec[1]; unsigned int parm = *((unsigned int *) &event_rec[4]); switch (cmd) { case LOCL_STARTAUDIO: DMAbuf_start_devices(parm); break; default:; } } static void seq_sysex_message(unsigned char *event_rec) { unsigned int dev = event_rec[1]; int i, l = 0; unsigned char *buf = &event_rec[2]; if (dev > max_synthdev) return; if (!(synth_open_mask & (1 << dev))) return; if (!synth_devs[dev]) return; l = 0; for (i = 0; i < 6 && buf[i] != 0xff; i++) l = i + 1; if (!synth_devs[dev]->send_sysex) return; if (l > 0) synth_devs[dev]->send_sysex(dev, buf, l); } static int play_event(unsigned char *q) { /* * NOTE! This routine returns * 0 = normal event played. * 1 = Timer armed. Suspend playback until timer callback. * 2 = MIDI output buffer full. Restore queue and suspend until timer */ unsigned int *delay; switch (q[0]) { case SEQ_NOTEOFF: if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->kill_note(0, q[1], 255, q[3]); break; case SEQ_NOTEON: if (q[4] < 128 || q[4] == 255) if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->start_note(0, q[1], q[2], q[3]); break; case SEQ_WAIT: delay = (unsigned int *) q; /* * Bytes 1 to 3 are containing the * * delay in 'ticks' */ *delay = (*delay >> 8) & 0xffffff; if (*delay > 0) { long time; seq_playing = 1; time = *delay; prev_event_time = time; request_sound_timer(time); if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) wake_up(&seq_sleeper); /* * The timer is now active and will reinvoke this function * after the timer expires. Return to the caller now. */ return 1; } break; case SEQ_PGMCHANGE: if (synth_open_mask & (1 << 0)) if (synth_devs[0]) synth_devs[0]->set_instr(0, q[1], q[2]); break; case SEQ_SYNCTIMER: /* * Reset timer */ seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; break; case SEQ_MIDIPUTC: /* * Put a midi character */ if (midi_opened[q[2]]) { int dev; dev = q[2]; if (dev < 0 || dev >= num_midis || midi_devs[dev] == NULL) break; if (!midi_devs[dev]->outputc(dev, q[1])) { /* * Output FIFO is full. Wait one timer cycle and try again. */ seq_playing = 1; request_sound_timer(-1); return 2; } else midi_written[dev] = 1; } break; case SEQ_ECHO: seq_copy_to_input(q, 4); /* * Echo back to the process */ break; case SEQ_PRIVATE: if ((int) q[1] < max_synthdev) synth_devs[q[1]]->hw_control(q[1], q); break; case SEQ_EXTENDED: extended_event(q); break; case EV_CHN_VOICE: seq_chn_voice_event(q); break; case EV_CHN_COMMON: seq_chn_common_event(q); break; case EV_TIMING: if (seq_timing_event(q) == TIMER_ARMED) { return 1; } break; case EV_SEQ_LOCAL: seq_local_event(q); break; case EV_SYSEX: seq_sysex_message(q); break; default:; } return 0; } /* called also as timer in irq context */ static void seq_startplay(void) { int this_one, action; unsigned long flags; while (qlen > 0) { spin_lock_irqsave(&lock,flags); qhead = ((this_one = qhead) + 1) % SEQ_MAX_QUEUE; qlen--; spin_unlock_irqrestore(&lock,flags); seq_playing = 1; if ((action = play_event(&queue[this_one * EV_SZ]))) { /* Suspend playback. Next timer routine invokes this routine again */ if (action == 2) { qlen++; qhead = this_one; } return; } } seq_playing = 0; if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) wake_up(&seq_sleeper); } static void reset_controllers(int dev, unsigned char *controller, int update_dev) { int i; for (i = 0; i < 128; i++) controller[i] = ctrl_def_values[i]; } static void setup_mode2(void) { int dev; max_synthdev = num_synths; for (dev = 0; dev < num_midis; dev++) { if (midi_devs[dev] && midi_devs[dev]->converter != NULL) { synth_devs[max_synthdev++] = midi_devs[dev]->converter; } } for (dev = 0; dev < max_synthdev; dev++) { int chn; synth_devs[dev]->sysex_ptr = 0; synth_devs[dev]->emulation = 0; for (chn = 0; chn < 16; chn++) { synth_devs[dev]->chn_info[chn].pgm_num = 0; reset_controllers(dev, synth_devs[dev]->chn_info[chn].controllers,0); synth_devs[dev]->chn_info[chn].bender_value = (1 << 7); /* Neutral */ synth_devs[dev]->chn_info[chn].bender_range = 200; } } max_mididev = 0; seq_mode = SEQ_2; } int sequencer_open(int dev, struct file *file) { int retval, mode, i; int level, tmp; if (!sequencer_ok) sequencer_init(); level = ((dev & 0x0f) == SND_DEV_SEQ2) ? 2 : 1; dev = dev >> 4; mode = translate_mode(file); DEB(printk("sequencer_open(dev=%d)\n", dev)); if (!sequencer_ok) { /* printk("Sound card: sequencer not initialized\n");*/ return -ENXIO; } if (dev) /* Patch manager device (obsolete) */ return -ENXIO; if(synth_devs[dev] == NULL) request_module("synth0"); if (mode == OPEN_READ) { if (!num_midis) { /*printk("Sequencer: No MIDI devices. Input not possible\n");*/ sequencer_busy = 0; return -ENXIO; } } if (sequencer_busy) { return -EBUSY; } sequencer_busy = 1; obsolete_api_used = 0; max_mididev = num_midis; max_synthdev = num_synths; pre_event_timeout = MAX_SCHEDULE_TIMEOUT; seq_mode = SEQ_1; if (pending_timer != -1) { tmr_no = pending_timer; pending_timer = -1; } if (tmr_no == -1) /* Not selected yet */ { int i, best; best = -1; for (i = 0; i < num_sound_timers; i++) if (sound_timer_devs[i] && sound_timer_devs[i]->priority > best) { tmr_no = i; best = sound_timer_devs[i]->priority; } if (tmr_no == -1) /* Should not be */ tmr_no = 0; } tmr = sound_timer_devs[tmr_no]; if (level == 2) { if (tmr == NULL) { /*printk("sequencer: No timer for level 2\n");*/ sequencer_busy = 0; return -ENXIO; } setup_mode2(); } if (!max_synthdev && !max_mididev) { sequencer_busy=0; return -ENXIO; } synth_open_mask = 0; for (i = 0; i < max_mididev; i++) { midi_opened[i] = 0; midi_written[i] = 0; } for (i = 0; i < max_synthdev; i++) { if (synth_devs[i]==NULL) continue; if (!try_module_get(synth_devs[i]->owner)) continue; if ((tmp = synth_devs[i]->open(i, mode)) < 0) { printk(KERN_WARNING "Sequencer: Warning! Cannot open synth device #%d (%d)\n", i, tmp); if (synth_devs[i]->midi_dev) printk(KERN_WARNING "(Maps to MIDI dev #%d)\n", synth_devs[i]->midi_dev); } else { synth_open_mask |= (1 << i); if (synth_devs[i]->midi_dev) midi_opened[synth_devs[i]->midi_dev] = 1; } } seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE)) { /* * Initialize midi input devices */ for (i = 0; i < max_mididev; i++) if (!midi_opened[i] && midi_devs[i]) { if (!try_module_get(midi_devs[i]->owner)) continue; if ((retval = midi_devs[i]->open(i, mode, sequencer_midi_input, sequencer_midi_output)) >= 0) { midi_opened[i] = 1; } } } if (seq_mode == SEQ_2) { if (try_module_get(tmr->owner)) tmr->open(tmr_no, seq_mode); } init_waitqueue_head(&seq_sleeper); init_waitqueue_head(&midi_sleeper); output_threshold = SEQ_MAX_QUEUE / 2; return 0; } static void seq_drain_midi_queues(void) { int i, n; /* * Give the Midi drivers time to drain their output queues */ n = 1; while (!signal_pending(current) && n) { n = 0; for (i = 0; i < max_mididev; i++) if (midi_opened[i] && midi_written[i]) if (midi_devs[i]->buffer_status != NULL) if (midi_devs[i]->buffer_status(i)) n++; /* * Let's have a delay */ if (n) interruptible_sleep_on_timeout(&seq_sleeper, HZ/10); } } void sequencer_release(int dev, struct file *file) { int i; int mode = translate_mode(file); dev = dev >> 4; DEB(printk("sequencer_release(dev=%d)\n", dev)); /* * Wait until the queue is empty (if we don't have nonblock) */ if (mode != OPEN_READ && !(file->f_flags & O_NONBLOCK)) { while (!signal_pending(current) && qlen > 0) { seq_sync(); interruptible_sleep_on_timeout(&seq_sleeper, 3*HZ); /* Extra delay */ } } if (mode != OPEN_READ) seq_drain_midi_queues(); /* * Ensure the output queues are empty */ seq_reset(); if (mode != OPEN_READ) seq_drain_midi_queues(); /* * Flush the all notes off messages */ for (i = 0; i < max_synthdev; i++) { if (synth_open_mask & (1 << i)) /* * Actually opened */ if (synth_devs[i]) { synth_devs[i]->close(i); module_put(synth_devs[i]->owner); if (synth_devs[i]->midi_dev) midi_opened[synth_devs[i]->midi_dev] = 0; } } for (i = 0; i < max_mididev; i++) { if (midi_opened[i]) { midi_devs[i]->close(i); module_put(midi_devs[i]->owner); } } if (seq_mode == SEQ_2) { tmr->close(tmr_no); module_put(tmr->owner); } if (obsolete_api_used) printk(KERN_WARNING "/dev/music: Obsolete (4 byte) API was used by %s\n", current->comm); sequencer_busy = 0; } static int seq_sync(void) { if (qlen && !seq_playing && !signal_pending(current)) seq_startplay(); if (qlen > 0) interruptible_sleep_on_timeout(&seq_sleeper, HZ); return qlen; } static void midi_outc(int dev, unsigned char data) { /* * NOTE! Calls sleep(). Don't call this from interrupt. */ int n; unsigned long flags; /* * This routine sends one byte to the Midi channel. * If the output FIFO is full, it waits until there * is space in the queue */ n = 3 * HZ; /* Timeout */ spin_lock_irqsave(&lock,flags); while (n && !midi_devs[dev]->outputc(dev, data)) { interruptible_sleep_on_timeout(&seq_sleeper, HZ/25); n--; } spin_unlock_irqrestore(&lock,flags); } static void seq_reset(void) { /* * NOTE! Calls sleep(). Don't call this from interrupt. */ int i; int chn; unsigned long flags; sound_stop_timer(); seq_time = jiffies; prev_input_time = 0; prev_event_time = 0; qlen = qhead = qtail = 0; iqlen = iqhead = iqtail = 0; for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) if (synth_devs[i]) synth_devs[i]->reset(i); if (seq_mode == SEQ_2) { for (chn = 0; chn < 16; chn++) for (i = 0; i < max_synthdev; i++) if (synth_open_mask & (1 << i)) if (synth_devs[i]) { synth_devs[i]->controller(i, chn, 123, 0); /* All notes off */ synth_devs[i]->controller(i, chn, 121, 0); /* Reset all ctl */ synth_devs[i]->bender(i, chn, 1 << 13); /* Bender off */ } } else /* seq_mode == SEQ_1 */ { for (i = 0; i < max_mididev; i++) if (midi_written[i]) /* * Midi used. Some notes may still be playing */ { /* * Sending just a ACTIVE SENSING message should be enough to stop all * playing notes. Since there are devices not recognizing the * active sensing, we have to send some all notes off messages also. */ midi_outc(i, 0xfe); for (chn = 0; chn < 16; chn++) { midi_outc(i, (unsigned char) (0xb0 + (chn & 0x0f))); /* control change */ midi_outc(i, 0x7b); /* All notes off */ midi_outc(i, 0); /* Dummy parameter */ } midi_devs[i]->close(i); midi_written[i] = 0; midi_opened[i] = 0; } } seq_playing = 0; spin_lock_irqsave(&lock,flags); if (waitqueue_active(&seq_sleeper)) { /* printk( "Sequencer Warning: Unexpected sleeping process - Waking up\n"); */ wake_up(&seq_sleeper); } spin_unlock_irqrestore(&lock,flags); } static void seq_panic(void) { /* * This routine is called by the application in case the user * wants to reset the system to the default state. */ seq_reset(); /* * Since some of the devices don't recognize the active sensing and * all notes off messages, we have to shut all notes manually. * * TO BE IMPLEMENTED LATER */ /* * Also return the controllers to their default states */ } int sequencer_ioctl(int dev, struct file *file, unsigned int cmd, void __user *arg) { int midi_dev, orig_dev, val, err; int mode = translate_mode(file); struct synth_info inf; struct seq_event_rec event_rec; unsigned long flags; int __user *p = arg; orig_dev = dev = dev >> 4; switch (cmd) { case SNDCTL_TMR_TIMEBASE: case SNDCTL_TMR_TEMPO: case SNDCTL_TMR_START: case SNDCTL_TMR_STOP: case SNDCTL_TMR_CONTINUE: case SNDCTL_TMR_METRONOME: case SNDCTL_TMR_SOURCE: if (seq_mode != SEQ_2) return -EINVAL; return tmr->ioctl(tmr_no, cmd, arg); case SNDCTL_TMR_SELECT: if (seq_mode != SEQ_2) return -EINVAL; if (get_user(pending_timer, p)) return -EFAULT; if (pending_timer < 0 || pending_timer >= num_sound_timers || sound_timer_devs[pending_timer] == NULL) { pending_timer = -1; return -EINVAL; } val = pending_timer; break; case SNDCTL_SEQ_PANIC: seq_panic(); return -EINVAL; case SNDCTL_SEQ_SYNC: if (mode == OPEN_READ) return 0; while (qlen > 0 && !signal_pending(current)) seq_sync(); return qlen ? -EINTR : 0; case SNDCTL_SEQ_RESET: seq_reset(); return 0; case SNDCTL_SEQ_TESTMIDI: if (__get_user(midi_dev, p)) return -EFAULT; if (midi_dev < 0 || midi_dev >= max_mididev || !midi_devs[midi_dev]) return -ENXIO; if (!midi_opened[midi_dev] && (err = midi_devs[midi_dev]->open(midi_dev, mode, sequencer_midi_input, sequencer_midi_output)) < 0) return err; midi_opened[midi_dev] = 1; return 0; case SNDCTL_SEQ_GETINCOUNT: if (mode == OPEN_WRITE) return 0; val = iqlen; break; case SNDCTL_SEQ_GETOUTCOUNT: if (mode == OPEN_READ) return 0; val = SEQ_MAX_QUEUE - qlen; break; case SNDCTL_SEQ_GETTIME: if (seq_mode == SEQ_2) return tmr->ioctl(tmr_no, cmd, arg); val = jiffies - seq_time; break; case SNDCTL_SEQ_CTRLRATE: /* * If *arg == 0, just return the current rate */ if (seq_mode == SEQ_2) return tmr->ioctl(tmr_no, cmd, arg); if (get_user(val, p)) return -EFAULT; if (val != 0) return -EINVAL; val = HZ; break; case SNDCTL_SEQ_RESETSAMPLES: case SNDCTL_SYNTH_REMOVESAMPLE: case SNDCTL_SYNTH_CONTROL: if (get_user(dev, p)) return -EFAULT; if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL) return -ENXIO; if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -EBUSY; return synth_devs[dev]->ioctl(dev, cmd, arg); case SNDCTL_SEQ_NRSYNTHS: val = max_synthdev; break; case SNDCTL_SEQ_NRMIDIS: val = max_mididev; break; case SNDCTL_SYNTH_MEMAVL: if (get_user(dev, p)) return -EFAULT; if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL) return -ENXIO; if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -EBUSY; val = synth_devs[dev]->ioctl(dev, cmd, arg); break; case SNDCTL_FM_4OP_ENABLE: if (get_user(dev, p)) return -EFAULT; if (dev < 0 || dev >= num_synths || synth_devs[dev] == NULL) return -ENXIO; if (!(synth_open_mask & (1 << dev))) return -ENXIO; synth_devs[dev]->ioctl(dev, cmd, arg); return 0; case SNDCTL_SYNTH_INFO: if (get_user(dev, &((struct synth_info __user *)arg)->device)) return -EFAULT; if (dev < 0 || dev >= max_synthdev) return -ENXIO; if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -EBUSY; return synth_devs[dev]->ioctl(dev, cmd, arg); /* Like SYNTH_INFO but returns ID in the name field */ case SNDCTL_SYNTH_ID: if (get_user(dev, &((struct synth_info __user *)arg)->device)) return -EFAULT; if (dev < 0 || dev >= max_synthdev) return -ENXIO; if (!(synth_open_mask & (1 << dev)) && !orig_dev) return -EBUSY; memcpy(&inf, synth_devs[dev]->info, sizeof(inf)); strlcpy(inf.name, synth_devs[dev]->id, sizeof(inf.name)); inf.device = dev; return copy_to_user(arg, &inf, sizeof(inf))?-EFAULT:0; case SNDCTL_SEQ_OUTOFBAND: if (copy_from_user(&event_rec, arg, sizeof(event_rec))) return -EFAULT; spin_lock_irqsave(&lock,flags); play_event(event_rec.arr); spin_unlock_irqrestore(&lock,flags); return 0; case SNDCTL_MIDI_INFO: if (get_user(dev, &((struct midi_info __user *)arg)->device)) return -EFAULT; if (dev < 0 || dev >= max_mididev || !midi_devs[dev]) return -ENXIO; midi_devs[dev]->info.device = dev; return copy_to_user(arg, &midi_devs[dev]->info, sizeof(struct midi_info))?-EFAULT:0; case SNDCTL_SEQ_THRESHOLD: if (get_user(val, p)) return -EFAULT; if (val < 1) val = 1; if (val >= SEQ_MAX_QUEUE) val = SEQ_MAX_QUEUE - 1; output_threshold = val; return 0; case SNDCTL_MIDI_PRETIME: if (get_user(val, p)) return -EFAULT; if (val < 0) val = 0; val = (HZ * val) / 10; pre_event_timeout = val; break; default: if (mode == OPEN_READ) return -EIO; if (!synth_devs[0]) return -ENXIO; if (!(synth_open_mask & (1 << 0))) return -ENXIO; if (!synth_devs[0]->ioctl) return -EINVAL; return synth_devs[0]->ioctl(0, cmd, arg); } return put_user(val, p); } /* No kernel lock - we're using the global irq lock here */ unsigned int sequencer_poll(int dev, struct file *file, poll_table * wait) { unsigned long flags; unsigned int mask = 0; dev = dev >> 4; spin_lock_irqsave(&lock,flags); /* input */ poll_wait(file, &midi_sleeper, wait); if (iqlen) mask |= POLLIN | POLLRDNORM; /* output */ poll_wait(file, &seq_sleeper, wait); if ((SEQ_MAX_QUEUE - qlen) >= output_threshold) mask |= POLLOUT | POLLWRNORM; spin_unlock_irqrestore(&lock,flags); return mask; } void sequencer_timer(unsigned long dummy) { seq_startplay(); } EXPORT_SYMBOL(sequencer_timer); int note_to_freq(int note_num) { /* * This routine converts a midi note to a frequency (multiplied by 1000) */ int note, octave, note_freq; static int notes[] = { 261632, 277189, 293671, 311132, 329632, 349232, 369998, 391998, 415306, 440000, 466162, 493880 }; #define BASE_OCTAVE 5 octave = note_num / 12; note = note_num % 12; note_freq = notes[note]; if (octave < BASE_OCTAVE) note_freq >>= (BASE_OCTAVE - octave); else if (octave > BASE_OCTAVE) note_freq <<= (octave - BASE_OCTAVE); /* * note_freq >>= 1; */ return note_freq; } EXPORT_SYMBOL(note_to_freq); unsigned long compute_finetune(unsigned long base_freq, int bend, int range, int vibrato_cents) { unsigned long amount; int negative, semitones, cents, multiplier = 1; if (!bend) return base_freq; if (!range) return base_freq; if (!base_freq) return base_freq; if (range >= 8192) range = 8192; bend = bend * range / 8192; /* Convert to cents */ bend += vibrato_cents; if (!bend) return base_freq; negative = bend < 0 ? 1 : 0; if (bend < 0) bend *= -1; if (bend > range) bend = range; /* if (bend > 2399) bend = 2399; */ while (bend > 2399) { multiplier *= 4; bend -= 2400; } semitones = bend / 100; if (semitones > 99) semitones = 99; cents = bend % 100; amount = (int) (semitone_tuning[semitones] * multiplier * cent_tuning[cents]) / 10000; if (negative) return (base_freq * 10000) / amount; /* Bend down */ else return (base_freq * amount) / 10000; /* Bend up */ } EXPORT_SYMBOL(compute_finetune); void sequencer_init(void) { if (sequencer_ok) return; queue = (unsigned char *)vmalloc(SEQ_MAX_QUEUE * EV_SZ); if (queue == NULL) { printk(KERN_ERR "sequencer: Can't allocate memory for sequencer output queue\n"); return; } iqueue = (unsigned char *)vmalloc(SEQ_MAX_QUEUE * IEV_SZ); if (iqueue == NULL) { printk(KERN_ERR "sequencer: Can't allocate memory for sequencer input queue\n"); vfree(queue); return; } sequencer_ok = 1; } EXPORT_SYMBOL(sequencer_init); void sequencer_unload(void) { vfree(queue); vfree(iqueue); queue = iqueue = NULL; }