/* * Cirrus Logic CS42448/CS42888 Audio CODEC Digital Audio Interface (DAI) driver * * Copyright (C) 2014 Freescale Semiconductor, Inc. * * Author: Nicolin Chen <Guangyu.Chen@freescale.com> * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/gpio/consumer.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/tlv.h> #include "cs42xx8.h" #define CS42XX8_NUM_SUPPLIES 4 static const char *const cs42xx8_supply_names[CS42XX8_NUM_SUPPLIES] = { "VA", "VD", "VLS", "VLC", }; #define CS42XX8_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_S32_LE) /* codec private data */ struct cs42xx8_priv { struct regulator_bulk_data supplies[CS42XX8_NUM_SUPPLIES]; const struct cs42xx8_driver_data *drvdata; struct regmap *regmap; struct clk *clk; bool slave_mode; unsigned long sysclk; u32 tx_channels; struct gpio_desc *gpiod_reset; u32 rate[2]; }; /* -127.5dB to 0dB with step of 0.5dB */ static const DECLARE_TLV_DB_SCALE(dac_tlv, -12750, 50, 1); /* -64dB to 24dB with step of 0.5dB */ static const DECLARE_TLV_DB_SCALE(adc_tlv, -6400, 50, 0); static const char *const cs42xx8_adc_single[] = { "Differential", "Single-Ended" }; static const char *const cs42xx8_szc[] = { "Immediate Change", "Zero Cross", "Soft Ramp", "Soft Ramp on Zero Cross" }; static const struct soc_enum adc1_single_enum = SOC_ENUM_SINGLE(CS42XX8_ADCCTL, 4, 2, cs42xx8_adc_single); static const struct soc_enum adc2_single_enum = SOC_ENUM_SINGLE(CS42XX8_ADCCTL, 3, 2, cs42xx8_adc_single); static const struct soc_enum adc3_single_enum = SOC_ENUM_SINGLE(CS42XX8_ADCCTL, 2, 2, cs42xx8_adc_single); static const struct soc_enum dac_szc_enum = SOC_ENUM_SINGLE(CS42XX8_TXCTL, 5, 4, cs42xx8_szc); static const struct soc_enum adc_szc_enum = SOC_ENUM_SINGLE(CS42XX8_TXCTL, 0, 4, cs42xx8_szc); static const struct snd_kcontrol_new cs42xx8_snd_controls[] = { SOC_DOUBLE_R_TLV("DAC1 Playback Volume", CS42XX8_VOLAOUT1, CS42XX8_VOLAOUT2, 0, 0xff, 1, dac_tlv), SOC_DOUBLE_R_TLV("DAC2 Playback Volume", CS42XX8_VOLAOUT3, CS42XX8_VOLAOUT4, 0, 0xff, 1, dac_tlv), SOC_DOUBLE_R_TLV("DAC3 Playback Volume", CS42XX8_VOLAOUT5, CS42XX8_VOLAOUT6, 0, 0xff, 1, dac_tlv), SOC_DOUBLE_R_TLV("DAC4 Playback Volume", CS42XX8_VOLAOUT7, CS42XX8_VOLAOUT8, 0, 0xff, 1, dac_tlv), SOC_DOUBLE_R_S_TLV("ADC1 Capture Volume", CS42XX8_VOLAIN1, CS42XX8_VOLAIN2, 0, -0x80, 0x30, 7, 0, adc_tlv), SOC_DOUBLE_R_S_TLV("ADC2 Capture Volume", CS42XX8_VOLAIN3, CS42XX8_VOLAIN4, 0, -0x80, 0x30, 7, 0, adc_tlv), SOC_DOUBLE("DAC1 Invert Switch", CS42XX8_DACINV, 0, 1, 1, 0), SOC_DOUBLE("DAC2 Invert Switch", CS42XX8_DACINV, 2, 3, 1, 0), SOC_DOUBLE("DAC3 Invert Switch", CS42XX8_DACINV, 4, 5, 1, 0), SOC_DOUBLE("DAC4 Invert Switch", CS42XX8_DACINV, 6, 7, 1, 0), SOC_DOUBLE("ADC1 Invert Switch", CS42XX8_ADCINV, 0, 1, 1, 0), SOC_DOUBLE("ADC2 Invert Switch", CS42XX8_ADCINV, 2, 3, 1, 0), SOC_SINGLE("ADC High-Pass Filter Switch", CS42XX8_ADCCTL, 7, 1, 1), SOC_SINGLE("DAC De-emphasis Switch", CS42XX8_ADCCTL, 5, 1, 0), SOC_ENUM("ADC1 Single Ended Mode Switch", adc1_single_enum), SOC_ENUM("ADC2 Single Ended Mode Switch", adc2_single_enum), SOC_SINGLE("DAC Single Volume Control Switch", CS42XX8_TXCTL, 7, 1, 0), SOC_ENUM("DAC Soft Ramp & Zero Cross Control Switch", dac_szc_enum), SOC_SINGLE("DAC Auto Mute Switch", CS42XX8_TXCTL, 4, 1, 0), SOC_SINGLE("Mute ADC Serial Port Switch", CS42XX8_TXCTL, 3, 1, 0), SOC_SINGLE("ADC Single Volume Control Switch", CS42XX8_TXCTL, 2, 1, 0), SOC_ENUM("ADC Soft Ramp & Zero Cross Control Switch", adc_szc_enum), }; static const struct snd_kcontrol_new cs42xx8_adc3_snd_controls[] = { SOC_DOUBLE_R_S_TLV("ADC3 Capture Volume", CS42XX8_VOLAIN5, CS42XX8_VOLAIN6, 0, -0x80, 0x30, 7, 0, adc_tlv), SOC_DOUBLE("ADC3 Invert Switch", CS42XX8_ADCINV, 4, 5, 1, 0), SOC_ENUM("ADC3 Single Ended Mode Switch", adc3_single_enum), }; static const struct snd_soc_dapm_widget cs42xx8_dapm_widgets[] = { SND_SOC_DAPM_DAC("DAC1", "Playback", CS42XX8_PWRCTL, 1, 1), SND_SOC_DAPM_DAC("DAC2", "Playback", CS42XX8_PWRCTL, 2, 1), SND_SOC_DAPM_DAC("DAC3", "Playback", CS42XX8_PWRCTL, 3, 1), SND_SOC_DAPM_DAC("DAC4", "Playback", CS42XX8_PWRCTL, 4, 1), SND_SOC_DAPM_OUTPUT("AOUT1L"), SND_SOC_DAPM_OUTPUT("AOUT1R"), SND_SOC_DAPM_OUTPUT("AOUT2L"), SND_SOC_DAPM_OUTPUT("AOUT2R"), SND_SOC_DAPM_OUTPUT("AOUT3L"), SND_SOC_DAPM_OUTPUT("AOUT3R"), SND_SOC_DAPM_OUTPUT("AOUT4L"), SND_SOC_DAPM_OUTPUT("AOUT4R"), SND_SOC_DAPM_ADC("ADC1", "Capture", CS42XX8_PWRCTL, 5, 1), SND_SOC_DAPM_ADC("ADC2", "Capture", CS42XX8_PWRCTL, 6, 1), SND_SOC_DAPM_INPUT("AIN1L"), SND_SOC_DAPM_INPUT("AIN1R"), SND_SOC_DAPM_INPUT("AIN2L"), SND_SOC_DAPM_INPUT("AIN2R"), SND_SOC_DAPM_SUPPLY("PWR", CS42XX8_PWRCTL, 0, 1, NULL, 0), }; static const struct snd_soc_dapm_widget cs42xx8_adc3_dapm_widgets[] = { SND_SOC_DAPM_ADC("ADC3", "Capture", CS42XX8_PWRCTL, 7, 1), SND_SOC_DAPM_INPUT("AIN3L"), SND_SOC_DAPM_INPUT("AIN3R"), }; static const struct snd_soc_dapm_route cs42xx8_dapm_routes[] = { /* Playback */ { "AOUT1L", NULL, "DAC1" }, { "AOUT1R", NULL, "DAC1" }, { "DAC1", NULL, "PWR" }, { "AOUT2L", NULL, "DAC2" }, { "AOUT2R", NULL, "DAC2" }, { "DAC2", NULL, "PWR" }, { "AOUT3L", NULL, "DAC3" }, { "AOUT3R", NULL, "DAC3" }, { "DAC3", NULL, "PWR" }, { "AOUT4L", NULL, "DAC4" }, { "AOUT4R", NULL, "DAC4" }, { "DAC4", NULL, "PWR" }, /* Capture */ { "ADC1", NULL, "AIN1L" }, { "ADC1", NULL, "AIN1R" }, { "ADC1", NULL, "PWR" }, { "ADC2", NULL, "AIN2L" }, { "ADC2", NULL, "AIN2R" }, { "ADC2", NULL, "PWR" }, }; static const struct snd_soc_dapm_route cs42xx8_adc3_dapm_routes[] = { /* Capture */ { "ADC3", NULL, "AIN3L" }, { "ADC3", NULL, "AIN3R" }, { "ADC3", NULL, "PWR" }, }; struct cs42xx8_ratios { unsigned int mfreq; unsigned int min_mclk; unsigned int max_mclk; unsigned int ratio[3]; }; /* * According to reference mannual, define the cs42xx8_ratio struct * MFreq2 | MFreq1 | MFreq0 | Description | SSM | DSM | QSM | * 0 | 0 | 0 |1.029MHz to 12.8MHz | 256 | 128 | 64 | * 0 | 0 | 1 |1.536MHz to 19.2MHz | 384 | 192 | 96 | * 0 | 1 | 0 |2.048MHz to 25.6MHz | 512 | 256 | 128 | * 0 | 1 | 1 |3.072MHz to 38.4MHz | 768 | 384 | 192 | * 1 | x | x |4.096MHz to 51.2MHz |1024 | 512 | 256 | */ static const struct cs42xx8_ratios cs42xx8_ratios[] = { { 0, 1029000, 12800000, {256, 128, 64} }, { 2, 1536000, 19200000, {384, 192, 96} }, { 4, 2048000, 25600000, {512, 256, 128} }, { 6, 3072000, 38400000, {768, 384, 192} }, { 8, 4096000, 51200000, {1024, 512, 256} }, }; static int cs42xx8_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = codec_dai->component; struct cs42xx8_priv *cs42xx8 = snd_soc_component_get_drvdata(component); cs42xx8->sysclk = freq; return 0; } static int cs42xx8_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int format) { struct snd_soc_component *component = codec_dai->component; struct cs42xx8_priv *cs42xx8 = snd_soc_component_get_drvdata(component); u32 val; /* Set DAI format */ switch (format & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_LEFT_J: val = CS42XX8_INTF_DAC_DIF_LEFTJ | CS42XX8_INTF_ADC_DIF_LEFTJ; break; case SND_SOC_DAIFMT_I2S: val = CS42XX8_INTF_DAC_DIF_I2S | CS42XX8_INTF_ADC_DIF_I2S; break; case SND_SOC_DAIFMT_RIGHT_J: val = CS42XX8_INTF_DAC_DIF_RIGHTJ | CS42XX8_INTF_ADC_DIF_RIGHTJ; break; case SND_SOC_DAIFMT_DSP_A: val = CS42XX8_INTF_DAC_DIF_TDM | CS42XX8_INTF_ADC_DIF_TDM; break; default: dev_err(component->dev, "unsupported dai format\n"); return -EINVAL; } regmap_update_bits(cs42xx8->regmap, CS42XX8_INTF, CS42XX8_INTF_DAC_DIF_MASK | CS42XX8_INTF_ADC_DIF_MASK, val); /* Set master/slave audio interface */ switch (format & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: cs42xx8->slave_mode = true; break; case SND_SOC_DAIFMT_CBM_CFM: cs42xx8->slave_mode = false; break; default: dev_err(component->dev, "unsupported master/slave mode\n"); return -EINVAL; } return 0; } static int cs42xx8_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct cs42xx8_priv *cs42xx8 = snd_soc_component_get_drvdata(component); bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; u32 ratio[2]; u32 rate[2]; u32 fm[2]; u32 i, val, mask; bool condition1, condition2; if (tx) cs42xx8->tx_channels = params_channels(params); rate[tx] = params_rate(params); rate[!tx] = cs42xx8->rate[!tx]; ratio[tx] = rate[tx] > 0 ? cs42xx8->sysclk / rate[tx] : 0; ratio[!tx] = rate[!tx] > 0 ? cs42xx8->sysclk / rate[!tx] : 0; /* Get functional mode for tx and rx according to rate */ for (i = 0; i < 2; i++) { if (cs42xx8->slave_mode) { fm[i] = CS42XX8_FM_AUTO; } else { if (rate[i] < 50000) { fm[i] = CS42XX8_FM_SINGLE; } else if (rate[i] > 50000 && rate[i] < 100000) { fm[i] = CS42XX8_FM_DOUBLE; } else if (rate[i] > 100000 && rate[i] < 200000) { fm[i] = CS42XX8_FM_QUAD; } else { dev_err(component->dev, "unsupported sample rate\n"); return -EINVAL; } } } for (i = 0; i < ARRAY_SIZE(cs42xx8_ratios); i++) { /* Is the ratio[tx] valid ? */ condition1 = ((fm[tx] == CS42XX8_FM_AUTO) ? (cs42xx8_ratios[i].ratio[0] == ratio[tx] || cs42xx8_ratios[i].ratio[1] == ratio[tx] || cs42xx8_ratios[i].ratio[2] == ratio[tx]) : (cs42xx8_ratios[i].ratio[fm[tx]] == ratio[tx])) && cs42xx8->sysclk >= cs42xx8_ratios[i].min_mclk && cs42xx8->sysclk <= cs42xx8_ratios[i].max_mclk; if (!ratio[tx]) condition1 = true; /* Is the ratio[!tx] valid ? */ condition2 = ((fm[!tx] == CS42XX8_FM_AUTO) ? (cs42xx8_ratios[i].ratio[0] == ratio[!tx] || cs42xx8_ratios[i].ratio[1] == ratio[!tx] || cs42xx8_ratios[i].ratio[2] == ratio[!tx]) : (cs42xx8_ratios[i].ratio[fm[!tx]] == ratio[!tx])); if (!ratio[!tx]) condition2 = true; /* * Both ratio[tx] and ratio[!tx] is valid, then we get * a proper MFreq. */ if (condition1 && condition2) break; } if (i == ARRAY_SIZE(cs42xx8_ratios)) { dev_err(component->dev, "unsupported sysclk ratio\n"); return -EINVAL; } cs42xx8->rate[tx] = params_rate(params); mask = CS42XX8_FUNCMOD_MFREQ_MASK; val = cs42xx8_ratios[i].mfreq; regmap_update_bits(cs42xx8->regmap, CS42XX8_FUNCMOD, CS42XX8_FUNCMOD_xC_FM_MASK(tx) | mask, CS42XX8_FUNCMOD_xC_FM(tx, fm[tx]) | val); return 0; } static int cs42xx8_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct cs42xx8_priv *cs42xx8 = snd_soc_component_get_drvdata(component); bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; /* Clear stored rate */ cs42xx8->rate[tx] = 0; regmap_update_bits(cs42xx8->regmap, CS42XX8_FUNCMOD, CS42XX8_FUNCMOD_xC_FM_MASK(tx), CS42XX8_FUNCMOD_xC_FM(tx, CS42XX8_FM_AUTO)); return 0; } static int cs42xx8_mute(struct snd_soc_dai *dai, int mute, int direction) { struct snd_soc_component *component = dai->component; struct cs42xx8_priv *cs42xx8 = snd_soc_component_get_drvdata(component); u8 dac_unmute = cs42xx8->tx_channels ? ~((0x1 << cs42xx8->tx_channels) - 1) : 0; regmap_write(cs42xx8->regmap, CS42XX8_DACMUTE, mute ? CS42XX8_DACMUTE_ALL : dac_unmute); return 0; } static const struct snd_soc_dai_ops cs42xx8_dai_ops = { .set_fmt = cs42xx8_set_dai_fmt, .set_sysclk = cs42xx8_set_dai_sysclk, .hw_params = cs42xx8_hw_params, .hw_free = cs42xx8_hw_free, .mute_stream = cs42xx8_mute, .no_capture_mute = 1, }; static struct snd_soc_dai_driver cs42xx8_dai = { .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000_192000, .formats = CS42XX8_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .rates = SNDRV_PCM_RATE_8000_192000, .formats = CS42XX8_FORMATS, }, .ops = &cs42xx8_dai_ops, }; static const struct reg_default cs42xx8_reg[] = { { 0x02, 0x00 }, /* Power Control */ { 0x03, 0xF0 }, /* Functional Mode */ { 0x04, 0x46 }, /* Interface Formats */ { 0x05, 0x00 }, /* ADC Control & DAC De-Emphasis */ { 0x06, 0x10 }, /* Transition Control */ { 0x07, 0x00 }, /* DAC Channel Mute */ { 0x08, 0x00 }, /* Volume Control AOUT1 */ { 0x09, 0x00 }, /* Volume Control AOUT2 */ { 0x0a, 0x00 }, /* Volume Control AOUT3 */ { 0x0b, 0x00 }, /* Volume Control AOUT4 */ { 0x0c, 0x00 }, /* Volume Control AOUT5 */ { 0x0d, 0x00 }, /* Volume Control AOUT6 */ { 0x0e, 0x00 }, /* Volume Control AOUT7 */ { 0x0f, 0x00 }, /* Volume Control AOUT8 */ { 0x10, 0x00 }, /* DAC Channel Invert */ { 0x11, 0x00 }, /* Volume Control AIN1 */ { 0x12, 0x00 }, /* Volume Control AIN2 */ { 0x13, 0x00 }, /* Volume Control AIN3 */ { 0x14, 0x00 }, /* Volume Control AIN4 */ { 0x15, 0x00 }, /* Volume Control AIN5 */ { 0x16, 0x00 }, /* Volume Control AIN6 */ { 0x17, 0x00 }, /* ADC Channel Invert */ { 0x18, 0x00 }, /* Status Control */ { 0x1a, 0x00 }, /* Status Mask */ { 0x1b, 0x00 }, /* MUTEC Pin Control */ }; static bool cs42xx8_volatile_register(struct device *dev, unsigned int reg) { switch (reg) { case CS42XX8_STATUS: return true; default: return false; } } static bool cs42xx8_writeable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS42XX8_CHIPID: case CS42XX8_STATUS: return false; default: return true; } } const struct regmap_config cs42xx8_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = CS42XX8_LASTREG, .reg_defaults = cs42xx8_reg, .num_reg_defaults = ARRAY_SIZE(cs42xx8_reg), .volatile_reg = cs42xx8_volatile_register, .writeable_reg = cs42xx8_writeable_register, .cache_type = REGCACHE_RBTREE, }; EXPORT_SYMBOL_GPL(cs42xx8_regmap_config); static int cs42xx8_component_probe(struct snd_soc_component *component) { struct cs42xx8_priv *cs42xx8 = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); switch (cs42xx8->drvdata->num_adcs) { case 3: snd_soc_add_component_controls(component, cs42xx8_adc3_snd_controls, ARRAY_SIZE(cs42xx8_adc3_snd_controls)); snd_soc_dapm_new_controls(dapm, cs42xx8_adc3_dapm_widgets, ARRAY_SIZE(cs42xx8_adc3_dapm_widgets)); snd_soc_dapm_add_routes(dapm, cs42xx8_adc3_dapm_routes, ARRAY_SIZE(cs42xx8_adc3_dapm_routes)); break; default: break; } /* Mute all DAC channels */ regmap_write(cs42xx8->regmap, CS42XX8_DACMUTE, CS42XX8_DACMUTE_ALL); return 0; } static const struct snd_soc_component_driver cs42xx8_driver = { .probe = cs42xx8_component_probe, .controls = cs42xx8_snd_controls, .num_controls = ARRAY_SIZE(cs42xx8_snd_controls), .dapm_widgets = cs42xx8_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cs42xx8_dapm_widgets), .dapm_routes = cs42xx8_dapm_routes, .num_dapm_routes = ARRAY_SIZE(cs42xx8_dapm_routes), .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; const struct cs42xx8_driver_data cs42448_data = { .name = "cs42448", .num_adcs = 3, }; EXPORT_SYMBOL_GPL(cs42448_data); const struct cs42xx8_driver_data cs42888_data = { .name = "cs42888", .num_adcs = 2, }; EXPORT_SYMBOL_GPL(cs42888_data); const struct of_device_id cs42xx8_of_match[] = { { .compatible = "cirrus,cs42448", .data = &cs42448_data, }, { .compatible = "cirrus,cs42888", .data = &cs42888_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, cs42xx8_of_match); EXPORT_SYMBOL_GPL(cs42xx8_of_match); int cs42xx8_probe(struct device *dev, struct regmap *regmap) { const struct of_device_id *of_id; struct cs42xx8_priv *cs42xx8; int ret, val, i; if (IS_ERR(regmap)) { ret = PTR_ERR(regmap); dev_err(dev, "failed to allocate regmap: %d\n", ret); return ret; } cs42xx8 = devm_kzalloc(dev, sizeof(*cs42xx8), GFP_KERNEL); if (cs42xx8 == NULL) return -ENOMEM; cs42xx8->regmap = regmap; dev_set_drvdata(dev, cs42xx8); of_id = of_match_device(cs42xx8_of_match, dev); if (of_id) cs42xx8->drvdata = of_id->data; if (!cs42xx8->drvdata) { dev_err(dev, "failed to find driver data\n"); return -EINVAL; } cs42xx8->gpiod_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(cs42xx8->gpiod_reset)) return PTR_ERR(cs42xx8->gpiod_reset); gpiod_set_value_cansleep(cs42xx8->gpiod_reset, 0); cs42xx8->clk = devm_clk_get(dev, "mclk"); if (IS_ERR(cs42xx8->clk)) { dev_err(dev, "failed to get the clock: %ld\n", PTR_ERR(cs42xx8->clk)); return -EINVAL; } cs42xx8->sysclk = clk_get_rate(cs42xx8->clk); for (i = 0; i < ARRAY_SIZE(cs42xx8->supplies); i++) cs42xx8->supplies[i].supply = cs42xx8_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(cs42xx8->supplies), cs42xx8->supplies); if (ret) { dev_err(dev, "failed to request supplies: %d\n", ret); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(cs42xx8->supplies), cs42xx8->supplies); if (ret) { dev_err(dev, "failed to enable supplies: %d\n", ret); return ret; } /* Make sure hardware reset done */ msleep(5); /* Validate the chip ID */ ret = regmap_read(cs42xx8->regmap, CS42XX8_CHIPID, &val); if (ret < 0) { dev_err(dev, "failed to get device ID, ret = %d", ret); goto err_enable; } /* The top four bits of the chip ID should be 0000 */ if (((val & CS42XX8_CHIPID_CHIP_ID_MASK) >> 4) != 0x00) { dev_err(dev, "unmatched chip ID: %d\n", (val & CS42XX8_CHIPID_CHIP_ID_MASK) >> 4); ret = -EINVAL; goto err_enable; } dev_info(dev, "found device, revision %X\n", val & CS42XX8_CHIPID_REV_ID_MASK); cs42xx8_dai.name = cs42xx8->drvdata->name; /* Each adc supports stereo input */ cs42xx8_dai.capture.channels_max = cs42xx8->drvdata->num_adcs * 2; ret = devm_snd_soc_register_component(dev, &cs42xx8_driver, &cs42xx8_dai, 1); if (ret) { dev_err(dev, "failed to register component:%d\n", ret); goto err_enable; } regcache_cache_only(cs42xx8->regmap, true); err_enable: regulator_bulk_disable(ARRAY_SIZE(cs42xx8->supplies), cs42xx8->supplies); return ret; } EXPORT_SYMBOL_GPL(cs42xx8_probe); #ifdef CONFIG_PM static int cs42xx8_runtime_resume(struct device *dev) { struct cs42xx8_priv *cs42xx8 = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(cs42xx8->clk); if (ret) { dev_err(dev, "failed to enable mclk: %d\n", ret); return ret; } gpiod_set_value_cansleep(cs42xx8->gpiod_reset, 0); ret = regulator_bulk_enable(ARRAY_SIZE(cs42xx8->supplies), cs42xx8->supplies); if (ret) { dev_err(dev, "failed to enable supplies: %d\n", ret); goto err_clk; } /* Make sure hardware reset done */ msleep(5); regcache_cache_only(cs42xx8->regmap, false); regcache_mark_dirty(cs42xx8->regmap); ret = regcache_sync(cs42xx8->regmap); if (ret) { dev_err(dev, "failed to sync regmap: %d\n", ret); goto err_bulk; } return 0; err_bulk: regulator_bulk_disable(ARRAY_SIZE(cs42xx8->supplies), cs42xx8->supplies); err_clk: clk_disable_unprepare(cs42xx8->clk); return ret; } static int cs42xx8_runtime_suspend(struct device *dev) { struct cs42xx8_priv *cs42xx8 = dev_get_drvdata(dev); regcache_cache_only(cs42xx8->regmap, true); regulator_bulk_disable(ARRAY_SIZE(cs42xx8->supplies), cs42xx8->supplies); gpiod_set_value_cansleep(cs42xx8->gpiod_reset, 1); clk_disable_unprepare(cs42xx8->clk); return 0; } #endif const struct dev_pm_ops cs42xx8_pm = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(cs42xx8_runtime_suspend, cs42xx8_runtime_resume, NULL) }; EXPORT_SYMBOL_GPL(cs42xx8_pm); MODULE_DESCRIPTION("Cirrus Logic CS42448/CS42888 ALSA SoC Codec Driver"); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_LICENSE("GPL");