/* * builtin-top.c * * Builtin top command: Display a continuously updated profile of * any workload, CPU or specific PID. * * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com> * * Improvements and fixes by: * * Arjan van de Ven <arjan@linux.intel.com> * Yanmin Zhang <yanmin.zhang@intel.com> * Wu Fengguang <fengguang.wu@intel.com> * Mike Galbraith <efault@gmx.de> * Paul Mackerras <paulus@samba.org> * * Released under the GPL v2. (and only v2, not any later version) */ #include "builtin.h" #include "perf.h" #include "util/color.h" #include "util/session.h" #include "util/symbol.h" #include "util/thread.h" #include "util/util.h" #include <linux/rbtree.h> #include "util/parse-options.h" #include "util/parse-events.h" #include "util/cpumap.h" #include "util/debug.h" #include <assert.h> #include <fcntl.h> #include <stdio.h> #include <termios.h> #include <unistd.h> #include <errno.h> #include <time.h> #include <sched.h> #include <pthread.h> #include <sys/syscall.h> #include <sys/ioctl.h> #include <sys/poll.h> #include <sys/prctl.h> #include <sys/wait.h> #include <sys/uio.h> #include <sys/mman.h> #include <linux/unistd.h> #include <linux/types.h> static int *fd[MAX_NR_CPUS][MAX_COUNTERS]; static bool system_wide = false; static int default_interval = 0; static int count_filter = 5; static int print_entries; static int target_pid = -1; static int target_tid = -1; static pid_t *all_tids = NULL; static int thread_num = 0; static bool inherit = false; static int nr_cpus = 0; static int realtime_prio = 0; static bool group = false; static unsigned int page_size; static unsigned int mmap_pages = 16; static int freq = 1000; /* 1 KHz */ static int delay_secs = 2; static bool zero = false; static bool dump_symtab = false; static bool hide_kernel_symbols = false; static bool hide_user_symbols = false; static struct winsize winsize; /* * Source */ struct source_line { u64 eip; unsigned long count[MAX_COUNTERS]; char *line; struct source_line *next; }; static const char *sym_filter = NULL; struct sym_entry *sym_filter_entry = NULL; struct sym_entry *sym_filter_entry_sched = NULL; static int sym_pcnt_filter = 5; static int sym_counter = 0; static int display_weighted = -1; static const char *cpu_list; /* * Symbols */ struct sym_entry_source { struct source_line *source; struct source_line *lines; struct source_line **lines_tail; pthread_mutex_t lock; }; struct sym_entry { struct rb_node rb_node; struct list_head node; unsigned long snap_count; double weight; int skip; u16 name_len; u8 origin; struct map *map; struct sym_entry_source *src; unsigned long count[0]; }; /* * Source functions */ static inline struct symbol *sym_entry__symbol(struct sym_entry *self) { return ((void *)self) + symbol_conf.priv_size; } void get_term_dimensions(struct winsize *ws) { char *s = getenv("LINES"); if (s != NULL) { ws->ws_row = atoi(s); s = getenv("COLUMNS"); if (s != NULL) { ws->ws_col = atoi(s); if (ws->ws_row && ws->ws_col) return; } } #ifdef TIOCGWINSZ if (ioctl(1, TIOCGWINSZ, ws) == 0 && ws->ws_row && ws->ws_col) return; #endif ws->ws_row = 25; ws->ws_col = 80; } static void update_print_entries(struct winsize *ws) { print_entries = ws->ws_row; if (print_entries > 9) print_entries -= 9; } static void sig_winch_handler(int sig __used) { get_term_dimensions(&winsize); update_print_entries(&winsize); } static int parse_source(struct sym_entry *syme) { struct symbol *sym; struct sym_entry_source *source; struct map *map; FILE *file; char command[PATH_MAX*2]; const char *path; u64 len; if (!syme) return -1; sym = sym_entry__symbol(syme); map = syme->map; /* * We can't annotate with just /proc/kallsyms */ if (map->dso->origin == DSO__ORIG_KERNEL) return -1; if (syme->src == NULL) { syme->src = zalloc(sizeof(*source)); if (syme->src == NULL) return -1; pthread_mutex_init(&syme->src->lock, NULL); } source = syme->src; if (source->lines) { pthread_mutex_lock(&source->lock); goto out_assign; } path = map->dso->long_name; len = sym->end - sym->start; sprintf(command, "objdump --start-address=%#0*Lx --stop-address=%#0*Lx -dS %s", BITS_PER_LONG / 4, map__rip_2objdump(map, sym->start), BITS_PER_LONG / 4, map__rip_2objdump(map, sym->end), path); file = popen(command, "r"); if (!file) return -1; pthread_mutex_lock(&source->lock); source->lines_tail = &source->lines; while (!feof(file)) { struct source_line *src; size_t dummy = 0; char *c, *sep; src = malloc(sizeof(struct source_line)); assert(src != NULL); memset(src, 0, sizeof(struct source_line)); if (getline(&src->line, &dummy, file) < 0) break; if (!src->line) break; c = strchr(src->line, '\n'); if (c) *c = 0; src->next = NULL; *source->lines_tail = src; source->lines_tail = &src->next; src->eip = strtoull(src->line, &sep, 16); if (*sep == ':') src->eip = map__objdump_2ip(map, src->eip); else /* this line has no ip info (e.g. source line) */ src->eip = 0; } pclose(file); out_assign: sym_filter_entry = syme; pthread_mutex_unlock(&source->lock); return 0; } static void __zero_source_counters(struct sym_entry *syme) { int i; struct source_line *line; line = syme->src->lines; while (line) { for (i = 0; i < nr_counters; i++) line->count[i] = 0; line = line->next; } } static void record_precise_ip(struct sym_entry *syme, int counter, u64 ip) { struct source_line *line; if (syme != sym_filter_entry) return; if (pthread_mutex_trylock(&syme->src->lock)) return; if (syme->src == NULL || syme->src->source == NULL) goto out_unlock; for (line = syme->src->lines; line; line = line->next) { /* skip lines without IP info */ if (line->eip == 0) continue; if (line->eip == ip) { line->count[counter]++; break; } if (line->eip > ip) break; } out_unlock: pthread_mutex_unlock(&syme->src->lock); } #define PATTERN_LEN (BITS_PER_LONG / 4 + 2) static void lookup_sym_source(struct sym_entry *syme) { struct symbol *symbol = sym_entry__symbol(syme); struct source_line *line; char pattern[PATTERN_LEN + 1]; sprintf(pattern, "%0*Lx <", BITS_PER_LONG / 4, map__rip_2objdump(syme->map, symbol->start)); pthread_mutex_lock(&syme->src->lock); for (line = syme->src->lines; line; line = line->next) { if (memcmp(line->line, pattern, PATTERN_LEN) == 0) { syme->src->source = line; break; } } pthread_mutex_unlock(&syme->src->lock); } static void show_lines(struct source_line *queue, int count, int total) { int i; struct source_line *line; line = queue; for (i = 0; i < count; i++) { float pcnt = 100.0*(float)line->count[sym_counter]/(float)total; printf("%8li %4.1f%%\t%s\n", line->count[sym_counter], pcnt, line->line); line = line->next; } } #define TRACE_COUNT 3 static void show_details(struct sym_entry *syme) { struct symbol *symbol; struct source_line *line; struct source_line *line_queue = NULL; int displayed = 0; int line_queue_count = 0, total = 0, more = 0; if (!syme) return; if (!syme->src->source) lookup_sym_source(syme); if (!syme->src->source) return; symbol = sym_entry__symbol(syme); printf("Showing %s for %s\n", event_name(sym_counter), symbol->name); printf(" Events Pcnt (>=%d%%)\n", sym_pcnt_filter); pthread_mutex_lock(&syme->src->lock); line = syme->src->source; while (line) { total += line->count[sym_counter]; line = line->next; } line = syme->src->source; while (line) { float pcnt = 0.0; if (!line_queue_count) line_queue = line; line_queue_count++; if (line->count[sym_counter]) pcnt = 100.0 * line->count[sym_counter] / (float)total; if (pcnt >= (float)sym_pcnt_filter) { if (displayed <= print_entries) show_lines(line_queue, line_queue_count, total); else more++; displayed += line_queue_count; line_queue_count = 0; line_queue = NULL; } else if (line_queue_count > TRACE_COUNT) { line_queue = line_queue->next; line_queue_count--; } line->count[sym_counter] = zero ? 0 : line->count[sym_counter] * 7 / 8; line = line->next; } pthread_mutex_unlock(&syme->src->lock); if (more) printf("%d lines not displayed, maybe increase display entries [e]\n", more); } /* * Symbols will be added here in event__process_sample and will get out * after decayed. */ static LIST_HEAD(active_symbols); static pthread_mutex_t active_symbols_lock = PTHREAD_MUTEX_INITIALIZER; /* * Ordering weight: count-1 * count-2 * ... / count-n */ static double sym_weight(const struct sym_entry *sym) { double weight = sym->snap_count; int counter; if (!display_weighted) return weight; for (counter = 1; counter < nr_counters-1; counter++) weight *= sym->count[counter]; weight /= (sym->count[counter] + 1); return weight; } static long samples; static long kernel_samples, us_samples; static long exact_samples; static long guest_us_samples, guest_kernel_samples; static const char CONSOLE_CLEAR[] = "[H[2J"; static void __list_insert_active_sym(struct sym_entry *syme) { list_add(&syme->node, &active_symbols); } static void list_remove_active_sym(struct sym_entry *syme) { pthread_mutex_lock(&active_symbols_lock); list_del_init(&syme->node); pthread_mutex_unlock(&active_symbols_lock); } static void rb_insert_active_sym(struct rb_root *tree, struct sym_entry *se) { struct rb_node **p = &tree->rb_node; struct rb_node *parent = NULL; struct sym_entry *iter; while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct sym_entry, rb_node); if (se->weight > iter->weight) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&se->rb_node, parent, p); rb_insert_color(&se->rb_node, tree); } static void print_sym_table(void) { int printed = 0, j; int counter, snap = !display_weighted ? sym_counter : 0; float samples_per_sec = samples/delay_secs; float ksamples_per_sec = kernel_samples/delay_secs; float us_samples_per_sec = (us_samples)/delay_secs; float guest_kernel_samples_per_sec = (guest_kernel_samples)/delay_secs; float guest_us_samples_per_sec = (guest_us_samples)/delay_secs; float esamples_percent = (100.0*exact_samples)/samples; float sum_ksamples = 0.0; struct sym_entry *syme, *n; struct rb_root tmp = RB_ROOT; struct rb_node *nd; int sym_width = 0, dso_width = 0, dso_short_width = 0; const int win_width = winsize.ws_col - 1; samples = us_samples = kernel_samples = exact_samples = 0; guest_kernel_samples = guest_us_samples = 0; /* Sort the active symbols */ pthread_mutex_lock(&active_symbols_lock); syme = list_entry(active_symbols.next, struct sym_entry, node); pthread_mutex_unlock(&active_symbols_lock); list_for_each_entry_safe_from(syme, n, &active_symbols, node) { syme->snap_count = syme->count[snap]; if (syme->snap_count != 0) { if ((hide_user_symbols && syme->origin == PERF_RECORD_MISC_USER) || (hide_kernel_symbols && syme->origin == PERF_RECORD_MISC_KERNEL)) { list_remove_active_sym(syme); continue; } syme->weight = sym_weight(syme); rb_insert_active_sym(&tmp, syme); sum_ksamples += syme->snap_count; for (j = 0; j < nr_counters; j++) syme->count[j] = zero ? 0 : syme->count[j] * 7 / 8; } else list_remove_active_sym(syme); } puts(CONSOLE_CLEAR); printf("%-*.*s\n", win_width, win_width, graph_dotted_line); if (!perf_guest) { printf(" PerfTop:%8.0f irqs/sec kernel:%4.1f%%" " exact: %4.1f%% [", samples_per_sec, 100.0 - (100.0 * ((samples_per_sec - ksamples_per_sec) / samples_per_sec)), esamples_percent); } else { printf(" PerfTop:%8.0f irqs/sec kernel:%4.1f%% us:%4.1f%%" " guest kernel:%4.1f%% guest us:%4.1f%%" " exact: %4.1f%% [", samples_per_sec, 100.0 - (100.0 * ((samples_per_sec-ksamples_per_sec) / samples_per_sec)), 100.0 - (100.0 * ((samples_per_sec-us_samples_per_sec) / samples_per_sec)), 100.0 - (100.0 * ((samples_per_sec - guest_kernel_samples_per_sec) / samples_per_sec)), 100.0 - (100.0 * ((samples_per_sec - guest_us_samples_per_sec) / samples_per_sec)), esamples_percent); } if (nr_counters == 1 || !display_weighted) { printf("%Ld", (u64)attrs[0].sample_period); if (freq) printf("Hz "); else printf(" "); } if (!display_weighted) printf("%s", event_name(sym_counter)); else for (counter = 0; counter < nr_counters; counter++) { if (counter) printf("/"); printf("%s", event_name(counter)); } printf( "], "); if (target_pid != -1) printf(" (target_pid: %d", target_pid); else if (target_tid != -1) printf(" (target_tid: %d", target_tid); else printf(" (all"); if (cpu_list) printf(", CPU%s: %s)\n", nr_cpus > 1 ? "s" : "", cpu_list); else { if (target_tid != -1) printf(")\n"); else printf(", %d CPU%s)\n", nr_cpus, nr_cpus > 1 ? "s" : ""); } printf("%-*.*s\n", win_width, win_width, graph_dotted_line); if (sym_filter_entry) { show_details(sym_filter_entry); return; } /* * Find the longest symbol name that will be displayed */ for (nd = rb_first(&tmp); nd; nd = rb_next(nd)) { syme = rb_entry(nd, struct sym_entry, rb_node); if (++printed > print_entries || (int)syme->snap_count < count_filter) continue; if (syme->map->dso->long_name_len > dso_width) dso_width = syme->map->dso->long_name_len; if (syme->map->dso->short_name_len > dso_short_width) dso_short_width = syme->map->dso->short_name_len; if (syme->name_len > sym_width) sym_width = syme->name_len; } printed = 0; if (sym_width + dso_width > winsize.ws_col - 29) { dso_width = dso_short_width; if (sym_width + dso_width > winsize.ws_col - 29) sym_width = winsize.ws_col - dso_width - 29; } putchar('\n'); if (nr_counters == 1) printf(" samples pcnt"); else printf(" weight samples pcnt"); if (verbose) printf(" RIP "); printf(" %-*.*s DSO\n", sym_width, sym_width, "function"); printf(" %s _______ _____", nr_counters == 1 ? " " : "______"); if (verbose) printf(" ________________"); printf(" %-*.*s", sym_width, sym_width, graph_line); printf(" %-*.*s", dso_width, dso_width, graph_line); puts("\n"); for (nd = rb_first(&tmp); nd; nd = rb_next(nd)) { struct symbol *sym; double pcnt; syme = rb_entry(nd, struct sym_entry, rb_node); sym = sym_entry__symbol(syme); if (++printed > print_entries || (int)syme->snap_count < count_filter) continue; pcnt = 100.0 - (100.0 * ((sum_ksamples - syme->snap_count) / sum_ksamples)); if (nr_counters == 1 || !display_weighted) printf("%20.2f ", syme->weight); else printf("%9.1f %10ld ", syme->weight, syme->snap_count); percent_color_fprintf(stdout, "%4.1f%%", pcnt); if (verbose) printf(" %016llx", sym->start); printf(" %-*.*s", sym_width, sym_width, sym->name); printf(" %-*.*s\n", dso_width, dso_width, dso_width >= syme->map->dso->long_name_len ? syme->map->dso->long_name : syme->map->dso->short_name); } } static void prompt_integer(int *target, const char *msg) { char *buf = malloc(0), *p; size_t dummy = 0; int tmp; fprintf(stdout, "\n%s: ", msg); if (getline(&buf, &dummy, stdin) < 0) return; p = strchr(buf, '\n'); if (p) *p = 0; p = buf; while(*p) { if (!isdigit(*p)) goto out_free; p++; } tmp = strtoul(buf, NULL, 10); *target = tmp; out_free: free(buf); } static void prompt_percent(int *target, const char *msg) { int tmp = 0; prompt_integer(&tmp, msg); if (tmp >= 0 && tmp <= 100) *target = tmp; } static void prompt_symbol(struct sym_entry **target, const char *msg) { char *buf = malloc(0), *p; struct sym_entry *syme = *target, *n, *found = NULL; size_t dummy = 0; /* zero counters of active symbol */ if (syme) { pthread_mutex_lock(&syme->src->lock); __zero_source_counters(syme); *target = NULL; pthread_mutex_unlock(&syme->src->lock); } fprintf(stdout, "\n%s: ", msg); if (getline(&buf, &dummy, stdin) < 0) goto out_free; p = strchr(buf, '\n'); if (p) *p = 0; pthread_mutex_lock(&active_symbols_lock); syme = list_entry(active_symbols.next, struct sym_entry, node); pthread_mutex_unlock(&active_symbols_lock); list_for_each_entry_safe_from(syme, n, &active_symbols, node) { struct symbol *sym = sym_entry__symbol(syme); if (!strcmp(buf, sym->name)) { found = syme; break; } } if (!found) { fprintf(stderr, "Sorry, %s is not active.\n", buf); sleep(1); return; } else parse_source(found); out_free: free(buf); } static void print_mapped_keys(void) { char *name = NULL; if (sym_filter_entry) { struct symbol *sym = sym_entry__symbol(sym_filter_entry); name = sym->name; } fprintf(stdout, "\nMapped keys:\n"); fprintf(stdout, "\t[d] display refresh delay. \t(%d)\n", delay_secs); fprintf(stdout, "\t[e] display entries (lines). \t(%d)\n", print_entries); if (nr_counters > 1) fprintf(stdout, "\t[E] active event counter. \t(%s)\n", event_name(sym_counter)); fprintf(stdout, "\t[f] profile display filter (count). \t(%d)\n", count_filter); fprintf(stdout, "\t[F] annotate display filter (percent). \t(%d%%)\n", sym_pcnt_filter); fprintf(stdout, "\t[s] annotate symbol. \t(%s)\n", name?: "NULL"); fprintf(stdout, "\t[S] stop annotation.\n"); if (nr_counters > 1) fprintf(stdout, "\t[w] toggle display weighted/count[E]r. \t(%d)\n", display_weighted ? 1 : 0); fprintf(stdout, "\t[K] hide kernel_symbols symbols. \t(%s)\n", hide_kernel_symbols ? "yes" : "no"); fprintf(stdout, "\t[U] hide user symbols. \t(%s)\n", hide_user_symbols ? "yes" : "no"); fprintf(stdout, "\t[z] toggle sample zeroing. \t(%d)\n", zero ? 1 : 0); fprintf(stdout, "\t[qQ] quit.\n"); } static int key_mapped(int c) { switch (c) { case 'd': case 'e': case 'f': case 'z': case 'q': case 'Q': case 'K': case 'U': case 'F': case 's': case 'S': return 1; case 'E': case 'w': return nr_counters > 1 ? 1 : 0; default: break; } return 0; } static void handle_keypress(struct perf_session *session, int c) { if (!key_mapped(c)) { struct pollfd stdin_poll = { .fd = 0, .events = POLLIN }; struct termios tc, save; print_mapped_keys(); fprintf(stdout, "\nEnter selection, or unmapped key to continue: "); fflush(stdout); tcgetattr(0, &save); tc = save; tc.c_lflag &= ~(ICANON | ECHO); tc.c_cc[VMIN] = 0; tc.c_cc[VTIME] = 0; tcsetattr(0, TCSANOW, &tc); poll(&stdin_poll, 1, -1); c = getc(stdin); tcsetattr(0, TCSAFLUSH, &save); if (!key_mapped(c)) return; } switch (c) { case 'd': prompt_integer(&delay_secs, "Enter display delay"); if (delay_secs < 1) delay_secs = 1; break; case 'e': prompt_integer(&print_entries, "Enter display entries (lines)"); if (print_entries == 0) { sig_winch_handler(SIGWINCH); signal(SIGWINCH, sig_winch_handler); } else signal(SIGWINCH, SIG_DFL); break; case 'E': if (nr_counters > 1) { int i; fprintf(stderr, "\nAvailable events:"); for (i = 0; i < nr_counters; i++) fprintf(stderr, "\n\t%d %s", i, event_name(i)); prompt_integer(&sym_counter, "Enter details event counter"); if (sym_counter >= nr_counters) { fprintf(stderr, "Sorry, no such event, using %s.\n", event_name(0)); sym_counter = 0; sleep(1); } } else sym_counter = 0; break; case 'f': prompt_integer(&count_filter, "Enter display event count filter"); break; case 'F': prompt_percent(&sym_pcnt_filter, "Enter details display event filter (percent)"); break; case 'K': hide_kernel_symbols = !hide_kernel_symbols; break; case 'q': case 'Q': printf("exiting.\n"); if (dump_symtab) perf_session__fprintf_dsos(session, stderr); exit(0); case 's': prompt_symbol(&sym_filter_entry, "Enter details symbol"); break; case 'S': if (!sym_filter_entry) break; else { struct sym_entry *syme = sym_filter_entry; pthread_mutex_lock(&syme->src->lock); sym_filter_entry = NULL; __zero_source_counters(syme); pthread_mutex_unlock(&syme->src->lock); } break; case 'U': hide_user_symbols = !hide_user_symbols; break; case 'w': display_weighted = ~display_weighted; break; case 'z': zero = !zero; break; default: break; } } static void *display_thread(void *arg __used) { struct pollfd stdin_poll = { .fd = 0, .events = POLLIN }; struct termios tc, save; int delay_msecs, c; struct perf_session *session = (struct perf_session *) arg; tcgetattr(0, &save); tc = save; tc.c_lflag &= ~(ICANON | ECHO); tc.c_cc[VMIN] = 0; tc.c_cc[VTIME] = 0; repeat: delay_msecs = delay_secs * 1000; tcsetattr(0, TCSANOW, &tc); /* trash return*/ getc(stdin); do { print_sym_table(); } while (!poll(&stdin_poll, 1, delay_msecs) == 1); c = getc(stdin); tcsetattr(0, TCSAFLUSH, &save); handle_keypress(session, c); goto repeat; return NULL; } /* Tag samples to be skipped. */ static const char *skip_symbols[] = { "default_idle", "cpu_idle", "enter_idle", "exit_idle", "mwait_idle", "mwait_idle_with_hints", "poll_idle", "ppc64_runlatch_off", "pseries_dedicated_idle_sleep", NULL }; static int symbol_filter(struct map *map, struct symbol *sym) { struct sym_entry *syme; const char *name = sym->name; int i; /* * ppc64 uses function descriptors and appends a '.' to the * start of every instruction address. Remove it. */ if (name[0] == '.') name++; if (!strcmp(name, "_text") || !strcmp(name, "_etext") || !strcmp(name, "_sinittext") || !strncmp("init_module", name, 11) || !strncmp("cleanup_module", name, 14) || strstr(name, "_text_start") || strstr(name, "_text_end")) return 1; syme = symbol__priv(sym); syme->map = map; syme->src = NULL; if (!sym_filter_entry && sym_filter && !strcmp(name, sym_filter)) { /* schedule initial sym_filter_entry setup */ sym_filter_entry_sched = syme; sym_filter = NULL; } for (i = 0; skip_symbols[i]; i++) { if (!strcmp(skip_symbols[i], name)) { syme->skip = 1; break; } } if (!syme->skip) syme->name_len = strlen(sym->name); return 0; } static void event__process_sample(const event_t *self, struct perf_session *session, int counter) { u64 ip = self->ip.ip; struct sym_entry *syme; struct addr_location al; struct sample_data data; struct machine *machine; u8 origin = self->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; ++samples; switch (origin) { case PERF_RECORD_MISC_USER: ++us_samples; if (hide_user_symbols) return; machine = perf_session__find_host_machine(session); break; case PERF_RECORD_MISC_KERNEL: ++kernel_samples; if (hide_kernel_symbols) return; machine = perf_session__find_host_machine(session); break; case PERF_RECORD_MISC_GUEST_KERNEL: ++guest_kernel_samples; machine = perf_session__find_machine(session, self->ip.pid); break; case PERF_RECORD_MISC_GUEST_USER: ++guest_us_samples; /* * TODO: we don't process guest user from host side * except simple counting. */ return; default: return; } if (!machine && perf_guest) { pr_err("Can't find guest [%d]'s kernel information\n", self->ip.pid); return; } if (self->header.misc & PERF_RECORD_MISC_EXACT_IP) exact_samples++; if (event__preprocess_sample(self, session, &al, &data, symbol_filter) < 0 || al.filtered) return; if (al.sym == NULL) { /* * As we do lazy loading of symtabs we only will know if the * specified vmlinux file is invalid when we actually have a * hit in kernel space and then try to load it. So if we get * here and there are _no_ symbols in the DSO backing the * kernel map, bail out. * * We may never get here, for instance, if we use -K/ * --hide-kernel-symbols, even if the user specifies an * invalid --vmlinux ;-) */ if (al.map == machine->vmlinux_maps[MAP__FUNCTION] && RB_EMPTY_ROOT(&al.map->dso->symbols[MAP__FUNCTION])) { pr_err("The %s file can't be used\n", symbol_conf.vmlinux_name); exit(1); } return; } /* let's see, whether we need to install initial sym_filter_entry */ if (sym_filter_entry_sched) { sym_filter_entry = sym_filter_entry_sched; sym_filter_entry_sched = NULL; if (parse_source(sym_filter_entry) < 0) { struct symbol *sym = sym_entry__symbol(sym_filter_entry); pr_err("Can't annotate %s", sym->name); if (sym_filter_entry->map->dso->origin == DSO__ORIG_KERNEL) { pr_err(": No vmlinux file was found in the path:\n"); machine__fprintf_vmlinux_path(machine, stderr); } else pr_err(".\n"); exit(1); } } syme = symbol__priv(al.sym); if (!syme->skip) { syme->count[counter]++; syme->origin = origin; record_precise_ip(syme, counter, ip); pthread_mutex_lock(&active_symbols_lock); if (list_empty(&syme->node) || !syme->node.next) __list_insert_active_sym(syme); pthread_mutex_unlock(&active_symbols_lock); } } struct mmap_data { int counter; void *base; int mask; unsigned int prev; }; static unsigned int mmap_read_head(struct mmap_data *md) { struct perf_event_mmap_page *pc = md->base; int head; head = pc->data_head; rmb(); return head; } static void perf_session__mmap_read_counter(struct perf_session *self, struct mmap_data *md) { unsigned int head = mmap_read_head(md); unsigned int old = md->prev; unsigned char *data = md->base + page_size; int diff; /* * If we're further behind than half the buffer, there's a chance * the writer will bite our tail and mess up the samples under us. * * If we somehow ended up ahead of the head, we got messed up. * * In either case, truncate and restart at head. */ diff = head - old; if (diff > md->mask / 2 || diff < 0) { fprintf(stderr, "WARNING: failed to keep up with mmap data.\n"); /* * head points to a known good entry, start there. */ old = head; } for (; old != head;) { event_t *event = (event_t *)&data[old & md->mask]; event_t event_copy; size_t size = event->header.size; /* * Event straddles the mmap boundary -- header should always * be inside due to u64 alignment of output. */ if ((old & md->mask) + size != ((old + size) & md->mask)) { unsigned int offset = old; unsigned int len = min(sizeof(*event), size), cpy; void *dst = &event_copy; do { cpy = min(md->mask + 1 - (offset & md->mask), len); memcpy(dst, &data[offset & md->mask], cpy); offset += cpy; dst += cpy; len -= cpy; } while (len); event = &event_copy; } if (event->header.type == PERF_RECORD_SAMPLE) event__process_sample(event, self, md->counter); else event__process(event, self); old += size; } md->prev = old; } static struct pollfd *event_array; static struct mmap_data *mmap_array[MAX_NR_CPUS][MAX_COUNTERS]; static void perf_session__mmap_read(struct perf_session *self) { int i, counter, thread_index; for (i = 0; i < nr_cpus; i++) { for (counter = 0; counter < nr_counters; counter++) for (thread_index = 0; thread_index < thread_num; thread_index++) { perf_session__mmap_read_counter(self, &mmap_array[i][counter][thread_index]); } } } int nr_poll; int group_fd; static void start_counter(int i, int counter) { struct perf_event_attr *attr; int cpu = -1; int thread_index; if (target_tid == -1) cpu = cpumap[i]; attr = attrs + counter; attr->sample_type = PERF_SAMPLE_IP | PERF_SAMPLE_TID; if (freq) { attr->sample_type |= PERF_SAMPLE_PERIOD; attr->freq = 1; attr->sample_freq = freq; } attr->inherit = (cpu < 0) && inherit; attr->mmap = 1; for (thread_index = 0; thread_index < thread_num; thread_index++) { try_again: fd[i][counter][thread_index] = sys_perf_event_open(attr, all_tids[thread_index], cpu, group_fd, 0); if (fd[i][counter][thread_index] < 0) { int err = errno; if (err == EPERM || err == EACCES) die("No permission - are you root?\n"); /* * If it's cycles then fall back to hrtimer * based cpu-clock-tick sw counter, which * is always available even if no PMU support: */ if (attr->type == PERF_TYPE_HARDWARE && attr->config == PERF_COUNT_HW_CPU_CYCLES) { if (verbose) warning(" ... trying to fall back to cpu-clock-ticks\n"); attr->type = PERF_TYPE_SOFTWARE; attr->config = PERF_COUNT_SW_CPU_CLOCK; goto try_again; } printf("\n"); error("perfcounter syscall returned with %d (%s)\n", fd[i][counter][thread_index], strerror(err)); die("No CONFIG_PERF_EVENTS=y kernel support configured?\n"); exit(-1); } assert(fd[i][counter][thread_index] >= 0); fcntl(fd[i][counter][thread_index], F_SETFL, O_NONBLOCK); /* * First counter acts as the group leader: */ if (group && group_fd == -1) group_fd = fd[i][counter][thread_index]; event_array[nr_poll].fd = fd[i][counter][thread_index]; event_array[nr_poll].events = POLLIN; nr_poll++; mmap_array[i][counter][thread_index].counter = counter; mmap_array[i][counter][thread_index].prev = 0; mmap_array[i][counter][thread_index].mask = mmap_pages*page_size - 1; mmap_array[i][counter][thread_index].base = mmap(NULL, (mmap_pages+1)*page_size, PROT_READ, MAP_SHARED, fd[i][counter][thread_index], 0); if (mmap_array[i][counter][thread_index].base == MAP_FAILED) die("failed to mmap with %d (%s)\n", errno, strerror(errno)); } } static int __cmd_top(void) { pthread_t thread; int i, counter; int ret; /* * FIXME: perf_session__new should allow passing a O_MMAP, so that all this * mmap reading, etc is encapsulated in it. Use O_WRONLY for now. */ struct perf_session *session = perf_session__new(NULL, O_WRONLY, false, false); if (session == NULL) return -ENOMEM; if (target_tid != -1) event__synthesize_thread(target_tid, event__process, session); else event__synthesize_threads(event__process, session); for (i = 0; i < nr_cpus; i++) { group_fd = -1; for (counter = 0; counter < nr_counters; counter++) start_counter(i, counter); } /* Wait for a minimal set of events before starting the snapshot */ poll(&event_array[0], nr_poll, 100); perf_session__mmap_read(session); if (pthread_create(&thread, NULL, display_thread, session)) { printf("Could not create display thread.\n"); exit(-1); } if (realtime_prio) { struct sched_param param; param.sched_priority = realtime_prio; if (sched_setscheduler(0, SCHED_FIFO, ¶m)) { printf("Could not set realtime priority.\n"); exit(-1); } } while (1) { int hits = samples; perf_session__mmap_read(session); if (hits == samples) ret = poll(event_array, nr_poll, 100); } return 0; } static const char * const top_usage[] = { "perf top [<options>]", NULL }; static const struct option options[] = { OPT_CALLBACK('e', "event", NULL, "event", "event selector. use 'perf list' to list available events", parse_events), OPT_INTEGER('c', "count", &default_interval, "event period to sample"), OPT_INTEGER('p', "pid", &target_pid, "profile events on existing process id"), OPT_INTEGER('t', "tid", &target_tid, "profile events on existing thread id"), OPT_BOOLEAN('a', "all-cpus", &system_wide, "system-wide collection from all CPUs"), OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to monitor"), OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, "file", "vmlinux pathname"), OPT_BOOLEAN('K', "hide_kernel_symbols", &hide_kernel_symbols, "hide kernel symbols"), OPT_UINTEGER('m', "mmap-pages", &mmap_pages, "number of mmap data pages"), OPT_INTEGER('r', "realtime", &realtime_prio, "collect data with this RT SCHED_FIFO priority"), OPT_INTEGER('d', "delay", &delay_secs, "number of seconds to delay between refreshes"), OPT_BOOLEAN('D', "dump-symtab", &dump_symtab, "dump the symbol table used for profiling"), OPT_INTEGER('f', "count-filter", &count_filter, "only display functions with more events than this"), OPT_BOOLEAN('g', "group", &group, "put the counters into a counter group"), OPT_BOOLEAN('i', "inherit", &inherit, "child tasks inherit counters"), OPT_STRING('s', "sym-annotate", &sym_filter, "symbol name", "symbol to annotate"), OPT_BOOLEAN('z', "zero", &zero, "zero history across updates"), OPT_INTEGER('F', "freq", &freq, "profile at this frequency"), OPT_INTEGER('E', "entries", &print_entries, "display this many functions"), OPT_BOOLEAN('U', "hide_user_symbols", &hide_user_symbols, "hide user symbols"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show counter open errors, etc)"), OPT_END() }; int cmd_top(int argc, const char **argv, const char *prefix __used) { int counter; int i,j; page_size = sysconf(_SC_PAGE_SIZE); argc = parse_options(argc, argv, options, top_usage, 0); if (argc) usage_with_options(top_usage, options); if (target_pid != -1) { target_tid = target_pid; thread_num = find_all_tid(target_pid, &all_tids); if (thread_num <= 0) { fprintf(stderr, "Can't find all threads of pid %d\n", target_pid); usage_with_options(top_usage, options); } } else { all_tids=malloc(sizeof(pid_t)); if (!all_tids) return -ENOMEM; all_tids[0] = target_tid; thread_num = 1; } for (i = 0; i < MAX_NR_CPUS; i++) { for (j = 0; j < MAX_COUNTERS; j++) { fd[i][j] = malloc(sizeof(int)*thread_num); mmap_array[i][j] = zalloc( sizeof(struct mmap_data)*thread_num); if (!fd[i][j] || !mmap_array[i][j]) return -ENOMEM; } } event_array = malloc( sizeof(struct pollfd)*MAX_NR_CPUS*MAX_COUNTERS*thread_num); if (!event_array) return -ENOMEM; /* CPU and PID are mutually exclusive */ if (target_tid > 0 && cpu_list) { printf("WARNING: PID switch overriding CPU\n"); sleep(1); cpu_list = NULL; } if (!nr_counters) nr_counters = 1; symbol_conf.priv_size = (sizeof(struct sym_entry) + (nr_counters + 1) * sizeof(unsigned long)); symbol_conf.try_vmlinux_path = (symbol_conf.vmlinux_name == NULL); if (symbol__init() < 0) return -1; if (delay_secs < 1) delay_secs = 1; /* * User specified count overrides default frequency. */ if (default_interval) freq = 0; else if (freq) { default_interval = freq; } else { fprintf(stderr, "frequency and count are zero, aborting\n"); exit(EXIT_FAILURE); } /* * Fill in the ones not specifically initialized via -c: */ for (counter = 0; counter < nr_counters; counter++) { if (attrs[counter].sample_period) continue; attrs[counter].sample_period = default_interval; } if (target_tid != -1) nr_cpus = 1; else nr_cpus = read_cpu_map(cpu_list); if (nr_cpus < 1) usage_with_options(top_usage, options); get_term_dimensions(&winsize); if (print_entries == 0) { update_print_entries(&winsize); signal(SIGWINCH, sig_winch_handler); } return __cmd_top(); }