aboutsummaryrefslogtreecommitdiff
path: root/Documentation/DocBook/kernel-hacking.tmpl
blob: da5c087462b1dfd9374a1727dd7ee2a365b313a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>

<book id="lk-hacking-guide">
 <bookinfo>
  <title>Unreliable Guide To Hacking The Linux Kernel</title>
  
  <authorgroup>
   <author>
    <firstname>Rusty</firstname>
    <surname>Russell</surname>
    <affiliation>
     <address>
      <email>rusty@rustcorp.com.au</email>
     </address>
    </affiliation>
   </author>
  </authorgroup>

  <copyright>
   <year>2005</year>
   <holder>Rusty Russell</holder>
  </copyright>

  <legalnotice>
   <para>
    This documentation is free software; you can redistribute
    it and/or modify it under the terms of the GNU General Public
    License as published by the Free Software Foundation; either
    version 2 of the License, or (at your option) any later
    version.
   </para>
   
   <para>
    This program is distributed in the hope that it will be
    useful, but WITHOUT ANY WARRANTY; without even the implied
    warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
    See the GNU General Public License for more details.
   </para>
   
   <para>
    You should have received a copy of the GNU General Public
    License along with this program; if not, write to the Free
    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
    MA 02111-1307 USA
   </para>
   
   <para>
    For more details see the file COPYING in the source
    distribution of Linux.
   </para>
  </legalnotice>

  <releaseinfo>
   This is the first release of this document as part of the kernel tarball.
  </releaseinfo>

 </bookinfo>

 <toc></toc>

 <chapter id="introduction">
  <title>Introduction</title>
  <para>
   Welcome, gentle reader, to Rusty's Remarkably Unreliable Guide to Linux
   Kernel Hacking.  This document describes the common routines and
   general requirements for kernel code: its goal is to serve as a
   primer for Linux kernel development for experienced C
   programmers.  I avoid implementation details: that's what the
   code is for, and I ignore whole tracts of useful routines.
  </para>
  <para>
   Before you read this, please understand that I never wanted to
   write this document, being grossly under-qualified, but I always
   wanted to read it, and this was the only way.  I hope it will
   grow into a compendium of best practice, common starting points
   and random information.
  </para>
 </chapter>

 <chapter id="basic-players">
  <title>The Players</title>

  <para>
   At any time each of the CPUs in a system can be:
  </para>

  <itemizedlist>
   <listitem>
    <para>
     not associated with any process, serving a hardware interrupt;
    </para>
   </listitem>

   <listitem>
    <para>
     not associated with any process, serving a softirq or tasklet;
    </para>
   </listitem>

   <listitem>
    <para>
     running in kernel space, associated with a process (user context);
    </para>
   </listitem>

   <listitem>
    <para>
     running a process in user space.
    </para>
   </listitem>
  </itemizedlist>

  <para>
   There is an ordering between these.  The bottom two can preempt
   each other, but above that is a strict hierarchy: each can only be
   preempted by the ones above it.  For example, while a softirq is
   running on a CPU, no other softirq will preempt it, but a hardware
   interrupt can.  However, any other CPUs in the system execute
   independently.
  </para>

  <para>
   We'll see a number of ways that the user context can block
   interrupts, to become truly non-preemptable.
  </para>
  
  <sect1 id="basics-usercontext">
   <title>User Context</title>

   <para>
    User context is when you are coming in from a system call or other
    trap: like userspace, you can be preempted by more important tasks
    and by interrupts.  You can sleep, by calling
    <function>schedule()</function>.
   </para>

   <note>
    <para>
     You are always in user context on module load and unload,
     and on operations on the block device layer.
    </para>
   </note>

   <para>
    In user context, the <varname>current</varname> pointer (indicating 
    the task we are currently executing) is valid, and
    <function>in_interrupt()</function>
    (<filename>include/linux/interrupt.h</filename>) is <returnvalue>false
    </returnvalue>.  
   </para>

   <caution>
    <para>
     Beware that if you have preemption or softirqs disabled
     (see below), <function>in_interrupt()</function> will return a 
     false positive.
    </para>
   </caution>
  </sect1>

  <sect1 id="basics-hardirqs">
   <title>Hardware Interrupts (Hard IRQs)</title>

   <para>
    Timer ticks, <hardware>network cards</hardware> and 
    <hardware>keyboard</hardware> are examples of real
    hardware which produce interrupts at any time.  The kernel runs
    interrupt handlers, which services the hardware.  The kernel
    guarantees that this handler is never re-entered: if the same
    interrupt arrives, it is queued (or dropped).  Because it
    disables interrupts, this handler has to be fast: frequently it
    simply acknowledges the interrupt, marks a 'software interrupt'
    for execution and exits.
   </para>

   <para>
    You can tell you are in a hardware interrupt, because 
    <function>in_irq()</function> returns <returnvalue>true</returnvalue>.  
   </para>
   <caution>
    <para>
     Beware that this will return a false positive if interrupts are disabled 
     (see below).
    </para>
   </caution>
  </sect1>

  <sect1 id="basics-softirqs">
   <title>Software Interrupt Context: Softirqs and Tasklets</title>

   <para>
    Whenever a system call is about to return to userspace, or a
    hardware interrupt handler exits, any 'software interrupts'
    which are marked pending (usually by hardware interrupts) are
    run (<filename>kernel/softirq.c</filename>).
   </para>

   <para>
    Much of the real interrupt handling work is done here.  Early in
    the transition to <acronym>SMP</acronym>, there were only 'bottom
    halves' (BHs), which didn't take advantage of multiple CPUs.  Shortly 
    after we switched from wind-up computers made of match-sticks and snot,
    we abandoned this limitation and switched to 'softirqs'.
   </para>

   <para>
    <filename class="headerfile">include/linux/interrupt.h</filename> lists the
    different softirqs.  A very important softirq is the
    timer softirq (<filename
    class="headerfile">include/linux/timer.h</filename>): you can
    register to have it call functions for you in a given length of
    time.
   </para>

   <para>
    Softirqs are often a pain to deal with, since the same softirq
    will run simultaneously on more than one CPU.  For this reason,
    tasklets (<filename
    class="headerfile">include/linux/interrupt.h</filename>) are more
    often used: they are dynamically-registrable (meaning you can have
    as many as you want), and they also guarantee that any tasklet
    will only run on one CPU at any time, although different tasklets
    can run simultaneously.
   </para>
   <caution>
    <para>
     The name 'tasklet' is misleading: they have nothing to do with 'tasks',
     and probably more to do with some bad vodka Alexey Kuznetsov had at the 
     time.
    </para>
   </caution>

   <para>
    You can tell you are in a softirq (or tasklet)
    using the <function>in_softirq()</function> macro 
    (<filename class="headerfile">include/linux/interrupt.h</filename>).
   </para>
   <caution>
    <para>
     Beware that this will return a false positive if a bh lock (see below)
     is held.
    </para>
   </caution>
  </sect1>
 </chapter>

 <chapter id="basic-rules">
  <title>Some Basic Rules</title>

  <variablelist>
   <varlistentry>
    <term>No memory protection</term>
    <listitem>
     <para>
      If you corrupt memory, whether in user context or
      interrupt context, the whole machine will crash.  Are you
      sure you can't do what you want in userspace?
     </para>
    </listitem>
   </varlistentry>

   <varlistentry>
    <term>No floating point or <acronym>MMX</acronym></term>
    <listitem>
     <para>
      The <acronym>FPU</acronym> context is not saved; even in user
      context the <acronym>FPU</acronym> state probably won't
      correspond with the current process: you would mess with some
      user process' <acronym>FPU</acronym> state.  If you really want
      to do this, you would have to explicitly save/restore the full
      <acronym>FPU</acronym> state (and avoid context switches).  It
      is generally a bad idea; use fixed point arithmetic first.
     </para>
    </listitem>
   </varlistentry>

   <varlistentry>
    <term>A rigid stack limit</term>
    <listitem>
     <para>
      Depending on configuration options the kernel stack is about 3K to 6K for most 32-bit architectures: it's
      about 14K on most 64-bit archs, and often shared with interrupts
      so you can't use it all.  Avoid deep recursion and huge local
      arrays on the stack (allocate them dynamically instead).
     </para>
    </listitem>
   </varlistentry>

   <varlistentry>
    <term>The Linux kernel is portable</term>
    <listitem>
     <para>
      Let's keep it that way.  Your code should be 64-bit clean,
      and endian-independent.  You should also minimize CPU
      specific stuff, e.g. inline assembly should be cleanly
      encapsulated and minimized to ease porting.  Generally it
      should be restricted to the architecture-dependent part of
      the kernel tree.
     </para>
    </listitem>
   </varlistentry>
  </variablelist>
 </chapter>

 <chapter id="ioctls">
  <title>ioctls: Not writing a new system call</title>

  <para>
   A system call generally looks like this
  </para>

  <programlisting>
asmlinkage long sys_mycall(int arg)
{
        return 0; 
}
  </programlisting>

  <para>
   First, in most cases you don't want to create a new system call.
   You create a character device and implement an appropriate ioctl
   for it.  This is much more flexible than system calls, doesn't have
   to be entered in every architecture's
   <filename class="headerfile">include/asm/unistd.h</filename> and
   <filename>arch/kernel/entry.S</filename> file, and is much more
   likely to be accepted by Linus.
  </para>

  <para>
   If all your routine does is read or write some parameter, consider
   implementing a <function>sysfs</function> interface instead.
  </para>

  <para>
   Inside the ioctl you're in user context to a process.  When a
   error occurs you return a negated errno (see
   <filename class="headerfile">include/linux/errno.h</filename>),
   otherwise you return <returnvalue>0</returnvalue>.
  </para>

  <para>
   After you slept you should check if a signal occurred: the
   Unix/Linux way of handling signals is to temporarily exit the
   system call with the <constant>-ERESTARTSYS</constant> error.  The
   system call entry code will switch back to user context, process
   the signal handler and then your system call will be restarted
   (unless the user disabled that).  So you should be prepared to
   process the restart, e.g. if you're in the middle of manipulating
   some data structure.
  </para>

  <programlisting>
if (signal_pending(current))
        return -ERESTARTSYS;
  </programlisting>

  <para>
   If you're doing longer computations: first think userspace. If you
   <emphasis>really</emphasis> want to do it in kernel you should
   regularly check if you need to give up the CPU (remember there is
   cooperative multitasking per CPU).  Idiom:
  </para>

  <programlisting>
cond_resched(); /* Will sleep */ 
  </programlisting>

  <para>
   A short note on interface design: the UNIX system call motto is
   "Provide mechanism not policy".
  </para>
 </chapter>

 <chapter id="deadlock-recipes">
  <title>Recipes for Deadlock</title>

  <para>
   You cannot call any routines which may sleep, unless:
  </para>
  <itemizedlist>
   <listitem>
    <para>
     You are in user context.
    </para>
   </listitem>

   <listitem>
    <para>
     You do not own any spinlocks.
    </para>
   </listitem>

   <listitem>
    <para>
     You have interrupts enabled (actually, Andi Kleen says
     that the scheduling code will enable them for you, but
     that's probably not what you wanted).
    </para>
   </listitem>
  </itemizedlist>

  <para>
   Note that some functions may sleep implicitly: common ones are
   the user space access functions (*_user) and memory allocation
   functions without <symbol>GFP_ATOMIC</symbol>.
  </para>

  <para>
   You should always compile your kernel
   <symbol>CONFIG_DEBUG_ATOMIC_SLEEP</symbol> on, and it will warn
   you if you break these rules.  If you <emphasis>do</emphasis> break
   the rules, you will eventually lock up your box.
  </para>

  <para>
   Really.
  </para>
 </chapter>

 <chapter id="common-routines">
  <title>Common Routines</title>

  <sect1 id="routines-printk">
   <title>
    <function>printk()</function>
    <filename class="headerfile">include/linux/kernel.h</filename>
   </title>

   <para>
    <function>printk()</function> feeds kernel messages to the
    console, dmesg, and the syslog daemon.  It is useful for debugging
    and reporting errors, and can be used inside interrupt context,
    but use with caution: a machine which has its console flooded with
    printk messages is unusable.  It uses a format string mostly
    compatible with ANSI C printf, and C string concatenation to give
    it a first "priority" argument:
   </para>

   <programlisting>
printk(KERN_INFO "i = %u\n", i);
   </programlisting>

   <para>
    See <filename class="headerfile">include/linux/kernel.h</filename>;
    for other KERN_ values; these are interpreted by syslog as the
    level.  Special case: for printing an IP address use
   </para>

   <programlisting>
__be32 ipaddress;
printk(KERN_INFO "my ip: %pI4\n", &amp;ipaddress);
   </programlisting>

   <para>
    <function>printk()</function> internally uses a 1K buffer and does
    not catch overruns.  Make sure that will be enough.
   </para>

   <note>
    <para>
     You will know when you are a real kernel hacker
     when you start typoing printf as printk in your user programs :)
    </para>
   </note>

   <!--- From the Lions book reader department --> 

   <note>
    <para>
     Another sidenote: the original Unix Version 6 sources had a
     comment on top of its printf function: "Printf should not be
     used for chit-chat".  You should follow that advice.
    </para>
   </note>
  </sect1>

  <sect1 id="routines-copy">
   <title>
    <function>copy_[to/from]_user()</function>
    /
    <function>get_user()</function>
    /
    <function>put_user()</function>
    <filename class="headerfile">include/linux/uaccess.h</filename>
   </title>  

   <para>
    <emphasis>[SLEEPS]</emphasis>
   </para>

   <para>
    <function>put_user()</function> and <function>get_user()</function>
    are used to get and put single values (such as an int, char, or
    long) from and to userspace.  A pointer into userspace should
    never be simply dereferenced: data should be copied using these
    routines.  Both return <constant>-EFAULT</constant> or 0.
   </para>
   <para>
    <function>copy_to_user()</function> and
    <function>copy_from_user()</function> are more general: they copy
    an arbitrary amount of data to and from userspace.
    <caution>
     <para>
      Unlike <function>put_user()</function> and
      <function>get_user()</function>, they return the amount of
      uncopied data (ie. <returnvalue>0</returnvalue> still means
      success).
     </para>
    </caution>
    [Yes, this moronic interface makes me cringe.  The flamewar comes up every year or so. --RR.]
   </para>
   <para>
    The functions may sleep implicitly. This should never be called
    outside user context (it makes no sense), with interrupts
    disabled, or a spinlock held.
   </para>
  </sect1>

  <sect1 id="routines-kmalloc">
   <title><function>kmalloc()</function>/<function>kfree()</function>
    <filename class="headerfile">include/linux/slab.h</filename></title>

   <para>
    <emphasis>[MAY SLEEP: SEE BELOW]</emphasis>
   </para>

   <para>
    These routines are used to dynamically request pointer-aligned
    chunks of memory, like malloc and free do in userspace, but
    <function>kmalloc()</function> takes an extra flag word.
    Important values:
   </para>

   <variablelist>
    <varlistentry>
     <term>
      <constant>
       GFP_KERNEL
      </constant>
     </term>
     <listitem>
      <para>
       May sleep and swap to free memory. Only allowed in user
       context, but is the most reliable way to allocate memory.
      </para>
     </listitem>
    </varlistentry>
    
    <varlistentry>
     <term>
      <constant>
       GFP_ATOMIC
      </constant>
     </term>
     <listitem>
      <para>
       Don't sleep. Less reliable than <constant>GFP_KERNEL</constant>,
       but may be called from interrupt context. You should
       <emphasis>really</emphasis> have a good out-of-memory
       error-handling strategy.
      </para>
     </listitem>
    </varlistentry>
    
    <varlistentry>
     <term>
      <constant>
       GFP_DMA
      </constant>
     </term>
     <listitem>
      <para>
       Allocate ISA DMA lower than 16MB. If you don't know what that
       is you don't need it.  Very unreliable.
      </para>
     </listitem>
    </varlistentry>
   </variablelist>

   <para>
    If you see a <errorname>sleeping function called from invalid
    context</errorname> warning message, then maybe you called a
    sleeping allocation function from interrupt context without
    <constant>GFP_ATOMIC</constant>.  You should really fix that.
    Run, don't walk.
   </para>

   <para>
    If you are allocating at least <constant>PAGE_SIZE</constant>
    (<filename class="headerfile">include/asm/page.h</filename>) bytes,
    consider using <function>__get_free_pages()</function>

    (<filename class="headerfile">include/linux/mm.h</filename>).  It
    takes an order argument (0 for page sized, 1 for double page, 2
    for four pages etc.) and the same memory priority flag word as
    above.
   </para>

   <para>
    If you are allocating more than a page worth of bytes you can use
    <function>vmalloc()</function>.  It'll allocate virtual memory in
    the kernel map.  This block is not contiguous in physical memory,
    but the <acronym>MMU</acronym> makes it look like it is for you
    (so it'll only look contiguous to the CPUs, not to external device
    drivers).  If you really need large physically contiguous memory
    for some weird device, you have a problem: it is poorly supported
    in Linux because after some time memory fragmentation in a running
    kernel makes it hard.  The best way is to allocate the block early
    in the boot process via the <function>alloc_bootmem()</function>
    routine.
   </para>

   <para>
    Before inventing your own cache of often-used objects consider
    using a slab cache in
    <filename class="headerfile">include/linux/slab.h</filename>
   </para>
  </sect1>

  <sect1 id="routines-current">
   <title><function>current</function>
    <filename class="headerfile">include/asm/current.h</filename></title>

   <para>
    This global variable (really a macro) contains a pointer to
    the current task structure, so is only valid in user context.
    For example, when a process makes a system call, this will
    point to the task structure of the calling process.  It is
    <emphasis>not NULL</emphasis> in interrupt context.
   </para>
  </sect1>

  <sect1 id="routines-udelay">
   <title><function>mdelay()</function>/<function>udelay()</function>
     <filename class="headerfile">include/asm/delay.h</filename>
     <filename class="headerfile">include/linux/delay.h</filename>
   </title>

   <para>
    The <function>udelay()</function> and <function>ndelay()</function> functions can be used for small pauses.
    Do not use large values with them as you risk
    overflow - the helper function <function>mdelay()</function> is useful
    here, or consider <function>msleep()</function>.
   </para> 
  </sect1>
 
  <sect1 id="routines-endian">
   <title><function>cpu_to_be32()</function>/<function>be32_to_cpu()</function>/<function>cpu_to_le32()</function>/<function>le32_to_cpu()</function>
     <filename class="headerfile">include/asm/byteorder.h</filename>
   </title>

   <para>
    The <function>cpu_to_be32()</function> family (where the "32" can
    be replaced by 64 or 16, and the "be" can be replaced by "le") are
    the general way to do endian conversions in the kernel: they
    return the converted value.  All variations supply the reverse as
    well: <function>be32_to_cpu()</function>, etc.
   </para>

   <para>
    There are two major variations of these functions: the pointer
    variation, such as <function>cpu_to_be32p()</function>, which take
    a pointer to the given type, and return the converted value.  The
    other variation is the "in-situ" family, such as
    <function>cpu_to_be32s()</function>, which convert value referred
    to by the pointer, and return void.
   </para> 
  </sect1>

  <sect1 id="routines-local-irqs">
   <title><function>local_irq_save()</function>/<function>local_irq_restore()</function>
    <filename class="headerfile">include/linux/irqflags.h</filename>
   </title>

   <para>
    These routines disable hard interrupts on the local CPU, and
    restore them.  They are reentrant; saving the previous state in
    their one <varname>unsigned long flags</varname> argument.  If you
    know that interrupts are enabled, you can simply use
    <function>local_irq_disable()</function> and
    <function>local_irq_enable()</function>.
   </para>
  </sect1>

  <sect1 id="routines-softirqs">
   <title><function>local_bh_disable()</function>/<function>local_bh_enable()</function>
    <filename class="headerfile">include/linux/interrupt.h</filename></title>

   <para>
    These routines disable soft interrupts on the local CPU, and
    restore them.  They are reentrant; if soft interrupts were
    disabled before, they will still be disabled after this pair
    of functions has been called.  They prevent softirqs and tasklets
    from running on the current CPU.
   </para>
  </sect1>

  <sect1 id="routines-processorids">
   <title><function>smp_processor_id</function>()
    <filename class="headerfile">include/asm/smp.h</filename></title>
   
   <para>
    <function>get_cpu()</function> disables preemption (so you won't
    suddenly get moved to another CPU) and returns the current
    processor number, between 0 and <symbol>NR_CPUS</symbol>.  Note
    that the CPU numbers are not necessarily continuous.  You return
    it again with <function>put_cpu()</function> when you are done.
   </para>
   <para>
    If you know you cannot be preempted by another task (ie. you are
    in interrupt context, or have preemption disabled) you can use
    smp_processor_id().
   </para>
  </sect1>

  <sect1 id="routines-init">
   <title><type>__init</type>/<type>__exit</type>/<type>__initdata</type>
    <filename class="headerfile">include/linux/init.h</filename></title>

   <para>
    After boot, the kernel frees up a special section; functions
    marked with <type>__init</type> and data structures marked with
    <type>__initdata</type> are dropped after boot is complete: similarly
    modules discard this memory after initialization.  <type>__exit</type>
    is used to declare a function which is only required on exit: the
    function will be dropped if this file is not compiled as a module.
    See the header file for use. Note that it makes no sense for a function
    marked with <type>__init</type> to be exported to modules with 
    <function>EXPORT_SYMBOL()</function> - this will break.
   </para>

  </sect1>

  <sect1 id="routines-init-again">
   <title><function>__initcall()</function>/<function>module_init()</function>
    <filename class="headerfile">include/linux/init.h</filename></title>
   <para>
    Many parts of the kernel are well served as a module
    (dynamically-loadable parts of the kernel).  Using the
    <function>module_init()</function> and
    <function>module_exit()</function> macros it is easy to write code
    without #ifdefs which can operate both as a module or built into
    the kernel.
   </para>

   <para>
    The <function>module_init()</function> macro defines which
    function is to be called at module insertion time (if the file is
    compiled as a module), or at boot time: if the file is not
    compiled as a module the <function>module_init()</function> macro
    becomes equivalent to <function>__initcall()</function>, which
    through linker magic ensures that the function is called on boot.
   </para>

   <para>
    The function can return a negative error number to cause
    module loading to fail (unfortunately, this has no effect if
    the module is compiled into the kernel).  This function is
    called in user context with interrupts enabled, so it can sleep.
   </para>
  </sect1>
  
  <sect1 id="routines-moduleexit">
   <title> <function>module_exit()</function>
    <filename class="headerfile">include/linux/init.h</filename> </title>

   <para>
    This macro defines the function to be called at module removal
    time (or never, in the case of the file compiled into the
    kernel).  It will only be called if the module usage count has
    reached zero.  This function can also sleep, but cannot fail:
    everything must be cleaned up by the time it returns.
   </para>

   <para>
    Note that this macro is optional: if it is not present, your
    module will not be removable (except for 'rmmod -f').
   </para>
  </sect1>

  <sect1 id="routines-module-use-counters">
   <title> <function>try_module_get()</function>/<function>module_put()</function>
    <filename class="headerfile">include/linux/module.h</filename></title>

   <para>
    These manipulate the module usage count, to protect against
    removal (a module also can't be removed if another module uses one
    of its exported symbols: see below).  Before calling into module
    code, you should call <function>try_module_get()</function> on
    that module: if it fails, then the module is being removed and you
    should act as if it wasn't there.  Otherwise, you can safely enter
    the module, and call <function>module_put()</function> when you're
    finished.
   </para>

   <para>
   Most registerable structures have an
   <structfield>owner</structfield> field, such as in the
   <structname>file_operations</structname> structure. Set this field
   to the macro <symbol>THIS_MODULE</symbol>.
   </para>
  </sect1>

 <!-- add info on new-style module refcounting here -->
 </chapter>

 <chapter id="queues">
  <title>Wait Queues
   <filename class="headerfile">include/linux/wait.h</filename>
  </title>
  <para>
   <emphasis>[SLEEPS]</emphasis>
  </para>

  <para>
   A wait queue is used to wait for someone to wake you up when a
   certain condition is true.  They must be used carefully to ensure
   there is no race condition.  You declare a
   <type>wait_queue_head_t</type>, and then processes which want to
   wait for that condition declare a <type>wait_queue_t</type>
   referring to themselves, and place that in the queue.
  </para>

  <sect1 id="queue-declaring">
   <title>Declaring</title>
   
   <para>
    You declare a <type>wait_queue_head_t</type> using the
    <function>DECLARE_WAIT_QUEUE_HEAD()</function> macro, or using the
    <function>init_waitqueue_head()</function> routine in your
    initialization code.
   </para>
  </sect1>
  
  <sect1 id="queue-waitqueue">
   <title>Queuing</title>
   
   <para>
    Placing yourself in the waitqueue is fairly complex, because you
    must put yourself in the queue before checking the condition.
    There is a macro to do this:
    <function>wait_event_interruptible()</function>

    <filename class="headerfile">include/linux/wait.h</filename> The
    first argument is the wait queue head, and the second is an
    expression which is evaluated; the macro returns
    <returnvalue>0</returnvalue> when this expression is true, or
    <returnvalue>-ERESTARTSYS</returnvalue> if a signal is received.
    The <function>wait_event()</function> version ignores signals.
   </para>
 
  </sect1>

  <sect1 id="queue-waking">
   <title>Waking Up Queued Tasks</title>
   
   <para>
    Call <function>wake_up()</function>

    <filename class="headerfile">include/linux/wait.h</filename>;,
    which will wake up every process in the queue.  The exception is
    if one has <constant>TASK_EXCLUSIVE</constant> set, in which case
    the remainder of the queue will not be woken.  There are other variants
    of this basic function available in the same header.
   </para>
  </sect1>
 </chapter>

 <chapter id="atomic-ops">
  <title>Atomic Operations</title>

  <para>
   Certain operations are guaranteed atomic on all platforms.  The
   first class of operations work on <type>atomic_t</type>

   <filename class="headerfile">include/asm/atomic.h</filename>; this
   contains a signed integer (at least 32 bits long), and you must use
   these functions to manipulate or read atomic_t variables.
   <function>atomic_read()</function> and
   <function>atomic_set()</function> get and set the counter,
   <function>atomic_add()</function>,
   <function>atomic_sub()</function>,
   <function>atomic_inc()</function>,
   <function>atomic_dec()</function>, and
   <function>atomic_dec_and_test()</function> (returns
   <returnvalue>true</returnvalue> if it was decremented to zero).
  </para>

  <para>
   Yes.  It returns <returnvalue>true</returnvalue> (i.e. != 0) if the
   atomic variable is zero.
  </para>

  <para>
   Note that these functions are slower than normal arithmetic, and
   so should not be used unnecessarily.
  </para>

  <para>
   The second class of atomic operations is atomic bit operations on an
   <type>unsigned long</type>, defined in

   <filename class="headerfile">include/linux/bitops.h</filename>.  These
   operations generally take a pointer to the bit pattern, and a bit
   number: 0 is the least significant bit.
   <function>set_bit()</function>, <function>clear_bit()</function>
   and <function>change_bit()</function> set, clear, and flip the
   given bit.  <function>test_and_set_bit()</function>,
   <function>test_and_clear_bit()</function> and
   <function>test_and_change_bit()</function> do the same thing,
   except return true if the bit was previously set; these are
   particularly useful for atomically setting flags.
  </para>
  
  <para>
   It is possible to call these operations with bit indices greater
   than BITS_PER_LONG.  The resulting behavior is strange on big-endian
   platforms though so it is a good idea not to do this.
  </para>
 </chapter>

 <chapter id="symbols">
  <title>Symbols</title>

  <para>
   Within the kernel proper, the normal linking rules apply
   (ie. unless a symbol is declared to be file scope with the
   <type>static</type> keyword, it can be used anywhere in the
   kernel).  However, for modules, a special exported symbol table is
   kept which limits the entry points to the kernel proper.  Modules
   can also export symbols.
  </para>

  <sect1 id="sym-exportsymbols">
   <title><function>EXPORT_SYMBOL()</function>
    <filename class="headerfile">include/linux/export.h</filename></title>

   <para>
    This is the classic method of exporting a symbol: dynamically
    loaded modules will be able to use the symbol as normal.
   </para>
  </sect1>

  <sect1 id="sym-exportsymbols-gpl">
   <title><function>EXPORT_SYMBOL_GPL()</function>
    <filename class="headerfile">include/linux/export.h</filename></title>

   <para>
    Similar to <function>EXPORT_SYMBOL()</function> except that the
    symbols exported by <function>EXPORT_SYMBOL_GPL()</function> can
    only be seen by modules with a
    <function>MODULE_LICENSE()</function> that specifies a GPL
    compatible license.  It implies that the function is considered
    an internal implementation issue, and not really an interface.
    Some maintainers and developers may however
    require EXPORT_SYMBOL_GPL() when adding any new APIs or functionality.
   </para>
  </sect1>
 </chapter>

 <chapter id="conventions">
  <title>Routines and Conventions</title>

  <sect1 id="conventions-doublelinkedlist">
   <title>Double-linked lists
    <filename class="headerfile">include/linux/list.h</filename></title>

   <para>
    There used to be three sets of linked-list routines in the kernel
    headers, but this one is the winner.  If you don't have some
    particular pressing need for a single list, it's a good choice.
   </para>

   <para>
    In particular, <function>list_for_each_entry</function> is useful.
   </para>
  </sect1>

  <sect1 id="convention-returns">
   <title>Return Conventions</title>

   <para>
    For code called in user context, it's very common to defy C
    convention, and return <returnvalue>0</returnvalue> for success,
    and a negative error number
    (eg. <returnvalue>-EFAULT</returnvalue>) for failure.  This can be
    unintuitive at first, but it's fairly widespread in the kernel.
   </para>

   <para>
    Using <function>ERR_PTR()</function>

    <filename class="headerfile">include/linux/err.h</filename>; to
    encode a negative error number into a pointer, and
    <function>IS_ERR()</function> and <function>PTR_ERR()</function>
    to get it back out again: avoids a separate pointer parameter for
    the error number.  Icky, but in a good way.
   </para>
  </sect1>

  <sect1 id="conventions-borkedcompile">
   <title>Breaking Compilation</title>

   <para>
    Linus and the other developers sometimes change function or
    structure names in development kernels; this is not done just to
    keep everyone on their toes: it reflects a fundamental change
    (eg. can no longer be called with interrupts on, or does extra
    checks, or doesn't do checks which were caught before).  Usually
    this is accompanied by a fairly complete note to the linux-kernel
    mailing list; search the archive.  Simply doing a global replace
    on the file usually makes things <emphasis>worse</emphasis>.
   </para>
  </sect1>

  <sect1 id="conventions-initialising">
   <title>Initializing structure members</title>

   <para>
    The preferred method of initializing structures is to use
    designated initialisers, as defined by ISO C99, eg:
   </para>
   <programlisting>
static struct block_device_operations opt_fops = {
        .open               = opt_open,
        .release            = opt_release,
        .ioctl              = opt_ioctl,
        .check_media_change = opt_media_change,
};
   </programlisting>
   <para>
    This makes it easy to grep for, and makes it clear which
    structure fields are set.  You should do this because it looks
    cool.
   </para>
  </sect1>

  <sect1 id="conventions-gnu-extns">
   <title>GNU Extensions</title>

   <para>
    GNU Extensions are explicitly allowed in the Linux kernel.
    Note that some of the more complex ones are not very well
    supported, due to lack of general use, but the following are
    considered standard (see the GCC info page section "C
    Extensions" for more details - Yes, really the info page, the
    man page is only a short summary of the stuff in info).
   </para>
   <itemizedlist>
    <listitem>
     <para>
      Inline functions
     </para>
    </listitem>
    <listitem>
     <para>
      Statement expressions (ie. the ({ and }) constructs).
     </para>
    </listitem>
    <listitem>
     <para>
      Declaring attributes of a function / variable / type
      (__attribute__)
     </para>
    </listitem>
    <listitem>
     <para>
      typeof
     </para>
    </listitem>
    <listitem>
     <para>
      Zero length arrays
     </para>
    </listitem>
    <listitem>
     <para>
      Macro varargs
     </para>
    </listitem>
    <listitem>
     <para>
      Arithmetic on void pointers
     </para>
    </listitem>
    <listitem>
     <para>
      Non-Constant initializers
     </para>
    </listitem>
    <listitem>
     <para>
      Assembler Instructions (not outside arch/ and include/asm/)
     </para>
    </listitem>
    <listitem>
     <para>
      Function names as strings (__func__).
     </para>
    </listitem>
    <listitem>
     <para>
      __builtin_constant_p()
     </para>
    </listitem>
   </itemizedlist>

   <para>
    Be wary when using long long in the kernel, the code gcc generates for
    it is horrible and worse: division and multiplication does not work
    on i386 because the GCC runtime functions for it are missing from
    the kernel environment.
   </para>

    <!-- FIXME: add a note about ANSI aliasing cleanness -->
  </sect1>

  <sect1 id="conventions-cplusplus">
   <title>C++</title>
   
   <para>
    Using C++ in the kernel is usually a bad idea, because the
    kernel does not provide the necessary runtime environment
    and the include files are not tested for it.  It is still
    possible, but not recommended.  If you really want to do
    this, forget about exceptions at least.
   </para>
  </sect1>

  <sect1 id="conventions-ifdef">
   <title>&num;if</title>
   
   <para>
    It is generally considered cleaner to use macros in header files
    (or at the top of .c files) to abstract away functions rather than
    using `#if' pre-processor statements throughout the source code.
   </para>
  </sect1>
 </chapter>

 <chapter id="submitting">
  <title>Putting Your Stuff in the Kernel</title>

  <para>
   In order to get your stuff into shape for official inclusion, or
   even to make a neat patch, there's administrative work to be
   done:
  </para>
  <itemizedlist>
   <listitem>
    <para>
     Figure out whose pond you've been pissing in.  Look at the top of
     the source files, inside the <filename>MAINTAINERS</filename>
     file, and last of all in the <filename>CREDITS</filename> file.
     You should coordinate with this person to make sure you're not
     duplicating effort, or trying something that's already been
     rejected.
    </para>

    <para>
     Make sure you put your name and EMail address at the top of
     any files you create or mangle significantly.  This is the
     first place people will look when they find a bug, or when
     <emphasis>they</emphasis> want to make a change.
    </para>
   </listitem>

   <listitem>
    <para>
     Usually you want a configuration option for your kernel hack.
     Edit <filename>Kconfig</filename> in the appropriate directory.
     The Config language is simple to use by cut and paste, and there's
     complete documentation in
     <filename>Documentation/kbuild/kconfig-language.txt</filename>.
    </para>

    <para>
     In your description of the option, make sure you address both the
     expert user and the user who knows nothing about your feature.  Mention
     incompatibilities and issues here.  <emphasis> Definitely
     </emphasis> end your description with <quote> if in doubt, say N
     </quote> (or, occasionally, `Y'); this is for people who have no
     idea what you are talking about.
    </para>
   </listitem>

   <listitem>
    <para>
     Edit the <filename>Makefile</filename>: the CONFIG variables are
     exported here so you can usually just add a "obj-$(CONFIG_xxx) +=
     xxx.o" line.  The syntax is documented in
     <filename>Documentation/kbuild/makefiles.txt</filename>.
    </para>
   </listitem>

   <listitem>
    <para>
     Put yourself in <filename>CREDITS</filename> if you've done
     something noteworthy, usually beyond a single file (your name
     should be at the top of the source files anyway).
     <filename>MAINTAINERS</filename> means you want to be consulted
     when changes are made to a subsystem, and hear about bugs; it
     implies a more-than-passing commitment to some part of the code.
    </para>
   </listitem>
   
   <listitem>
    <para>
     Finally, don't forget to read <filename>Documentation/process/submitting-patches.rst</filename>
     and possibly <filename>Documentation/process/submitting-drivers.rst</filename>.
    </para>
   </listitem>
  </itemizedlist>
 </chapter>

 <chapter id="cantrips">
  <title>Kernel Cantrips</title>

  <para>
   Some favorites from browsing the source.  Feel free to add to this
   list.
  </para>

  <para>
   <filename>arch/x86/include/asm/delay.h:</filename>
  </para>
  <programlisting>
#define ndelay(n) (__builtin_constant_p(n) ? \
        ((n) > 20000 ? __bad_ndelay() : __const_udelay((n) * 5ul)) : \
        __ndelay(n))
  </programlisting>

  <para>
   <filename>include/linux/fs.h</filename>:
  </para>
  <programlisting>
/*
 * Kernel pointers have redundant information, so we can use a
 * scheme where we can return either an error code or a dentry
 * pointer with the same return value.
 *
 * This should be a per-architecture thing, to allow different
 * error and pointer decisions.
 */
 #define ERR_PTR(err)    ((void *)((long)(err)))
 #define PTR_ERR(ptr)    ((long)(ptr))
 #define IS_ERR(ptr)     ((unsigned long)(ptr) > (unsigned long)(-1000))
</programlisting>

  <para>
   <filename>arch/x86/include/asm/uaccess_32.h:</filename>
  </para>

  <programlisting>
#define copy_to_user(to,from,n)                         \
        (__builtin_constant_p(n) ?                      \
         __constant_copy_to_user((to),(from),(n)) :     \
         __generic_copy_to_user((to),(from),(n)))
  </programlisting>

  <para>
   <filename>arch/sparc/kernel/head.S:</filename>
  </para>

  <programlisting>
/*
 * Sun people can't spell worth damn. "compatability" indeed.
 * At least we *know* we can't spell, and use a spell-checker.
 */

/* Uh, actually Linus it is I who cannot spell. Too much murky
 * Sparc assembly will do this to ya.
 */
C_LABEL(cputypvar):
        .asciz "compatibility"

/* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */
        .align 4
C_LABEL(cputypvar_sun4m):
        .asciz "compatible"
  </programlisting>

  <para>
   <filename>arch/sparc/lib/checksum.S:</filename>
  </para>

  <programlisting>
        /* Sun, you just can't beat me, you just can't.  Stop trying,
         * give up.  I'm serious, I am going to kick the living shit
         * out of you, game over, lights out.
         */
  </programlisting>
 </chapter>

 <chapter id="credits">
  <title>Thanks</title>

  <para>
   Thanks to Andi Kleen for the idea, answering my questions, fixing
   my mistakes, filling content, etc.  Philipp Rumpf for more spelling
   and clarity fixes, and some excellent non-obvious points.  Werner
   Almesberger for giving me a great summary of
   <function>disable_irq()</function>, and Jes Sorensen and Andrea
   Arcangeli added caveats. Michael Elizabeth Chastain for checking
   and adding to the Configure section. <!-- Rusty insisted on this
   bit; I didn't do it! --> Telsa Gwynne for teaching me DocBook. 
  </para>
 </chapter>
</book>