1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
Using RCU to Protect Dynamic NMI Handlers
Although RCU is usually used to protect read-mostly data structures,
it is possible to use RCU to provide dynamic non-maskable interrupt
handlers, as well as dynamic irq handlers. This document describes
how to do this, drawing loosely from Zwane Mwaikambo's NMI-timer
work in "arch/i386/oprofile/nmi_timer_int.c" and in
"arch/i386/kernel/traps.c".
The relevant pieces of code are listed below, each followed by a
brief explanation.
static int dummy_nmi_callback(struct pt_regs *regs, int cpu)
{
return 0;
}
The dummy_nmi_callback() function is a "dummy" NMI handler that does
nothing, but returns zero, thus saying that it did nothing, allowing
the NMI handler to take the default machine-specific action.
static nmi_callback_t nmi_callback = dummy_nmi_callback;
This nmi_callback variable is a global function pointer to the current
NMI handler.
void do_nmi(struct pt_regs * regs, long error_code)
{
int cpu;
nmi_enter();
cpu = smp_processor_id();
++nmi_count(cpu);
if (!rcu_dereference_sched(nmi_callback)(regs, cpu))
default_do_nmi(regs);
nmi_exit();
}
The do_nmi() function processes each NMI. It first disables preemption
in the same way that a hardware irq would, then increments the per-CPU
count of NMIs. It then invokes the NMI handler stored in the nmi_callback
function pointer. If this handler returns zero, do_nmi() invokes the
default_do_nmi() function to handle a machine-specific NMI. Finally,
preemption is restored.
In theory, rcu_dereference_sched() is not needed, since this code runs
only on i386, which in theory does not need rcu_dereference_sched()
anyway. However, in practice it is a good documentation aid, particularly
for anyone attempting to do something similar on Alpha or on systems
with aggressive optimizing compilers.
Quick Quiz: Why might the rcu_dereference_sched() be necessary on Alpha,
given that the code referenced by the pointer is read-only?
Back to the discussion of NMI and RCU...
void set_nmi_callback(nmi_callback_t callback)
{
rcu_assign_pointer(nmi_callback, callback);
}
The set_nmi_callback() function registers an NMI handler. Note that any
data that is to be used by the callback must be initialized up -before-
the call to set_nmi_callback(). On architectures that do not order
writes, the rcu_assign_pointer() ensures that the NMI handler sees the
initialized values.
void unset_nmi_callback(void)
{
rcu_assign_pointer(nmi_callback, dummy_nmi_callback);
}
This function unregisters an NMI handler, restoring the original
dummy_nmi_handler(). However, there may well be an NMI handler
currently executing on some other CPU. We therefore cannot free
up any data structures used by the old NMI handler until execution
of it completes on all other CPUs.
One way to accomplish this is via synchronize_sched(), perhaps as
follows:
unset_nmi_callback();
synchronize_sched();
kfree(my_nmi_data);
This works because synchronize_sched() blocks until all CPUs complete
any preemption-disabled segments of code that they were executing.
Since NMI handlers disable preemption, synchronize_sched() is guaranteed
not to return until all ongoing NMI handlers exit. It is therefore safe
to free up the handler's data as soon as synchronize_sched() returns.
Important note: for this to work, the architecture in question must
invoke irq_enter() and irq_exit() on NMI entry and exit, respectively.
Answer to Quick Quiz
Why might the rcu_dereference_sched() be necessary on Alpha, given
that the code referenced by the pointer is read-only?
Answer: The caller to set_nmi_callback() might well have
initialized some data that is to be used by the new NMI
handler. In this case, the rcu_dereference_sched() would
be needed, because otherwise a CPU that received an NMI
just after the new handler was set might see the pointer
to the new NMI handler, but the old pre-initialized
version of the handler's data.
This same sad story can happen on other CPUs when using
a compiler with aggressive pointer-value speculation
optimizations.
More important, the rcu_dereference_sched() makes it
clear to someone reading the code that the pointer is
being protected by RCU-sched.
|