aboutsummaryrefslogtreecommitdiff
path: root/Documentation/core-api/genericirq.rst
blob: 0054bd48be849035146239cb6efc0d7dba0c0a62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
.. include:: <isonum.txt>

==========================
Linux generic IRQ handling
==========================

:Copyright: |copy| 2005-2010: Thomas Gleixner
:Copyright: |copy| 2005-2006:  Ingo Molnar

Introduction
============

The generic interrupt handling layer is designed to provide a complete
abstraction of interrupt handling for device drivers. It is able to
handle all the different types of interrupt controller hardware. Device
drivers use generic API functions to request, enable, disable and free
interrupts. The drivers do not have to know anything about interrupt
hardware details, so they can be used on different platforms without
code changes.

This documentation is provided to developers who want to implement an
interrupt subsystem based for their architecture, with the help of the
generic IRQ handling layer.

Rationale
=========

The original implementation of interrupt handling in Linux uses the
:c:func:`__do_IRQ` super-handler, which is able to deal with every type of
interrupt logic.

Originally, Russell King identified different types of handlers to build
a quite universal set for the ARM interrupt handler implementation in
Linux 2.5/2.6. He distinguished between:

-  Level type

-  Edge type

-  Simple type

During the implementation we identified another type:

-  Fast EOI type

In the SMP world of the :c:func:`__do_IRQ` super-handler another type was
identified:

-  Per CPU type

This split implementation of high-level IRQ handlers allows us to
optimize the flow of the interrupt handling for each specific interrupt
type. This reduces complexity in that particular code path and allows
the optimized handling of a given type.

The original general IRQ implementation used hw_interrupt_type
structures and their ``->ack``, ``->end`` [etc.] callbacks to differentiate
the flow control in the super-handler. This leads to a mix of flow logic
and low-level hardware logic, and it also leads to unnecessary code
duplication: for example in i386, there is an ``ioapic_level_irq`` and an
``ioapic_edge_irq`` IRQ-type which share many of the low-level details but
have different flow handling.

A more natural abstraction is the clean separation of the 'irq flow' and
the 'chip details'.

Analysing a couple of architecture's IRQ subsystem implementations
reveals that most of them can use a generic set of 'irq flow' methods
and only need to add the chip-level specific code. The separation is
also valuable for (sub)architectures which need specific quirks in the
IRQ flow itself but not in the chip details - and thus provides a more
transparent IRQ subsystem design.

Each interrupt descriptor is assigned its own high-level flow handler,
which is normally one of the generic implementations. (This high-level
flow handler implementation also makes it simple to provide
demultiplexing handlers which can be found in embedded platforms on
various architectures.)

The separation makes the generic interrupt handling layer more flexible
and extensible. For example, an (sub)architecture can use a generic
IRQ-flow implementation for 'level type' interrupts and add a
(sub)architecture specific 'edge type' implementation.

To make the transition to the new model easier and prevent the breakage
of existing implementations, the :c:func:`__do_IRQ` super-handler is still
available. This leads to a kind of duality for the time being. Over time
the new model should be used in more and more architectures, as it
enables smaller and cleaner IRQ subsystems. It's deprecated for three
years now and about to be removed.

Known Bugs And Assumptions
==========================

None (knock on wood).

Abstraction layers
==================

There are three main levels of abstraction in the interrupt code:

1. High-level driver API

2. High-level IRQ flow handlers

3. Chip-level hardware encapsulation

Interrupt control flow
----------------------

Each interrupt is described by an interrupt descriptor structure
irq_desc. The interrupt is referenced by an 'unsigned int' numeric
value which selects the corresponding interrupt description structure in
the descriptor structures array. The descriptor structure contains
status information and pointers to the interrupt flow method and the
interrupt chip structure which are assigned to this interrupt.

Whenever an interrupt triggers, the low-level architecture code calls
into the generic interrupt code by calling :c:func:`desc->handle_irq`. This
high-level IRQ handling function only uses desc->irq_data.chip
primitives referenced by the assigned chip descriptor structure.

High-level Driver API
---------------------

The high-level Driver API consists of following functions:

-  :c:func:`request_irq`

-  :c:func:`free_irq`

-  :c:func:`disable_irq`

-  :c:func:`enable_irq`

-  :c:func:`disable_irq_nosync` (SMP only)

-  :c:func:`synchronize_irq` (SMP only)

-  :c:func:`irq_set_irq_type`

-  :c:func:`irq_set_irq_wake`

-  :c:func:`irq_set_handler_data`

-  :c:func:`irq_set_chip`

-  :c:func:`irq_set_chip_data`

See the autogenerated function documentation for details.

High-level IRQ flow handlers
----------------------------

The generic layer provides a set of pre-defined irq-flow methods:

-  :c:func:`handle_level_irq`

-  :c:func:`handle_edge_irq`

-  :c:func:`handle_fasteoi_irq`

-  :c:func:`handle_simple_irq`

-  :c:func:`handle_percpu_irq`

-  :c:func:`handle_edge_eoi_irq`

-  :c:func:`handle_bad_irq`

The interrupt flow handlers (either pre-defined or architecture
specific) are assigned to specific interrupts by the architecture either
during bootup or during device initialization.

Default flow implementations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Helper functions
^^^^^^^^^^^^^^^^

The helper functions call the chip primitives and are used by the
default flow implementations. The following helper functions are
implemented (simplified excerpt)::

    default_enable(struct irq_data *data)
    {
        desc->irq_data.chip->irq_unmask(data);
    }

    default_disable(struct irq_data *data)
    {
        if (!delay_disable(data))
            desc->irq_data.chip->irq_mask(data);
    }

    default_ack(struct irq_data *data)
    {
        chip->irq_ack(data);
    }

    default_mask_ack(struct irq_data *data)
    {
        if (chip->irq_mask_ack) {
            chip->irq_mask_ack(data);
        } else {
            chip->irq_mask(data);
            chip->irq_ack(data);
        }
    }

    noop(struct irq_data *data))
    {
    }



Default flow handler implementations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Default Level IRQ flow handler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

handle_level_irq provides a generic implementation for level-triggered
interrupts.

The following control flow is implemented (simplified excerpt)::

    :c:func:`desc->irq_data.chip->irq_mask_ack`;
    handle_irq_event(desc->action);
    :c:func:`desc->irq_data.chip->irq_unmask`;


Default Fast EOI IRQ flow handler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

handle_fasteoi_irq provides a generic implementation for interrupts,
which only need an EOI at the end of the handler.

The following control flow is implemented (simplified excerpt)::

    handle_irq_event(desc->action);
    :c:func:`desc->irq_data.chip->irq_eoi`;


Default Edge IRQ flow handler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

handle_edge_irq provides a generic implementation for edge-triggered
interrupts.

The following control flow is implemented (simplified excerpt)::

    if (desc->status & running) {
        :c:func:`desc->irq_data.chip->irq_mask_ack`;
        desc->status |= pending | masked;
        return;
    }
    :c:func:`desc->irq_data.chip->irq_ack`;
    desc->status |= running;
    do {
        if (desc->status & masked)
            :c:func:`desc->irq_data.chip->irq_unmask`;
        desc->status &= ~pending;
        handle_irq_event(desc->action);
    } while (status & pending);
    desc->status &= ~running;


Default simple IRQ flow handler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

handle_simple_irq provides a generic implementation for simple
interrupts.

.. note::

   The simple flow handler does not call any handler/chip primitives.

The following control flow is implemented (simplified excerpt)::

    handle_irq_event(desc->action);


Default per CPU flow handler
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

handle_percpu_irq provides a generic implementation for per CPU
interrupts.

Per CPU interrupts are only available on SMP and the handler provides a
simplified version without locking.

The following control flow is implemented (simplified excerpt)::

    if (desc->irq_data.chip->irq_ack)
        :c:func:`desc->irq_data.chip->irq_ack`;
    handle_irq_event(desc->action);
    if (desc->irq_data.chip->irq_eoi)
            :c:func:`desc->irq_data.chip->irq_eoi`;


EOI Edge IRQ flow handler
^^^^^^^^^^^^^^^^^^^^^^^^^

handle_edge_eoi_irq provides an abnomination of the edge handler
which is solely used to tame a badly wreckaged irq controller on
powerpc/cell.

Bad IRQ flow handler
^^^^^^^^^^^^^^^^^^^^

handle_bad_irq is used for spurious interrupts which have no real
handler assigned..

Quirks and optimizations
~~~~~~~~~~~~~~~~~~~~~~~~

The generic functions are intended for 'clean' architectures and chips,
which have no platform-specific IRQ handling quirks. If an architecture
needs to implement quirks on the 'flow' level then it can do so by
overriding the high-level irq-flow handler.

Delayed interrupt disable
~~~~~~~~~~~~~~~~~~~~~~~~~

This per interrupt selectable feature, which was introduced by Russell
King in the ARM interrupt implementation, does not mask an interrupt at
the hardware level when :c:func:`disable_irq` is called. The interrupt is kept
enabled and is masked in the flow handler when an interrupt event
happens. This prevents losing edge interrupts on hardware which does not
store an edge interrupt event while the interrupt is disabled at the
hardware level. When an interrupt arrives while the IRQ_DISABLED flag
is set, then the interrupt is masked at the hardware level and the
IRQ_PENDING bit is set. When the interrupt is re-enabled by
:c:func:`enable_irq` the pending bit is checked and if it is set, the interrupt
is resent either via hardware or by a software resend mechanism. (It's
necessary to enable CONFIG_HARDIRQS_SW_RESEND when you want to use
the delayed interrupt disable feature and your hardware is not capable
of retriggering an interrupt.) The delayed interrupt disable is not
configurable.

Chip-level hardware encapsulation
---------------------------------

The chip-level hardware descriptor structure :c:type:`irq_chip` contains all
the direct chip relevant functions, which can be utilized by the irq flow
implementations.

-  ``irq_ack``

-  ``irq_mask_ack`` - Optional, recommended for performance

-  ``irq_mask``

-  ``irq_unmask``

-  ``irq_eoi`` - Optional, required for EOI flow handlers

-  ``irq_retrigger`` - Optional

-  ``irq_set_type`` - Optional

-  ``irq_set_wake`` - Optional

These primitives are strictly intended to mean what they say: ack means
ACK, masking means masking of an IRQ line, etc. It is up to the flow
handler(s) to use these basic units of low-level functionality.

__do_IRQ entry point
====================

The original implementation :c:func:`__do_IRQ` was an alternative entry point
for all types of interrupts. It no longer exists.

This handler turned out to be not suitable for all interrupt hardware
and was therefore reimplemented with split functionality for
edge/level/simple/percpu interrupts. This is not only a functional
optimization. It also shortens code paths for interrupts.

Locking on SMP
==============

The locking of chip registers is up to the architecture that defines the
chip primitives. The per-irq structure is protected via desc->lock, by
the generic layer.

Generic interrupt chip
======================

To avoid copies of identical implementations of IRQ chips the core
provides a configurable generic interrupt chip implementation.
Developers should check carefully whether the generic chip fits their
needs before implementing the same functionality slightly differently
themselves.

.. kernel-doc:: kernel/irq/generic-chip.c
   :export:

Structures
==========

This chapter contains the autogenerated documentation of the structures
which are used in the generic IRQ layer.

.. kernel-doc:: include/linux/irq.h
   :internal:

.. kernel-doc:: include/linux/interrupt.h
   :internal:

Public Functions Provided
=========================

This chapter contains the autogenerated documentation of the kernel API
functions which are exported.

.. kernel-doc:: kernel/irq/manage.c

.. kernel-doc:: kernel/irq/chip.c

Internal Functions Provided
===========================

This chapter contains the autogenerated documentation of the internal
functions.

.. kernel-doc:: kernel/irq/irqdesc.c

.. kernel-doc:: kernel/irq/handle.c

.. kernel-doc:: kernel/irq/chip.c

Credits
=======

The following people have contributed to this document:

1. Thomas Gleixner tglx@linutronix.de

2. Ingo Molnar mingo@elte.hu