1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
.. _page_migration:
==============
Page migration
==============
Page migration allows moving the physical location of pages between
nodes in a NUMA system while the process is running. This means that the
virtual addresses that the process sees do not change. However, the
system rearranges the physical location of those pages.
Also see :ref:`Heterogeneous Memory Management (HMM) <hmm>`
for migrating pages to or from device private memory.
The main intent of page migration is to reduce the latency of memory accesses
by moving pages near to the processor where the process accessing that memory
is running.
Page migration allows a process to manually relocate the node on which its
pages are located through the MF_MOVE and MF_MOVE_ALL options while setting
a new memory policy via mbind(). The pages of a process can also be relocated
from another process using the sys_migrate_pages() function call. The
migrate_pages() function call takes two sets of nodes and moves pages of a
process that are located on the from nodes to the destination nodes.
Page migration functions are provided by the numactl package by Andi Kleen
(a version later than 0.9.3 is required. Get it from
https://github.com/numactl/numactl.git). numactl provides libnuma
which provides an interface similar to other NUMA functionality for page
migration. cat ``/proc/<pid>/numa_maps`` allows an easy review of where the
pages of a process are located. See also the numa_maps documentation in the
proc(5) man page.
Manual migration is useful if for example the scheduler has relocated
a process to a processor on a distant node. A batch scheduler or an
administrator may detect the situation and move the pages of the process
nearer to the new processor. The kernel itself only provides
manual page migration support. Automatic page migration may be implemented
through user space processes that move pages. A special function call
"move_pages" allows the moving of individual pages within a process.
For example, A NUMA profiler may obtain a log showing frequent off-node
accesses and may use the result to move pages to more advantageous
locations.
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
move pages when a task is moved to another cpuset (See
:ref:`CPUSETS <cpusets>`).
Cpusets allow the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
of processes in a cpuset are moved if the allowed memory nodes of a
cpuset are changed.
Page migration allows the preservation of the relative location of pages
within a group of nodes for all migration techniques which will preserve a
particular memory allocation pattern generated even after migrating a
process. This is necessary in order to preserve the memory latencies.
Processes will run with similar performance after migration.
Page migration occurs in several steps. First a high level
description for those trying to use migrate_pages() from the kernel
(for userspace usage see the Andi Kleen's numactl package mentioned above)
and then a low level description of how the low level details work.
In kernel use of migrate_pages()
================================
1. Remove pages from the LRU.
Lists of pages to be migrated are generated by scanning over
pages and moving them into lists. This is done by
calling isolate_lru_page().
Calling isolate_lru_page() increases the references to the page
so that it cannot vanish while the page migration occurs.
It also prevents the swapper or other scans from encountering
the page.
2. We need to have a function of type new_page_t that can be
passed to migrate_pages(). This function should figure out
how to allocate the correct new page given the old page.
3. The migrate_pages() function is called which attempts
to do the migration. It will call the function to allocate
the new page for each page that is considered for
moving.
How migrate_pages() works
=========================
migrate_pages() does several passes over its list of pages. A page is moved
if all references to a page are removable at the time. The page has
already been removed from the LRU via isolate_lru_page() and the refcount
is increased so that the page cannot be freed while page migration occurs.
Steps:
1. Lock the page to be migrated.
2. Ensure that writeback is complete.
3. Lock the new page that we want to move to. It is locked so that accesses to
this (not yet up-to-date) page immediately block while the move is in progress.
4. All the page table references to the page are converted to migration
entries. This decreases the mapcount of a page. If the resulting
mapcount is not zero then we do not migrate the page. All user space
processes that attempt to access the page will now wait on the page lock
or wait for the migration page table entry to be removed.
5. The i_pages lock is taken. This will cause all processes trying
to access the page via the mapping to block on the spinlock.
6. The refcount of the page is examined and we back out if references remain.
Otherwise, we know that we are the only one referencing this page.
7. The radix tree is checked and if it does not contain the pointer to this
page then we back out because someone else modified the radix tree.
8. The new page is prepped with some settings from the old page so that
accesses to the new page will discover a page with the correct settings.
9. The radix tree is changed to point to the new page.
10. The reference count of the old page is dropped because the address space
reference is gone. A reference to the new page is established because
the new page is referenced by the address space.
11. The i_pages lock is dropped. With that lookups in the mapping
become possible again. Processes will move from spinning on the lock
to sleeping on the locked new page.
12. The page contents are copied to the new page.
13. The remaining page flags are copied to the new page.
14. The old page flags are cleared to indicate that the page does
not provide any information anymore.
15. Queued up writeback on the new page is triggered.
16. If migration entries were inserted into the page table, then replace them
with real ptes. Doing so will enable access for user space processes not
already waiting for the page lock.
17. The page locks are dropped from the old and new page.
Processes waiting on the page lock will redo their page faults
and will reach the new page.
18. The new page is moved to the LRU and can be scanned by the swapper,
etc. again.
Non-LRU page migration
======================
Although migration originally aimed for reducing the latency of memory accesses
for NUMA, compaction also uses migration to create high-order pages.
Current problem of the implementation is that it is designed to migrate only
*LRU* pages. However, there are potential non-LRU pages which can be migrated
in drivers, for example, zsmalloc, virtio-balloon pages.
For virtio-balloon pages, some parts of migration code path have been hooked
up and added virtio-balloon specific functions to intercept migration logics.
It's too specific to a driver so other drivers who want to make their pages
movable would have to add their own specific hooks in the migration path.
To overcome the problem, VM supports non-LRU page migration which provides
generic functions for non-LRU movable pages without driver specific hooks
in the migration path.
If a driver wants to make its pages movable, it should define three functions
which are function pointers of struct address_space_operations.
1. ``bool (*isolate_page) (struct page *page, isolate_mode_t mode);``
What VM expects from isolate_page() function of driver is to return *true*
if driver isolates the page successfully. On returning true, VM marks the page
as PG_isolated so concurrent isolation in several CPUs skip the page
for isolation. If a driver cannot isolate the page, it should return *false*.
Once page is successfully isolated, VM uses page.lru fields so driver
shouldn't expect to preserve values in those fields.
2. ``int (*migratepage) (struct address_space *mapping,``
| ``struct page *newpage, struct page *oldpage, enum migrate_mode);``
After isolation, VM calls migratepage() of driver with the isolated page.
The function of migratepage() is to move the contents of the old page to the
new page
and set up fields of struct page newpage. Keep in mind that you should
indicate to the VM the oldpage is no longer movable via __ClearPageMovable()
under page_lock if you migrated the oldpage successfully and returned
MIGRATEPAGE_SUCCESS. If driver cannot migrate the page at the moment, driver
can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time
because VM interprets -EAGAIN as "temporary migration failure". On returning
any error except -EAGAIN, VM will give up the page migration without
retrying.
Driver shouldn't touch the page.lru field while in the migratepage() function.
3. ``void (*putback_page)(struct page *);``
If migration fails on the isolated page, VM should return the isolated page
to the driver so VM calls the driver's putback_page() with the isolated page.
In this function, the driver should put the isolated page back into its own data
structure.
4. non-LRU movable page flags
There are two page flags for supporting non-LRU movable page.
* PG_movable
Driver should use the function below to make page movable under page_lock::
void __SetPageMovable(struct page *page, struct address_space *mapping)
It needs argument of address_space for registering migration
family functions which will be called by VM. Exactly speaking,
PG_movable is not a real flag of struct page. Rather, VM
reuses the page->mapping's lower bits to represent it::
#define PAGE_MAPPING_MOVABLE 0x2
page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;
so driver shouldn't access page->mapping directly. Instead, driver should
use page_mapping() which masks off the low two bits of page->mapping under
page lock so it can get the right struct address_space.
For testing of non-LRU movable pages, VM supports __PageMovable() function.
However, it doesn't guarantee to identify non-LRU movable pages because
the page->mapping field is unified with other variables in struct page.
If the driver releases the page after isolation by VM, page->mapping
doesn't have a stable value although it has PAGE_MAPPING_MOVABLE set
(look at __ClearPageMovable). But __PageMovable() is cheap to call whether
page is LRU or non-LRU movable once the page has been isolated because LRU
pages can never have PAGE_MAPPING_MOVABLE set in page->mapping. It is also
good for just peeking to test non-LRU movable pages before more expensive
checking with lock_page() in pfn scanning to select a victim.
For guaranteeing non-LRU movable page, VM provides PageMovable() function.
Unlike __PageMovable(), PageMovable() validates page->mapping and
mapping->a_ops->isolate_page under lock_page(). The lock_page() prevents
sudden destroying of page->mapping.
Drivers using __SetPageMovable() should clear the flag via
__ClearMovablePage() under page_lock() before the releasing the page.
* PG_isolated
To prevent concurrent isolation among several CPUs, VM marks isolated page
as PG_isolated under lock_page(). So if a CPU encounters PG_isolated
non-LRU movable page, it can skip it. Driver doesn't need to manipulate the
flag because VM will set/clear it automatically. Keep in mind that if the
driver sees a PG_isolated page, it means the page has been isolated by the
VM so it shouldn't touch the page.lru field.
The PG_isolated flag is aliased with the PG_reclaim flag so drivers
shouldn't use PG_isolated for its own purposes.
Monitoring Migration
=====================
The following events (counters) can be used to monitor page migration.
1. PGMIGRATE_SUCCESS: Normal page migration success. Each count means that a
page was migrated. If the page was a non-THP page, then this counter is
increased by one. If the page was a THP, then this counter is increased by
the number of THP subpages. For example, migration of a single 2MB THP that
has 4KB-size base pages (subpages) will cause this counter to increase by
512.
2. PGMIGRATE_FAIL: Normal page migration failure. Same counting rules as for
PGMIGRATE_SUCCESS, above: this will be increased by the number of subpages,
if it was a THP.
3. THP_MIGRATION_SUCCESS: A THP was migrated without being split.
4. THP_MIGRATION_FAIL: A THP could not be migrated nor it could be split.
5. THP_MIGRATION_SPLIT: A THP was migrated, but not as such: first, the THP had
to be split. After splitting, a migration retry was used for it's sub-pages.
THP_MIGRATION_* events also update the appropriate PGMIGRATE_SUCCESS or
PGMIGRATE_FAIL events. For example, a THP migration failure will cause both
THP_MIGRATION_FAIL and PGMIGRATE_FAIL to increase.
Christoph Lameter, May 8, 2006.
Minchan Kim, Mar 28, 2016.
|