aboutsummaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/cpufeature.c
blob: 125d5c9471ac5d01ad51aada91b0b95de1bc1e6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * A note for the weary kernel hacker: the code here is confusing and hard to
 * follow! That's partly because it's solving a nasty problem, but also because
 * there's a little bit of over-abstraction that tends to obscure what's going
 * on behind a maze of helper functions and macros.
 *
 * The basic problem is that hardware folks have started gluing together CPUs
 * with distinct architectural features; in some cases even creating SoCs where
 * user-visible instructions are available only on a subset of the available
 * cores. We try to address this by snapshotting the feature registers of the
 * boot CPU and comparing these with the feature registers of each secondary
 * CPU when bringing them up. If there is a mismatch, then we update the
 * snapshot state to indicate the lowest-common denominator of the feature,
 * known as the "safe" value. This snapshot state can be queried to view the
 * "sanitised" value of a feature register.
 *
 * The sanitised register values are used to decide which capabilities we
 * have in the system. These may be in the form of traditional "hwcaps"
 * advertised to userspace or internal "cpucaps" which are used to configure
 * things like alternative patching and static keys. While a feature mismatch
 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
 * may prevent a CPU from being onlined at all.
 *
 * Some implementation details worth remembering:
 *
 * - Mismatched features are *always* sanitised to a "safe" value, which
 *   usually indicates that the feature is not supported.
 *
 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
 *   warning when onlining an offending CPU and the kernel will be tainted
 *   with TAINT_CPU_OUT_OF_SPEC.
 *
 * - Features marked as FTR_VISIBLE have their sanitised value visible to
 *   userspace. FTR_VISIBLE features in registers that are only visible
 *   to EL0 by trapping *must* have a corresponding HWCAP so that late
 *   onlining of CPUs cannot lead to features disappearing at runtime.
 *
 * - A "feature" is typically a 4-bit register field. A "capability" is the
 *   high-level description derived from the sanitised field value.
 *
 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
 *   scheme for fields in ID registers") to understand when feature fields
 *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
 *
 * - KVM exposes its own view of the feature registers to guest operating
 *   systems regardless of FTR_VISIBLE. This is typically driven from the
 *   sanitised register values to allow virtual CPUs to be migrated between
 *   arbitrary physical CPUs, but some features not present on the host are
 *   also advertised and emulated. Look at sys_reg_descs[] for the gory
 *   details.
 *
 * - If the arm64_ftr_bits[] for a register has a missing field, then this
 *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
 *   This is stronger than FTR_HIDDEN and can be used to hide features from
 *   KVM guests.
 */

#define pr_fmt(fmt) "CPU features: " fmt

#include <linux/bsearch.h>
#include <linux/cpumask.h>
#include <linux/crash_dump.h>
#include <linux/sort.h>
#include <linux/stop_machine.h>
#include <linux/types.h>
#include <linux/minmax.h>
#include <linux/mm.h>
#include <linux/cpu.h>
#include <linux/kasan.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/fpsimd.h>
#include <asm/insn.h>
#include <asm/kvm_host.h>
#include <asm/mmu_context.h>
#include <asm/mte.h>
#include <asm/processor.h>
#include <asm/sysreg.h>
#include <asm/traps.h>
#include <asm/virt.h>

/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
static unsigned long elf_hwcap __read_mostly;

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcaps);
static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];

/* Need also bit for ARM64_CB_PATCH */
DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);

bool arm64_use_ng_mappings = false;
EXPORT_SYMBOL(arm64_use_ng_mappings);

/*
 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
 * support it?
 */
static bool __read_mostly allow_mismatched_32bit_el0;

/*
 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
 * seen at least one CPU capable of 32-bit EL0.
 */
DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);

/*
 * Mask of CPUs supporting 32-bit EL0.
 * Only valid if arm64_mismatched_32bit_el0 is enabled.
 */
static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;

/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier. This is also used to decide if we could use
 * the fast path for checking constant CPU caps.
 */
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);
static inline void finalize_system_capabilities(void)
{
	static_branch_enable(&arm64_const_caps_ready);
}

void dump_cpu_features(void)
{
	/* file-wide pr_fmt adds "CPU features: " prefix */
	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
}

DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	{						\
		.sign = SIGNED,				\
		.visible = VISIBLE,			\
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

/* Define a feature with unsigned values */
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

/* Define a feature with a signed value */
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);

static bool __system_matches_cap(unsigned int n);

/*
 * NOTE: Any changes to the visibility of features should be kept in
 * sync with the documentation of the CPU feature register ABI.
 */
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
	/*
	 * Page size not being supported at Stage-2 is not fatal. You
	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
	 * your favourite nesting hypervisor.
	 *
	 * There is a small corner case where the hypervisor explicitly
	 * advertises a given granule size at Stage-2 (value 2) on some
	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
	 * vCPUs. Although this is not forbidden by the architecture, it
	 * indicates that the hypervisor is being silly (or buggy).
	 *
	 * We make no effort to cope with this and pretend that if these
	 * fields are inconsistent across vCPUs, then it isn't worth
	 * trying to bring KVM up.
	 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
	/*
	 * We already refuse to boot CPUs that don't support our configured
	 * page size, so we can only detect mismatches for a page size other
	 * than the one we're currently using. Unfortunately, SoCs like this
	 * exist in the wild so, even though we don't like it, we'll have to go
	 * along with it and treat them as non-strict.
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),

	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
	/* Linux shouldn't care about secure memory */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_ctr[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
	 * make use of *minLine.
	 * If we have differing I-cache policies, report it as the weakest - VIPT.
	 */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static struct arm64_ftr_override __ro_after_init no_override = { };

struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr,
	.override	= &no_override,
};

static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
	/*
	 * We can instantiate multiple PMU instances with different levels
	 * of support.
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_mvfr2[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_dczid[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_gmid[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_isar0[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_isar5[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),

	/*
	 * SpecSEI = 1 indicates that the PE might generate an SError on an
	 * external abort on speculative read. It is safe to assume that an
	 * SError might be generated than it will not be. Hence it has been
	 * classified as FTR_HIGHER_SAFE.
	 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_isar4[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_isar6[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_pfr0[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_pfr1[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_pfr2[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_dfr0[] = {
	/* [31:28] TraceFilt */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_id_dfr1[] = {
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_zcr[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
	ARM64_FTR_END,
};

/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
	ARM64_FTR_END,
};

static const struct arm64_ftr_bits ftr_raz[] = {
	ARM64_FTR_END,
};

#define ARM64_FTR_REG_OVERRIDE(id, table, ovr) {		\
		.sys_id = id,					\
		.reg = 	&(struct arm64_ftr_reg){		\
			.name = #id,				\
			.override = (ovr),			\
			.ftr_bits = &((table)[0]),		\
	}}

#define ARM64_FTR_REG(id, table) ARM64_FTR_REG_OVERRIDE(id, table, &no_override)

struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
struct arm64_ftr_override __ro_after_init id_aa64isar1_override;

static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
			       &id_aa64pfr1_override),
	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
			       &id_aa64isar1_override),

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
			       &id_aa64mmfr1_override),
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),

	/* Op1 = 0, CRn = 1, CRm = 2 */
	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),

	/* Op1 = 1, CRn = 0, CRm = 0 */
	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),

	/* Op1 = 3, CRn = 0, CRm = 0 */
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
}

/*
 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id, we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
{
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
	if (ret)
		return ret->reg;
	return NULL;
}

/*
 * get_arm64_ftr_reg - Looks up a feature register entry using
 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure but with an WARN_ON().
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
	struct arm64_ftr_reg *reg;

	reg = get_arm64_ftr_reg_nowarn(sys_id);

	/*
	 * Requesting a non-existent register search is an error. Warn
	 * and let the caller handle it.
	 */
	WARN_ON(!reg);
	return reg;
}

static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = min(new, cur);
		break;
	case FTR_HIGHER_OR_ZERO_SAFE:
		if (!cur || !new)
			break;
		fallthrough;
	case FTR_HIGHER_SAFE:
		ret = max(new, cur);
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
		unsigned int j = 0;

		/*
		 * Features here must be sorted in descending order with respect
		 * to their shift values and should not overlap with each other.
		 */
		for (; ftr_bits->width != 0; ftr_bits++, j++) {
			unsigned int width = ftr_reg->ftr_bits[j].width;
			unsigned int shift = ftr_reg->ftr_bits[j].shift;
			unsigned int prev_shift;

			WARN((shift  + width) > 64,
				"%s has invalid feature at shift %d\n",
				ftr_reg->name, shift);

			/*
			 * Skip the first feature. There is nothing to
			 * compare against for now.
			 */
			if (j == 0)
				continue;

			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
			WARN((shift + width) > prev_shift,
				"%s has feature overlap at shift %d\n",
				ftr_reg->name, shift);
		}

		/*
		 * Skip the first register. There is nothing to
		 * compare against for now.
		 */
		if (i == 0)
			continue;
		/*
		 * Registers here must be sorted in ascending order with respect
		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
		 * to work correctly.
		 */
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
	}
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 * RES0 for the system-wide value, and must strictly match.
 */
static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
	u64 user_mask = 0;
	u64 valid_mask = 0;

	const struct arm64_ftr_bits *ftrp;
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	if (!reg)
		return;

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		u64 ftr_mask = arm64_ftr_mask(ftrp);
		s64 ftr_new = arm64_ftr_value(ftrp, new);
		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);

		if ((ftr_mask & reg->override->mask) == ftr_mask) {
			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
			char *str = NULL;

			if (ftr_ovr != tmp) {
				/* Unsafe, remove the override */
				reg->override->mask &= ~ftr_mask;
				reg->override->val &= ~ftr_mask;
				tmp = ftr_ovr;
				str = "ignoring override";
			} else if (ftr_new != tmp) {
				/* Override was valid */
				ftr_new = tmp;
				str = "forced";
			} else if (ftr_ovr == tmp) {
				/* Override was the safe value */
				str = "already set";
			}

			if (str)
				pr_warn("%s[%d:%d]: %s to %llx\n",
					reg->name,
					ftrp->shift + ftrp->width - 1,
					ftrp->shift, str, tmp);
		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
			reg->override->val &= ~ftr_mask;
			pr_warn("%s[%d:%d]: impossible override, ignored\n",
				reg->name,
				ftrp->shift + ftrp->width - 1,
				ftrp->shift);
		}

		val = arm64_ftr_set_value(ftrp, val, ftr_new);

		valid_mask |= ftr_mask;
		if (!ftrp->strict)
			strict_mask &= ~ftr_mask;
		if (ftrp->visible)
			user_mask |= ftr_mask;
		else
			reg->user_val = arm64_ftr_set_value(ftrp,
							    reg->user_val,
							    ftrp->safe_val);
	}

	val &= valid_mask;

	reg->sys_val = val;
	reg->strict_mask = strict_mask;
	reg->user_mask = user_mask;
}

extern const struct arm64_cpu_capabilities arm64_errata[];
static const struct arm64_cpu_capabilities arm64_features[];

static void __init
init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
		if (WARN(caps->capability >= ARM64_NCAPS,
			"Invalid capability %d\n", caps->capability))
			continue;
		if (WARN(cpu_hwcaps_ptrs[caps->capability],
			"Duplicate entry for capability %d\n",
			caps->capability))
			continue;
		cpu_hwcaps_ptrs[caps->capability] = caps;
	}
}

static void __init init_cpu_hwcaps_indirect_list(void)
{
	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
}

static void __init setup_boot_cpu_capabilities(void);

static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
{
	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
}

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
		init_32bit_cpu_features(&info->aarch32);

	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
		sve_init_vq_map();
	}

	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);

	/*
	 * Initialize the indirect array of CPU hwcaps capabilities pointers
	 * before we handle the boot CPU below.
	 */
	init_cpu_hwcaps_indirect_list();

	/*
	 * Detect and enable early CPU capabilities based on the boot CPU,
	 * after we have initialised the CPU feature infrastructure.
	 */
	setup_boot_cpu_capabilities();
}

static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
{
	const struct arm64_ftr_bits *ftrp;

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	if (!regp)
		return 0;

	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

static void relax_cpu_ftr_reg(u32 sys_id, int field)
{
	const struct arm64_ftr_bits *ftrp;
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	if (!regp)
		return;

	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
		if (ftrp->shift == field) {
			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
			break;
		}
	}

	/* Bogus field? */
	WARN_ON(!ftrp->width);
}

static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
					 struct cpuinfo_arm64 *boot)
{
	static bool boot_cpu_32bit_regs_overridden = false;

	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
		return;

	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
		return;

	boot->aarch32 = info->aarch32;
	init_32bit_cpu_features(&boot->aarch32);
	boot_cpu_32bit_regs_overridden = true;
}

static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
				     struct cpuinfo_32bit *boot)
{
	int taint = 0;
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);

	/*
	 * If we don't have AArch32 at EL1, then relax the strictness of
	 * EL1-dependent register fields to avoid spurious sanity check fails.
	 */
	if (!id_aa64pfr0_32bit_el1(pfr0)) {
		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
	}

	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
				      info->reg_id_dfr0, boot->reg_id_dfr0);
	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
				      info->reg_id_dfr1, boot->reg_id_dfr1);
	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
				      info->reg_id_isar0, boot->reg_id_isar0);
	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
				      info->reg_id_isar1, boot->reg_id_isar1);
	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
				      info->reg_id_isar2, boot->reg_id_isar2);
	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
				      info->reg_id_isar3, boot->reg_id_isar3);
	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
				      info->reg_id_isar4, boot->reg_id_isar4);
	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
				      info->reg_id_isar5, boot->reg_id_isar5);
	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
				      info->reg_id_isar6, boot->reg_id_isar6);

	/*
	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
	 * ACTLR formats could differ across CPUs and therefore would have to
	 * be trapped for virtualization anyway.
	 */
	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
				      info->reg_id_pfr0, boot->reg_id_pfr0);
	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
				      info->reg_id_pfr1, boot->reg_id_pfr1);
	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
				      info->reg_id_pfr2, boot->reg_id_pfr2);
	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
				      info->reg_mvfr0, boot->reg_mvfr0);
	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
				      info->reg_mvfr1, boot->reg_mvfr1);
	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
				      info->reg_mvfr2, boot->reg_mvfr2);

	return taint;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);

	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);

	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
					info->reg_zcr, boot->reg_zcr);

		/* Probe vector lengths, unless we already gave up on SVE */
		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
		    !system_capabilities_finalized())
			sve_update_vq_map();
	}

	/*
	 * The kernel uses the LDGM/STGM instructions and the number of tags
	 * they read/write depends on the GMID_EL1.BS field. Check that the
	 * value is the same on all CPUs.
	 */
	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
					      info->reg_gmid, boot->reg_gmid);
	}

	/*
	 * If we don't have AArch32 at all then skip the checks entirely
	 * as the register values may be UNKNOWN and we're not going to be
	 * using them for anything.
	 *
	 * This relies on a sanitised view of the AArch64 ID registers
	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
	 */
	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		lazy_init_32bit_cpu_features(info, boot);
		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
						   &boot->aarch32);
	}

	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
	if (taint) {
		pr_warn_once("Unsupported CPU feature variation detected.\n");
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
	}
}

u64 read_sanitised_ftr_reg(u32 id)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	if (!regp)
		return 0;
	return regp->sys_val;
}
EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);

#define read_sysreg_case(r)	\
	case r:		val = read_sysreg_s(r); break;

/*
 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
 * Read the system register on the current CPU
 */
u64 __read_sysreg_by_encoding(u32 sys_id)
{
	struct arm64_ftr_reg *regp;
	u64 val;

	switch (sys_id) {
	read_sysreg_case(SYS_ID_PFR0_EL1);
	read_sysreg_case(SYS_ID_PFR1_EL1);
	read_sysreg_case(SYS_ID_PFR2_EL1);
	read_sysreg_case(SYS_ID_DFR0_EL1);
	read_sysreg_case(SYS_ID_DFR1_EL1);
	read_sysreg_case(SYS_ID_MMFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR1_EL1);
	read_sysreg_case(SYS_ID_MMFR2_EL1);
	read_sysreg_case(SYS_ID_MMFR3_EL1);
	read_sysreg_case(SYS_ID_MMFR4_EL1);
	read_sysreg_case(SYS_ID_MMFR5_EL1);
	read_sysreg_case(SYS_ID_ISAR0_EL1);
	read_sysreg_case(SYS_ID_ISAR1_EL1);
	read_sysreg_case(SYS_ID_ISAR2_EL1);
	read_sysreg_case(SYS_ID_ISAR3_EL1);
	read_sysreg_case(SYS_ID_ISAR4_EL1);
	read_sysreg_case(SYS_ID_ISAR5_EL1);
	read_sysreg_case(SYS_ID_ISAR6_EL1);
	read_sysreg_case(SYS_MVFR0_EL1);
	read_sysreg_case(SYS_MVFR1_EL1);
	read_sysreg_case(SYS_MVFR2_EL1);

	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);

	read_sysreg_case(SYS_CNTFRQ_EL0);
	read_sysreg_case(SYS_CTR_EL0);
	read_sysreg_case(SYS_DCZID_EL0);

	default:
		BUG();
		return 0;
	}

	regp  = get_arm64_ftr_reg(sys_id);
	if (regp) {
		val &= ~regp->override->mask;
		val |= (regp->override->val & regp->override->mask);
	}

	return val;
}

#include <linux/irqchip/arm-gic-v3.h>

static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);

	return val >= entry->min_field_value;
}

static bool
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
{
	u64 val;

	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
		val = read_sanitised_ftr_reg(entry->sys_reg);
	else
		val = __read_sysreg_by_encoding(entry->sys_reg);

	return feature_matches(val, entry);
}

const struct cpumask *system_32bit_el0_cpumask(void)
{
	if (!system_supports_32bit_el0())
		return cpu_none_mask;

	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
		return cpu_32bit_el0_mask;

	return cpu_possible_mask;
}

static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
{
	if (!has_cpuid_feature(entry, scope))
		return allow_mismatched_32bit_el0;

	if (scope == SCOPE_SYSTEM)
		pr_info("detected: 32-bit EL0 Support\n");

	return true;
}

static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
{
	bool has_sre;

	if (!has_cpuid_feature(entry, scope))
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
{
	u32 midr = read_cpuid_id();

	/* Cavium ThunderX pass 1.x and 2.x */
	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
		MIDR_CPU_VAR_REV(0, 0),
		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
}

static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);

	return cpuid_feature_extract_signed_field(pfr0,
					ID_AA64PFR0_FP_SHIFT) < 0;
}

static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
			  int scope)
{
	u64 ctr;

	if (scope == SCOPE_SYSTEM)
		ctr = arm64_ftr_reg_ctrel0.sys_val;
	else
		ctr = read_cpuid_effective_cachetype();

	return ctr & BIT(CTR_IDC_SHIFT);
}

static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
{
	/*
	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
	 * value.
	 */
	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
}

static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
			  int scope)
{
	u64 ctr;

	if (scope == SCOPE_SYSTEM)
		ctr = arm64_ftr_reg_ctrel0.sys_val;
	else
		ctr = read_cpuid_cachetype();

	return ctr & BIT(CTR_DIC_SHIFT);
}

static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
{
	/*
	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
	 * may share TLB entries with a CPU stuck in the crashed
	 * kernel.
	 */
	if (is_kdump_kernel())
		return false;

	if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
		return false;

	return has_cpuid_feature(entry, scope);
}

/*
 * This check is triggered during the early boot before the cpufeature
 * is initialised. Checking the status on the local CPU allows the boot
 * CPU to detect the need for non-global mappings and thus avoiding a
 * pagetable re-write after all the CPUs are booted. This check will be
 * anyway run on individual CPUs, allowing us to get the consistent
 * state once the SMP CPUs are up and thus make the switch to non-global
 * mappings if required.
 */
bool kaslr_requires_kpti(void)
{
	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
		return false;

	/*
	 * E0PD does a similar job to KPTI so can be used instead
	 * where available.
	 */
	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
		if (cpuid_feature_extract_unsigned_field(mmfr2,
						ID_AA64MMFR2_E0PD_SHIFT))
			return false;
	}

	/*
	 * Systems affected by Cavium erratum 24756 are incompatible
	 * with KPTI.
	 */
	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
		extern const struct midr_range cavium_erratum_27456_cpus[];

		if (is_midr_in_range_list(read_cpuid_id(),
					  cavium_erratum_27456_cpus))
			return false;
	}

	return kaslr_offset() > 0;
}

static bool __meltdown_safe = true;
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */

static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
				int scope)
{
	/* List of CPUs that are not vulnerable and don't need KPTI */
	static const struct midr_range kpti_safe_list[] = {
		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
		{ /* sentinel */ }
	};
	char const *str = "kpti command line option";
	bool meltdown_safe;

	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);

	/* Defer to CPU feature registers */
	if (has_cpuid_feature(entry, scope))
		meltdown_safe = true;

	if (!meltdown_safe)
		__meltdown_safe = false;

	/*
	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
	 * ThunderX leads to apparent I-cache corruption of kernel text, which
	 * ends as well as you might imagine. Don't even try.
	 */
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
		str = "ARM64_WORKAROUND_CAVIUM_27456";
		__kpti_forced = -1;
	}

	/* Useful for KASLR robustness */
	if (kaslr_requires_kpti()) {
		if (!__kpti_forced) {
			str = "KASLR";
			__kpti_forced = 1;
		}
	}

	if (cpu_mitigations_off() && !__kpti_forced) {
		str = "mitigations=off";
		__kpti_forced = -1;
	}

	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
		return false;
	}

	/* Forced? */
	if (__kpti_forced) {
		pr_info_once("kernel page table isolation forced %s by %s\n",
			     __kpti_forced > 0 ? "ON" : "OFF", str);
		return __kpti_forced > 0;
	}

	return !meltdown_safe;
}

#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
static void __nocfi
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
{
	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
	kpti_remap_fn *remap_fn;

	int cpu = smp_processor_id();

	/*
	 * We don't need to rewrite the page-tables if either we've done
	 * it already or we have KASLR enabled and therefore have not
	 * created any global mappings at all.
	 */
	if (arm64_use_ng_mappings)
		return;

	remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));

	cpu_install_idmap();
	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
	cpu_uninstall_idmap();

	if (!cpu)
		arm64_use_ng_mappings = true;

	return;
}
#else
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
{
}
#endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */

static int __init parse_kpti(char *str)
{
	bool enabled;
	int ret = strtobool(str, &enabled);

	if (ret)
		return ret;

	__kpti_forced = enabled ? 1 : -1;
	return 0;
}
early_param("kpti", parse_kpti);

#ifdef CONFIG_ARM64_HW_AFDBM
static inline void __cpu_enable_hw_dbm(void)
{
	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;

	write_sysreg(tcr, tcr_el1);
	isb();
	local_flush_tlb_all();
}

static bool cpu_has_broken_dbm(void)
{
	/* List of CPUs which have broken DBM support. */
	static const struct midr_range cpus[] = {
#ifdef CONFIG_ARM64_ERRATUM_1024718
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
		/* Kryo4xx Silver (rdpe => r1p0) */
		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
#endif
		{},
	};

	return is_midr_in_range_list(read_cpuid_id(), cpus);
}

static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
{
	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
	       !cpu_has_broken_dbm();
}

static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
{
	if (cpu_can_use_dbm(cap))
		__cpu_enable_hw_dbm();
}

static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
		       int __unused)
{
	static bool detected = false;
	/*
	 * DBM is a non-conflicting feature. i.e, the kernel can safely
	 * run a mix of CPUs with and without the feature. So, we
	 * unconditionally enable the capability to allow any late CPU
	 * to use the feature. We only enable the control bits on the
	 * CPU, if it actually supports.
	 *
	 * We have to make sure we print the "feature" detection only
	 * when at least one CPU actually uses it. So check if this CPU
	 * can actually use it and print the message exactly once.
	 *
	 * This is safe as all CPUs (including secondary CPUs - due to the
	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
	 * goes through the "matches" check exactly once. Also if a CPU
	 * matches the criteria, it is guaranteed that the CPU will turn
	 * the DBM on, as the capability is unconditionally enabled.
	 */
	if (!detected && cpu_can_use_dbm(cap)) {
		detected = true;
		pr_info("detected: Hardware dirty bit management\n");
	}

	return true;
}

#endif

#ifdef CONFIG_ARM64_AMU_EXTN

/*
 * The "amu_cpus" cpumask only signals that the CPU implementation for the
 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
 * information regarding all the events that it supports. When a CPU bit is
 * set in the cpumask, the user of this feature can only rely on the presence
 * of the 4 fixed counters for that CPU. But this does not guarantee that the
 * counters are enabled or access to these counters is enabled by code
 * executed at higher exception levels (firmware).
 */
static struct cpumask amu_cpus __read_mostly;

bool cpu_has_amu_feat(int cpu)
{
	return cpumask_test_cpu(cpu, &amu_cpus);
}

int get_cpu_with_amu_feat(void)
{
	return cpumask_any(&amu_cpus);
}

static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
{
	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
		pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
			smp_processor_id());
		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
		update_freq_counters_refs();
	}
}

static bool has_amu(const struct arm64_cpu_capabilities *cap,
		    int __unused)
{
	/*
	 * The AMU extension is a non-conflicting feature: the kernel can
	 * safely run a mix of CPUs with and without support for the
	 * activity monitors extension. Therefore, unconditionally enable
	 * the capability to allow any late CPU to use the feature.
	 *
	 * With this feature unconditionally enabled, the cpu_enable
	 * function will be called for all CPUs that match the criteria,
	 * including secondary and hotplugged, marking this feature as
	 * present on that respective CPU. The enable function will also
	 * print a detection message.
	 */

	return true;
}
#else
int get_cpu_with_amu_feat(void)
{
	return nr_cpu_ids;
}
#endif

static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
{
	return is_kernel_in_hyp_mode();
}

static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
{
	/*
	 * Copy register values that aren't redirected by hardware.
	 *
	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
	 * this value to tpidr_el2 before we patch the code. Once we've done
	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
	 * do anything here.
	 */
	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
}

static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
{
	u64 val = read_sysreg_s(SYS_CLIDR_EL1);

	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
	WARN_ON(val & (7 << 27 | 7 << 21));
}

#ifdef CONFIG_ARM64_PAN
static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
{
	/*
	 * We modify PSTATE. This won't work from irq context as the PSTATE
	 * is discarded once we return from the exception.
	 */
	WARN_ON_ONCE(in_interrupt());

	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
	set_pstate_pan(1);
}
#endif /* CONFIG_ARM64_PAN */

#ifdef CONFIG_ARM64_RAS_EXTN
static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
{
	/* Firmware may have left a deferred SError in this register. */
	write_sysreg_s(0, SYS_DISR_EL1);
}
#endif /* CONFIG_ARM64_RAS_EXTN */

#ifdef CONFIG_ARM64_PTR_AUTH
static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
{
	int boot_val, sec_val;

	/* We don't expect to be called with SCOPE_SYSTEM */
	WARN_ON(scope == SCOPE_SYSTEM);
	/*
	 * The ptr-auth feature levels are not intercompatible with lower
	 * levels. Hence we must match ptr-auth feature level of the secondary
	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
	 * from the sanitised register whereas direct register read is done for
	 * the secondary CPUs.
	 * The sanitised feature state is guaranteed to match that of the
	 * boot CPU as a mismatched secondary CPU is parked before it gets
	 * a chance to update the state, with the capability.
	 */
	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
					       entry->field_pos, entry->sign);
	if (scope & SCOPE_BOOT_CPU)
		return boot_val >= entry->min_field_value;
	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
					      entry->field_pos, entry->sign);
	return sec_val == boot_val;
}

static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
				     int scope)
{
	return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
	       has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
}

static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
			     int __unused)
{
	return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
	       __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
}
#endif /* CONFIG_ARM64_PTR_AUTH */

#ifdef CONFIG_ARM64_E0PD
static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
{
	if (this_cpu_has_cap(ARM64_HAS_E0PD))
		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
}
#endif /* CONFIG_ARM64_E0PD */

#ifdef CONFIG_ARM64_PSEUDO_NMI
static bool enable_pseudo_nmi;

static int __init early_enable_pseudo_nmi(char *p)
{
	return strtobool(p, &enable_pseudo_nmi);
}
early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);

static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
				   int scope)
{
	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
}
#endif

#ifdef CONFIG_ARM64_BTI
static void bti_enable(const struct arm64_cpu_capabilities *__unused)
{
	/*
	 * Use of X16/X17 for tail-calls and trampolines that jump to
	 * function entry points using BR is a requirement for
	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
	 * So, be strict and forbid other BRs using other registers to
	 * jump onto a PACIxSP instruction:
	 */
	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
	isb();
}
#endif /* CONFIG_ARM64_BTI */

#ifdef CONFIG_ARM64_MTE
static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
{
	/*
	 * Clear the tags in the zero page. This needs to be done via the
	 * linear map which has the Tagged attribute.
	 */
	if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
		mte_clear_page_tags(lm_alias(empty_zero_page));

	kasan_init_hw_tags_cpu();
}
#endif /* CONFIG_ARM64_MTE */

#ifdef CONFIG_KVM
static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
{
	if (kvm_get_mode() != KVM_MODE_PROTECTED)
		return false;

	if (is_kernel_in_hyp_mode()) {
		pr_warn("Protected KVM not available with VHE\n");
		return false;
	}

	return true;
}
#endif /* CONFIG_KVM */

/* Internal helper functions to match cpu capability type */
static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
}

static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
}

static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
{
	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
}

static const struct arm64_cpu_capabilities arm64_features[] = {
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
		.matches = has_useable_gicv3_cpuif,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
	},
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
		.cpu_enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
#ifdef CONFIG_ARM64_EPAN
	{
		.desc = "Enhanced Privileged Access Never",
		.capability = ARM64_HAS_EPAN,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 3,
	},
#endif /* CONFIG_ARM64_EPAN */
#ifdef CONFIG_ARM64_LSE_ATOMICS
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 2,
	},
#endif /* CONFIG_ARM64_LSE_ATOMICS */
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.matches = has_no_hw_prefetch,
	},
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
		.matches = runs_at_el2,
		.cpu_enable = cpu_copy_el2regs,
	},
	{
		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_32bit_el0,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
#ifdef CONFIG_KVM
	{
		.desc = "32-bit EL1 Support",
		.capability = ARM64_HAS_32BIT_EL1,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL1_SHIFT,
		.min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
	},
	{
		.desc = "Protected KVM",
		.capability = ARM64_KVM_PROTECTED_MODE,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = is_kvm_protected_mode,
	},
#endif
	{
		.desc = "Kernel page table isolation (KPTI)",
		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
		/*
		 * The ID feature fields below are used to indicate that
		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
		 * more details.
		 */
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
		.min_field_value = 1,
		.matches = unmap_kernel_at_el0,
		.cpu_enable = kpti_install_ng_mappings,
	},
	{
		/* FP/SIMD is not implemented */
		.capability = ARM64_HAS_NO_FPSIMD,
		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
		.min_field_value = 0,
		.matches = has_no_fpsimd,
	},
#ifdef CONFIG_ARM64_PMEM
	{
		.desc = "Data cache clean to Point of Persistence",
		.capability = ARM64_HAS_DCPOP,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
		.min_field_value = 1,
	},
	{
		.desc = "Data cache clean to Point of Deep Persistence",
		.capability = ARM64_HAS_DCPODP,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
		.min_field_value = 2,
	},
#endif
#ifdef CONFIG_ARM64_SVE
	{
		.desc = "Scalable Vector Extension",
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.capability = ARM64_SVE,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_SVE_SHIFT,
		.min_field_value = ID_AA64PFR0_SVE,
		.matches = has_cpuid_feature,
		.cpu_enable = sve_kernel_enable,
	},
#endif /* CONFIG_ARM64_SVE */
#ifdef CONFIG_ARM64_RAS_EXTN
	{
		.desc = "RAS Extension Support",
		.capability = ARM64_HAS_RAS_EXTN,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_RAS_SHIFT,
		.min_field_value = ID_AA64PFR0_RAS_V1,
		.cpu_enable = cpu_clear_disr,
	},
#endif /* CONFIG_ARM64_RAS_EXTN */
#ifdef CONFIG_ARM64_AMU_EXTN
	{
		/*
		 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
		 * Therefore, don't provide .desc as we don't want the detection
		 * message to be shown until at least one CPU is detected to
		 * support the feature.
		 */
		.capability = ARM64_HAS_AMU_EXTN,
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.matches = has_amu,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_AMU_SHIFT,
		.min_field_value = ID_AA64PFR0_AMU,
		.cpu_enable = cpu_amu_enable,
	},
#endif /* CONFIG_ARM64_AMU_EXTN */
	{
		.desc = "Data cache clean to the PoU not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_IDC,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cache_idc,
		.cpu_enable = cpu_emulate_effective_ctr,
	},
	{
		.desc = "Instruction cache invalidation not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_DIC,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cache_dic,
	},
	{
		.desc = "Stage-2 Force Write-Back",
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.capability = ARM64_HAS_STAGE2_FWB,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
		.min_field_value = 1,
		.matches = has_cpuid_feature,
		.cpu_enable = cpu_has_fwb,
	},
	{
		.desc = "ARMv8.4 Translation Table Level",
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.capability = ARM64_HAS_ARMv8_4_TTL,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR2_TTL_SHIFT,
		.min_field_value = 1,
		.matches = has_cpuid_feature,
	},
	{
		.desc = "TLB range maintenance instructions",
		.capability = ARM64_HAS_TLB_RANGE,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_TLB_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = ID_AA64ISAR0_TLB_RANGE,
	},
#ifdef CONFIG_ARM64_HW_AFDBM
	{
		/*
		 * Since we turn this on always, we don't want the user to
		 * think that the feature is available when it may not be.
		 * So hide the description.
		 *
		 * .desc = "Hardware pagetable Dirty Bit Management",
		 *
		 */
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.capability = ARM64_HW_DBM,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
		.min_field_value = 2,
		.matches = has_hw_dbm,
		.cpu_enable = cpu_enable_hw_dbm,
	},
#endif
	{
		.desc = "CRC32 instructions",
		.capability = ARM64_HAS_CRC32,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
		.min_field_value = 1,
	},
	{
		.desc = "Speculative Store Bypassing Safe (SSBS)",
		.capability = ARM64_SSBS,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR1_EL1,
		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
	},
#ifdef CONFIG_ARM64_CNP
	{
		.desc = "Common not Private translations",
		.capability = ARM64_HAS_CNP,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_useable_cnp,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
		.min_field_value = 1,
		.cpu_enable = cpu_enable_cnp,
	},
#endif
	{
		.desc = "Speculation barrier (SB)",
		.capability = ARM64_HAS_SB,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.field_pos = ID_AA64ISAR1_SB_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
	},
#ifdef CONFIG_ARM64_PTR_AUTH
	{
		.desc = "Address authentication (architected algorithm)",
		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64ISAR1_APA_SHIFT,
		.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
		.matches = has_address_auth_cpucap,
	},
	{
		.desc = "Address authentication (IMP DEF algorithm)",
		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64ISAR1_API_SHIFT,
		.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
		.matches = has_address_auth_cpucap,
	},
	{
		.capability = ARM64_HAS_ADDRESS_AUTH,
		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
		.matches = has_address_auth_metacap,
	},
	{
		.desc = "Generic authentication (architected algorithm)",
		.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64ISAR1_GPA_SHIFT,
		.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
		.matches = has_cpuid_feature,
	},
	{
		.desc = "Generic authentication (IMP DEF algorithm)",
		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64ISAR1_GPI_SHIFT,
		.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
		.matches = has_cpuid_feature,
	},
	{
		.capability = ARM64_HAS_GENERIC_AUTH,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_generic_auth,
	},
#endif /* CONFIG_ARM64_PTR_AUTH */
#ifdef CONFIG_ARM64_PSEUDO_NMI
	{
		/*
		 * Depends on having GICv3
		 */
		.desc = "IRQ priority masking",
		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
		.matches = can_use_gic_priorities,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
	},
#endif
#ifdef CONFIG_ARM64_E0PD
	{
		.desc = "E0PD",
		.capability = ARM64_HAS_E0PD,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR2_E0PD_SHIFT,
		.matches = has_cpuid_feature,
		.min_field_value = 1,
		.cpu_enable = cpu_enable_e0pd,
	},
#endif
#ifdef CONFIG_ARCH_RANDOM
	{
		.desc = "Random Number Generator",
		.capability = ARM64_HAS_RNG,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_RNDR_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = 1,
	},
#endif
#ifdef CONFIG_ARM64_BTI
	{
		.desc = "Branch Target Identification",
		.capability = ARM64_BTI,
#ifdef CONFIG_ARM64_BTI_KERNEL
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
#else
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
#endif
		.matches = has_cpuid_feature,
		.cpu_enable = bti_enable,
		.sys_reg = SYS_ID_AA64PFR1_EL1,
		.field_pos = ID_AA64PFR1_BT_SHIFT,
		.min_field_value = ID_AA64PFR1_BT_BTI,
		.sign = FTR_UNSIGNED,
	},
#endif
#ifdef CONFIG_ARM64_MTE
	{
		.desc = "Memory Tagging Extension",
		.capability = ARM64_MTE,
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR1_EL1,
		.field_pos = ID_AA64PFR1_MTE_SHIFT,
		.min_field_value = ID_AA64PFR1_MTE,
		.sign = FTR_UNSIGNED,
		.cpu_enable = cpu_enable_mte,
	},
#endif /* CONFIG_ARM64_MTE */
	{
		.desc = "RCpc load-acquire (LDAPR)",
		.capability = ARM64_HAS_LDAPR,
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
		.matches = has_cpuid_feature,
		.min_field_value = 1,
	},
	{},
};

#define HWCAP_CPUID_MATCH(reg, field, s, min_value)				\
		.matches = has_cpuid_feature,					\
		.sys_reg = reg,							\
		.field_pos = field,						\
		.sign = s,							\
		.min_field_value = min_value,

#define __HWCAP_CAP(name, cap_type, cap)					\
		.desc = name,							\
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
		.hwcap_type = cap_type,						\
		.hwcap = cap,							\

#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)			\
	{									\
		__HWCAP_CAP(#cap, cap_type, cap)				\
		HWCAP_CPUID_MATCH(reg, field, s, min_value)			\
	}

#define HWCAP_MULTI_CAP(list, cap_type, cap)					\
	{									\
		__HWCAP_CAP(#cap, cap_type, cap)				\
		.matches = cpucap_multi_entry_cap_matches,			\
		.match_list = list,						\
	}

#define HWCAP_CAP_MATCH(match, cap_type, cap)					\
	{									\
		__HWCAP_CAP(#cap, cap_type, cap)				\
		.matches = match,						\
	}

#ifdef CONFIG_ARM64_PTR_AUTH
static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
	{
		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
				  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
	},
	{
		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
				  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
	},
	{},
};

static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
	{
		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
				  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
	},
	{
		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
				  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
	},
	{},
};
#endif

static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
#ifdef CONFIG_ARM64_SVE
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
#endif
	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
#ifdef CONFIG_ARM64_BTI
	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
#endif
#ifdef CONFIG_ARM64_PTR_AUTH
	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
#endif
#ifdef CONFIG_ARM64_MTE
	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
#endif /* CONFIG_ARM64_MTE */
	{},
};

#ifdef CONFIG_COMPAT
static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
{
	/*
	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
	 * in line with that of arm32 as in vfp_init(). We make sure that the
	 * check is future proof, by making sure value is non-zero.
	 */
	u32 mvfr1;

	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
	else
		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);

	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
}
#endif

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
#ifdef CONFIG_COMPAT
	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
	HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
#endif
	{},
};

static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		cpu_set_feature(cap->hwcap);
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = cpu_have_feature(cap->hwcap);
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
{
	/* We support emulation of accesses to CPU ID feature registers */
	cpu_set_named_feature(CPUID);
	for (; hwcaps->matches; hwcaps++)
		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
			cap_set_elf_hwcap(hwcaps);
}

static void update_cpu_capabilities(u16 scope_mask)
{
	int i;
	const struct arm64_cpu_capabilities *caps;

	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
	for (i = 0; i < ARM64_NCAPS; i++) {
		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask) ||
		    cpus_have_cap(caps->capability) ||
		    !caps->matches(caps, cpucap_default_scope(caps)))
			continue;

		if (caps->desc)
			pr_info("detected: %s\n", caps->desc);
		cpus_set_cap(caps->capability);

		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
			set_bit(caps->capability, boot_capabilities);
	}
}

/*
 * Enable all the available capabilities on this CPU. The capabilities
 * with BOOT_CPU scope are handled separately and hence skipped here.
 */
static int cpu_enable_non_boot_scope_capabilities(void *__unused)
{
	int i;
	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;

	for_each_available_cap(i) {
		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];

		if (WARN_ON(!cap))
			continue;

		if (!(cap->type & non_boot_scope))
			continue;

		if (cap->cpu_enable)
			cap->cpu_enable(cap);
	}
	return 0;
}

/*
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
 */
static void __init enable_cpu_capabilities(u16 scope_mask)
{
	int i;
	const struct arm64_cpu_capabilities *caps;
	bool boot_scope;

	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);

	for (i = 0; i < ARM64_NCAPS; i++) {
		unsigned int num;

		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask))
			continue;
		num = caps->capability;
		if (!cpus_have_cap(num))
			continue;

		/* Ensure cpus_have_const_cap(num) works */
		static_branch_enable(&cpu_hwcap_keys[num]);

		if (boot_scope && caps->cpu_enable)
			/*
			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
			 * before any secondary CPU boots. Thus, each secondary
			 * will enable the capability as appropriate via
			 * check_local_cpu_capabilities(). The only exception is
			 * the boot CPU, for which the capability must be
			 * enabled here. This approach avoids costly
			 * stop_machine() calls for this case.
			 */
			caps->cpu_enable(caps);
	}

	/*
	 * For all non-boot scope capabilities, use stop_machine()
	 * as it schedules the work allowing us to modify PSTATE,
	 * instead of on_each_cpu() which uses an IPI, giving us a
	 * PSTATE that disappears when we return.
	 */
	if (!boot_scope)
		stop_machine(cpu_enable_non_boot_scope_capabilities,
			     NULL, cpu_online_mask);
}

/*
 * Run through the list of capabilities to check for conflicts.
 * If the system has already detected a capability, take necessary
 * action on this CPU.
 */
static void verify_local_cpu_caps(u16 scope_mask)
{
	int i;
	bool cpu_has_cap, system_has_cap;
	const struct arm64_cpu_capabilities *caps;

	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;

	for (i = 0; i < ARM64_NCAPS; i++) {
		caps = cpu_hwcaps_ptrs[i];
		if (!caps || !(caps->type & scope_mask))
			continue;

		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
		system_has_cap = cpus_have_cap(caps->capability);

		if (system_has_cap) {
			/*
			 * Check if the new CPU misses an advertised feature,
			 * which is not safe to miss.
			 */
			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
				break;
			/*
			 * We have to issue cpu_enable() irrespective of
			 * whether the CPU has it or not, as it is enabeld
			 * system wide. It is upto the call back to take
			 * appropriate action on this CPU.
			 */
			if (caps->cpu_enable)
				caps->cpu_enable(caps);
		} else {
			/*
			 * Check if the CPU has this capability if it isn't
			 * safe to have when the system doesn't.
			 */
			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
				break;
		}
	}

	if (i < ARM64_NCAPS) {
		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
			smp_processor_id(), caps->capability,
			caps->desc, system_has_cap, cpu_has_cap);

		if (cpucap_panic_on_conflict(caps))
			cpu_panic_kernel();
		else
			cpu_die_early();
	}
}

/*
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
 */
static void check_early_cpu_features(void)
{
	verify_cpu_asid_bits();

	verify_local_cpu_caps(SCOPE_BOOT_CPU);
}

static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

static void verify_local_elf_hwcaps(void)
{
	__verify_local_elf_hwcaps(arm64_elf_hwcaps);

	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
		__verify_local_elf_hwcaps(compat_elf_hwcaps);
}

static void verify_sve_features(void)
{
	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
	u64 zcr = read_zcr_features();

	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
	unsigned int len = zcr & ZCR_ELx_LEN_MASK;

	if (len < safe_len || sve_verify_vq_map()) {
		pr_crit("CPU%d: SVE: vector length support mismatch\n",
			smp_processor_id());
		cpu_die_early();
	}

	/* Add checks on other ZCR bits here if necessary */
}

static void verify_hyp_capabilities(void)
{
	u64 safe_mmfr1, mmfr0, mmfr1;
	int parange, ipa_max;
	unsigned int safe_vmid_bits, vmid_bits;

	if (!IS_ENABLED(CONFIG_KVM))
		return;

	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);

	/* Verify VMID bits */
	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
	vmid_bits = get_vmid_bits(mmfr1);
	if (vmid_bits < safe_vmid_bits) {
		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
		cpu_die_early();
	}

	/* Verify IPA range */
	parange = cpuid_feature_extract_unsigned_field(mmfr0,
				ID_AA64MMFR0_PARANGE_SHIFT);
	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
	if (ipa_max < get_kvm_ipa_limit()) {
		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
		cpu_die_early();
	}
}

/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
static void verify_local_cpu_capabilities(void)
{
	/*
	 * The capabilities with SCOPE_BOOT_CPU are checked from
	 * check_early_cpu_features(), as they need to be verified
	 * on all secondary CPUs.
	 */
	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
	verify_local_elf_hwcaps();

	if (system_supports_sve())
		verify_sve_features();

	if (is_hyp_mode_available())
		verify_hyp_capabilities();
}

void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
	check_early_cpu_features();

	/*
	 * If we haven't finalised the system capabilities, this CPU gets
	 * a chance to update the errata work arounds and local features.
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
	 */
	if (!system_capabilities_finalized())
		update_cpu_capabilities(SCOPE_LOCAL_CPU);
	else
		verify_local_cpu_capabilities();
}

static void __init setup_boot_cpu_capabilities(void)
{
	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
	enable_cpu_capabilities(SCOPE_BOOT_CPU);
}

bool this_cpu_has_cap(unsigned int n)
{
	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];

		if (cap)
			return cap->matches(cap, SCOPE_LOCAL_CPU);
	}

	return false;
}

/*
 * This helper function is used in a narrow window when,
 * - The system wide safe registers are set with all the SMP CPUs and,
 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
 * In all other cases cpus_have_{const_}cap() should be used.
 */
static bool __maybe_unused __system_matches_cap(unsigned int n)
{
	if (n < ARM64_NCAPS) {
		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];

		if (cap)
			return cap->matches(cap, SCOPE_SYSTEM);
	}
	return false;
}

void cpu_set_feature(unsigned int num)
{
	WARN_ON(num >= MAX_CPU_FEATURES);
	elf_hwcap |= BIT(num);
}
EXPORT_SYMBOL_GPL(cpu_set_feature);

bool cpu_have_feature(unsigned int num)
{
	WARN_ON(num >= MAX_CPU_FEATURES);
	return elf_hwcap & BIT(num);
}
EXPORT_SYMBOL_GPL(cpu_have_feature);

unsigned long cpu_get_elf_hwcap(void)
{
	/*
	 * We currently only populate the first 32 bits of AT_HWCAP. Please
	 * note that for userspace compatibility we guarantee that bits 62
	 * and 63 will always be returned as 0.
	 */
	return lower_32_bits(elf_hwcap);
}

unsigned long cpu_get_elf_hwcap2(void)
{
	return upper_32_bits(elf_hwcap);
}

static void __init setup_system_capabilities(void)
{
	/*
	 * We have finalised the system-wide safe feature
	 * registers, finalise the capabilities that depend
	 * on it. Also enable all the available capabilities,
	 * that are not enabled already.
	 */
	update_cpu_capabilities(SCOPE_SYSTEM);
	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
}

void __init setup_cpu_features(void)
{
	u32 cwg;

	setup_system_capabilities();
	setup_elf_hwcaps(arm64_elf_hwcaps);

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);

	if (system_uses_ttbr0_pan())
		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");

	sve_setup();
	minsigstksz_setup();

	/* Advertise that we have computed the system capabilities */
	finalize_system_capabilities();

	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming %d\n",
			ARCH_DMA_MINALIGN);
}

static int enable_mismatched_32bit_el0(unsigned int cpu)
{
	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);

	if (cpu_32bit) {
		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
		setup_elf_hwcaps(compat_elf_hwcaps);
	}

	return 0;
}

static int __init init_32bit_el0_mask(void)
{
	if (!allow_mismatched_32bit_el0)
		return 0;

	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
		return -ENOMEM;

	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
				 "arm64/mismatched_32bit_el0:online",
				 enable_mismatched_32bit_el0, NULL);
}
subsys_initcall_sync(init_32bit_el0_mask);

static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
{
	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
}

/*
 * We emulate only the following system register space.
 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
 * See Table C5-6 System instruction encodings for System register accesses,
 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
 */
static inline bool __attribute_const__ is_emulated(u32 id)
{
	return (sys_reg_Op0(id) == 0x3 &&
		sys_reg_CRn(id) == 0x0 &&
		sys_reg_Op1(id) == 0x0 &&
		(sys_reg_CRm(id) == 0 ||
		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}

/*
 * With CRm == 0, reg should be one of :
 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
 */
static inline int emulate_id_reg(u32 id, u64 *valp)
{
	switch (id) {
	case SYS_MIDR_EL1:
		*valp = read_cpuid_id();
		break;
	case SYS_MPIDR_EL1:
		*valp = SYS_MPIDR_SAFE_VAL;
		break;
	case SYS_REVIDR_EL1:
		/* IMPLEMENTATION DEFINED values are emulated with 0 */
		*valp = 0;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int emulate_sys_reg(u32 id, u64 *valp)
{
	struct arm64_ftr_reg *regp;

	if (!is_emulated(id))
		return -EINVAL;

	if (sys_reg_CRm(id) == 0)
		return emulate_id_reg(id, valp);

	regp = get_arm64_ftr_reg_nowarn(id);
	if (regp)
		*valp = arm64_ftr_reg_user_value(regp);
	else
		/*
		 * The untracked registers are either IMPLEMENTATION DEFINED
		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
		 */
		*valp = 0;
	return 0;
}

int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
{
	int rc;
	u64 val;

	rc = emulate_sys_reg(sys_reg, &val);
	if (!rc) {
		pt_regs_write_reg(regs, rt, val);
		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
	}
	return rc;
}

static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
	u32 sys_reg, rt;

	/*
	 * sys_reg values are defined as used in mrs/msr instruction.
	 * shift the imm value to get the encoding.
	 */
	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
	return do_emulate_mrs(regs, sys_reg, rt);
}

static struct undef_hook mrs_hook = {
	.instr_mask = 0xffff0000,
	.instr_val  = 0xd5380000,
	.pstate_mask = PSR_AA32_MODE_MASK,
	.pstate_val = PSR_MODE_EL0t,
	.fn = emulate_mrs,
};

static int __init enable_mrs_emulation(void)
{
	register_undef_hook(&mrs_hook);
	return 0;
}

core_initcall(enable_mrs_emulation);

enum mitigation_state arm64_get_meltdown_state(void)
{
	if (__meltdown_safe)
		return SPECTRE_UNAFFECTED;

	if (arm64_kernel_unmapped_at_el0())
		return SPECTRE_MITIGATED;

	return SPECTRE_VULNERABLE;
}

ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	switch (arm64_get_meltdown_state()) {
	case SPECTRE_UNAFFECTED:
		return sprintf(buf, "Not affected\n");

	case SPECTRE_MITIGATED:
		return sprintf(buf, "Mitigation: PTI\n");

	default:
		return sprintf(buf, "Vulnerable\n");
	}
}