aboutsummaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp/sysreg-sr.c
blob: 6d2df9fe0b5d2dcc2e1c9b98229079da666c0c50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2012-2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#include <linux/compiler.h>
#include <linux/kvm_host.h>

#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>

/*
 * Non-VHE: Both host and guest must save everything.
 *
 * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and
 * pstate, which are handled as part of the el2 return state) on every
 * switch (sp_el0 is being dealt with in the assembly code).
 * tpidr_el0 and tpidrro_el0 only need to be switched when going
 * to host userspace or a different VCPU.  EL1 registers only need to be
 * switched when potentially going to run a different VCPU.  The latter two
 * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
 */

static void __hyp_text __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
{
	ctxt->sys_regs[MDSCR_EL1]	= read_sysreg(mdscr_el1);
}

static void __hyp_text __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
{
	ctxt->sys_regs[TPIDR_EL0]	= read_sysreg(tpidr_el0);
	ctxt->sys_regs[TPIDRRO_EL0]	= read_sysreg(tpidrro_el0);
}

static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
{
	ctxt->sys_regs[CSSELR_EL1]	= read_sysreg(csselr_el1);
	ctxt->sys_regs[SCTLR_EL1]	= read_sysreg_el1(SYS_SCTLR);
	ctxt->sys_regs[ACTLR_EL1]	= read_sysreg(actlr_el1);
	ctxt->sys_regs[CPACR_EL1]	= read_sysreg_el1(SYS_CPACR);
	ctxt->sys_regs[TTBR0_EL1]	= read_sysreg_el1(SYS_TTBR0);
	ctxt->sys_regs[TTBR1_EL1]	= read_sysreg_el1(SYS_TTBR1);
	ctxt->sys_regs[TCR_EL1]		= read_sysreg_el1(SYS_TCR);
	ctxt->sys_regs[ESR_EL1]		= read_sysreg_el1(SYS_ESR);
	ctxt->sys_regs[AFSR0_EL1]	= read_sysreg_el1(SYS_AFSR0);
	ctxt->sys_regs[AFSR1_EL1]	= read_sysreg_el1(SYS_AFSR1);
	ctxt->sys_regs[FAR_EL1]		= read_sysreg_el1(SYS_FAR);
	ctxt->sys_regs[MAIR_EL1]	= read_sysreg_el1(SYS_MAIR);
	ctxt->sys_regs[VBAR_EL1]	= read_sysreg_el1(SYS_VBAR);
	ctxt->sys_regs[CONTEXTIDR_EL1]	= read_sysreg_el1(SYS_CONTEXTIDR);
	ctxt->sys_regs[AMAIR_EL1]	= read_sysreg_el1(SYS_AMAIR);
	ctxt->sys_regs[CNTKCTL_EL1]	= read_sysreg_el1(SYS_CNTKCTL);
	ctxt->sys_regs[PAR_EL1]		= read_sysreg(par_el1);
	ctxt->sys_regs[TPIDR_EL1]	= read_sysreg(tpidr_el1);

	ctxt->gp_regs.sp_el1		= read_sysreg(sp_el1);
	ctxt->gp_regs.elr_el1		= read_sysreg_el1(SYS_ELR);
	ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR);
}

static void __hyp_text __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
{
	ctxt->gp_regs.regs.pc		= read_sysreg_el2(SYS_ELR);
	ctxt->gp_regs.regs.pstate	= read_sysreg_el2(SYS_SPSR);

	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
		ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2);
}

void __hyp_text __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
{
	__sysreg_save_el1_state(ctxt);
	__sysreg_save_common_state(ctxt);
	__sysreg_save_user_state(ctxt);
	__sysreg_save_el2_return_state(ctxt);
}

void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
{
	__sysreg_save_common_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);

void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
{
	__sysreg_save_common_state(ctxt);
	__sysreg_save_el2_return_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);

static void __hyp_text __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
{
	write_sysreg(ctxt->sys_regs[MDSCR_EL1],	  mdscr_el1);
}

static void __hyp_text __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
{
	write_sysreg(ctxt->sys_regs[TPIDR_EL0],		tpidr_el0);
	write_sysreg(ctxt->sys_regs[TPIDRRO_EL0],	tpidrro_el0);
}

static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
{
	write_sysreg(ctxt->sys_regs[MPIDR_EL1],		vmpidr_el2);
	write_sysreg(ctxt->sys_regs[CSSELR_EL1],	csselr_el1);

	if (!cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
		write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1],	SYS_SCTLR);
		write_sysreg_el1(ctxt->sys_regs[TCR_EL1],	SYS_TCR);
	} else	if (!ctxt->__hyp_running_vcpu) {
		/*
		 * Must only be done for guest registers, hence the context
		 * test. We're coming from the host, so SCTLR.M is already
		 * set. Pairs with __activate_traps_nvhe().
		 */
		write_sysreg_el1((ctxt->sys_regs[TCR_EL1] |
				  TCR_EPD1_MASK | TCR_EPD0_MASK),
				 SYS_TCR);
		isb();
	}

	write_sysreg(ctxt->sys_regs[ACTLR_EL1],		actlr_el1);
	write_sysreg_el1(ctxt->sys_regs[CPACR_EL1],	SYS_CPACR);
	write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1],	SYS_TTBR0);
	write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1],	SYS_TTBR1);
	write_sysreg_el1(ctxt->sys_regs[ESR_EL1],	SYS_ESR);
	write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1],	SYS_AFSR0);
	write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1],	SYS_AFSR1);
	write_sysreg_el1(ctxt->sys_regs[FAR_EL1],	SYS_FAR);
	write_sysreg_el1(ctxt->sys_regs[MAIR_EL1],	SYS_MAIR);
	write_sysreg_el1(ctxt->sys_regs[VBAR_EL1],	SYS_VBAR);
	write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR);
	write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1],	SYS_AMAIR);
	write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1],	SYS_CNTKCTL);
	write_sysreg(ctxt->sys_regs[PAR_EL1],		par_el1);
	write_sysreg(ctxt->sys_regs[TPIDR_EL1],		tpidr_el1);

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE) &&
	    ctxt->__hyp_running_vcpu) {
		/*
		 * Must only be done for host registers, hence the context
		 * test. Pairs with __deactivate_traps_nvhe().
		 */
		isb();
		/*
		 * At this stage, and thanks to the above isb(), S2 is
		 * deconfigured and disabled. We can now restore the host's
		 * S1 configuration: SCTLR, and only then TCR.
		 */
		write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1],	SYS_SCTLR);
		isb();
		write_sysreg_el1(ctxt->sys_regs[TCR_EL1],	SYS_TCR);
	}

	write_sysreg(ctxt->gp_regs.sp_el1,		sp_el1);
	write_sysreg_el1(ctxt->gp_regs.elr_el1,		SYS_ELR);
	write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);
}

static void __hyp_text
__sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
{
	u64 pstate = ctxt->gp_regs.regs.pstate;
	u64 mode = pstate & PSR_AA32_MODE_MASK;

	/*
	 * Safety check to ensure we're setting the CPU up to enter the guest
	 * in a less privileged mode.
	 *
	 * If we are attempting a return to EL2 or higher in AArch64 state,
	 * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
	 * we'll take an illegal exception state exception immediately after
	 * the ERET to the guest.  Attempts to return to AArch32 Hyp will
	 * result in an illegal exception return because EL2's execution state
	 * is determined by SCR_EL3.RW.
	 */
	if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
		pstate = PSR_MODE_EL2h | PSR_IL_BIT;

	write_sysreg_el2(ctxt->gp_regs.regs.pc,		SYS_ELR);
	write_sysreg_el2(pstate,			SYS_SPSR);

	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
		write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
}

void __hyp_text __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
{
	__sysreg_restore_el1_state(ctxt);
	__sysreg_restore_common_state(ctxt);
	__sysreg_restore_user_state(ctxt);
	__sysreg_restore_el2_return_state(ctxt);
}

void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
{
	__sysreg_restore_common_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);

void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
{
	__sysreg_restore_common_state(ctxt);
	__sysreg_restore_el2_return_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);

void __hyp_text __sysreg32_save_state(struct kvm_vcpu *vcpu)
{
	u64 *spsr, *sysreg;

	if (!vcpu_el1_is_32bit(vcpu))
		return;

	spsr = vcpu->arch.ctxt.gp_regs.spsr;
	sysreg = vcpu->arch.ctxt.sys_regs;

	spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt);
	spsr[KVM_SPSR_UND] = read_sysreg(spsr_und);
	spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq);
	spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq);

	sysreg[DACR32_EL2] = read_sysreg(dacr32_el2);
	sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2);

	if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
		sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2);
}

void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu)
{
	u64 *spsr, *sysreg;

	if (!vcpu_el1_is_32bit(vcpu))
		return;

	spsr = vcpu->arch.ctxt.gp_regs.spsr;
	sysreg = vcpu->arch.ctxt.sys_regs;

	write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt);
	write_sysreg(spsr[KVM_SPSR_UND], spsr_und);
	write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq);
	write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq);

	write_sysreg(sysreg[DACR32_EL2], dacr32_el2);
	write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2);

	if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
		write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2);
}

/**
 * kvm_vcpu_load_sysregs - Load guest system registers to the physical CPU
 *
 * @vcpu: The VCPU pointer
 *
 * Load system registers that do not affect the host's execution, for
 * example EL1 system registers on a VHE system where the host kernel
 * runs at EL2.  This function is called from KVM's vcpu_load() function
 * and loading system register state early avoids having to load them on
 * every entry to the VM.
 */
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
	struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;

	if (!has_vhe())
		return;

	__sysreg_save_user_state(host_ctxt);

	/*
	 * Load guest EL1 and user state
	 *
	 * We must restore the 32-bit state before the sysregs, thanks
	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
	 */
	__sysreg32_restore_state(vcpu);
	__sysreg_restore_user_state(guest_ctxt);
	__sysreg_restore_el1_state(guest_ctxt);

	vcpu->arch.sysregs_loaded_on_cpu = true;

	activate_traps_vhe_load(vcpu);
}

/**
 * kvm_vcpu_put_sysregs - Restore host system registers to the physical CPU
 *
 * @vcpu: The VCPU pointer
 *
 * Save guest system registers that do not affect the host's execution, for
 * example EL1 system registers on a VHE system where the host kernel
 * runs at EL2.  This function is called from KVM's vcpu_put() function
 * and deferring saving system register state until we're no longer running the
 * VCPU avoids having to save them on every exit from the VM.
 */
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu)
{
	struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
	struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;

	if (!has_vhe())
		return;

	deactivate_traps_vhe_put();

	__sysreg_save_el1_state(guest_ctxt);
	__sysreg_save_user_state(guest_ctxt);
	__sysreg32_save_state(vcpu);

	/* Restore host user state */
	__sysreg_restore_user_state(host_ctxt);

	vcpu->arch.sysregs_loaded_on_cpu = false;
}

void __hyp_text __kvm_enable_ssbs(void)
{
	u64 tmp;

	asm volatile(
	"mrs	%0, sctlr_el2\n"
	"orr	%0, %0, %1\n"
	"msr	sctlr_el2, %0"
	: "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS));
}