aboutsummaryrefslogtreecommitdiff
path: root/arch/mips/kvm/emulate.c
blob: 41b1b090f56f6b73afc50240318634a4988ef427 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: Instruction/Exception emulation
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/ktime.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
#include <linux/random.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/cpu-info.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/inst.h>

#undef CONFIG_MIPS_MT
#include <asm/r4kcache.h>
#define CONFIG_MIPS_MT

#include "opcode.h"
#include "interrupt.h"
#include "commpage.h"

#include "trace.h"

/*
 * Compute the return address and do emulate branch simulation, if required.
 * This function should be called only in branch delay slot active.
 */
unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
	unsigned long instpc)
{
	unsigned int dspcontrol;
	union mips_instruction insn;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	long epc = instpc;
	long nextpc = KVM_INVALID_INST;

	if (epc & 3)
		goto unaligned;

	/* Read the instruction */
	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);

	if (insn.word == KVM_INVALID_INST)
		return KVM_INVALID_INST;

	switch (insn.i_format.opcode) {
		/* jr and jalr are in r_format format. */
	case spec_op:
		switch (insn.r_format.func) {
		case jalr_op:
			arch->gprs[insn.r_format.rd] = epc + 8;
			/* Fall through */
		case jr_op:
			nextpc = arch->gprs[insn.r_format.rs];
			break;
		}
		break;

		/*
		 * This group contains:
		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
		 */
	case bcond_op:
		switch (insn.i_format.rt) {
		case bltz_op:
		case bltzl_op:
			if ((long)arch->gprs[insn.i_format.rs] < 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bgez_op:
		case bgezl_op:
			if ((long)arch->gprs[insn.i_format.rs] >= 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bltzal_op:
		case bltzall_op:
			arch->gprs[31] = epc + 8;
			if ((long)arch->gprs[insn.i_format.rs] < 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;

		case bgezal_op:
		case bgezall_op:
			arch->gprs[31] = epc + 8;
			if ((long)arch->gprs[insn.i_format.rs] >= 0)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;
		case bposge32_op:
			if (!cpu_has_dsp)
				goto sigill;

			dspcontrol = rddsp(0x01);

			if (dspcontrol >= 32)
				epc = epc + 4 + (insn.i_format.simmediate << 2);
			else
				epc += 8;
			nextpc = epc;
			break;
		}
		break;

		/* These are unconditional and in j_format. */
	case jal_op:
		arch->gprs[31] = instpc + 8;
	case j_op:
		epc += 4;
		epc >>= 28;
		epc <<= 28;
		epc |= (insn.j_format.target << 2);
		nextpc = epc;
		break;

		/* These are conditional and in i_format. */
	case beq_op:
	case beql_op:
		if (arch->gprs[insn.i_format.rs] ==
		    arch->gprs[insn.i_format.rt])
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

	case bne_op:
	case bnel_op:
		if (arch->gprs[insn.i_format.rs] !=
		    arch->gprs[insn.i_format.rt])
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

	case blez_op:		/* not really i_format */
	case blezl_op:
		/* rt field assumed to be zero */
		if ((long)arch->gprs[insn.i_format.rs] <= 0)
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

	case bgtz_op:
	case bgtzl_op:
		/* rt field assumed to be zero */
		if ((long)arch->gprs[insn.i_format.rs] > 0)
			epc = epc + 4 + (insn.i_format.simmediate << 2);
		else
			epc += 8;
		nextpc = epc;
		break;

		/* And now the FPA/cp1 branch instructions. */
	case cop1_op:
		kvm_err("%s: unsupported cop1_op\n", __func__);
		break;
	}

	return nextpc;

unaligned:
	kvm_err("%s: unaligned epc\n", __func__);
	return nextpc;

sigill:
	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
	return nextpc;
}

enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
{
	unsigned long branch_pc;
	enum emulation_result er = EMULATE_DONE;

	if (cause & CAUSEF_BD) {
		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
		if (branch_pc == KVM_INVALID_INST) {
			er = EMULATE_FAIL;
		} else {
			vcpu->arch.pc = branch_pc;
			kvm_debug("BD update_pc(): New PC: %#lx\n",
				  vcpu->arch.pc);
		}
	} else
		vcpu->arch.pc += 4;

	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);

	return er;
}

/**
 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 * @vcpu:	Virtual CPU.
 *
 * Returns:	1 if the CP0_Count timer is disabled by either the guest
 *		CP0_Cause.DC bit or the count_ctl.DC bit.
 *		0 otherwise (in which case CP0_Count timer is running).
 */
static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;

	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
}

/**
 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 *
 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 */
static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
{
	s64 now_ns, periods;
	u64 delta;

	now_ns = ktime_to_ns(now);
	delta = now_ns + vcpu->arch.count_dyn_bias;

	if (delta >= vcpu->arch.count_period) {
		/* If delta is out of safe range the bias needs adjusting */
		periods = div64_s64(now_ns, vcpu->arch.count_period);
		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
		/* Recalculate delta with new bias */
		delta = now_ns + vcpu->arch.count_dyn_bias;
	}

	/*
	 * We've ensured that:
	 *   delta < count_period
	 *
	 * Therefore the intermediate delta*count_hz will never overflow since
	 * at the boundary condition:
	 *   delta = count_period
	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
	 *   delta * count_hz = NSEC_PER_SEC * 2^32
	 */
	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
}

/**
 * kvm_mips_count_time() - Get effective current time.
 * @vcpu:	Virtual CPU.
 *
 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 * except when the master disable bit is set in count_ctl, in which case it is
 * count_resume, i.e. the time that the count was disabled.
 *
 * Returns:	Effective monotonic ktime for CP0_Count.
 */
static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
{
	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
		return vcpu->arch.count_resume;

	return ktime_get();
}

/**
 * kvm_mips_read_count_running() - Read the current count value as if running.
 * @vcpu:	Virtual CPU.
 * @now:	Kernel time to read CP0_Count at.
 *
 * Returns the current guest CP0_Count register at time @now and handles if the
 * timer interrupt is pending and hasn't been handled yet.
 *
 * Returns:	The current value of the guest CP0_Count register.
 */
static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
{
	ktime_t expires;
	int running;

	/* Is the hrtimer pending? */
	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
	if (ktime_compare(now, expires) >= 0) {
		/*
		 * Cancel it while we handle it so there's no chance of
		 * interference with the timeout handler.
		 */
		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);

		/* Nothing should be waiting on the timeout */
		kvm_mips_callbacks->queue_timer_int(vcpu);

		/*
		 * Restart the timer if it was running based on the expiry time
		 * we read, so that we don't push it back 2 periods.
		 */
		if (running) {
			expires = ktime_add_ns(expires,
					       vcpu->arch.count_period);
			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
				      HRTIMER_MODE_ABS);
		}
	}

	/* Return the biased and scaled guest CP0_Count */
	return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
}

/**
 * kvm_mips_read_count() - Read the current count value.
 * @vcpu:	Virtual CPU.
 *
 * Read the current guest CP0_Count value, taking into account whether the timer
 * is stopped.
 *
 * Returns:	The current guest CP0_Count value.
 */
uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;

	/* If count disabled just read static copy of count */
	if (kvm_mips_count_disabled(vcpu))
		return kvm_read_c0_guest_count(cop0);

	return kvm_mips_read_count_running(vcpu, ktime_get());
}

/**
 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 * @vcpu:	Virtual CPU.
 * @count:	Output pointer for CP0_Count value at point of freeze.
 *
 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 * at the point it was frozen. It is guaranteed that any pending interrupts at
 * the point it was frozen are handled, and none after that point.
 *
 * This is useful where the time/CP0_Count is needed in the calculation of the
 * new parameters.
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 *
 * Returns:	The ktime at the point of freeze.
 */
static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
				       uint32_t *count)
{
	ktime_t now;

	/* stop hrtimer before finding time */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);
	now = ktime_get();

	/* find count at this point and handle pending hrtimer */
	*count = kvm_mips_read_count_running(vcpu, now);

	return now;
}

/**
 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 * @vcpu:	Virtual CPU.
 * @now:	ktime at point of resume.
 * @count:	CP0_Count at point of resume.
 *
 * Resumes the timer and updates the timer expiry based on @now and @count.
 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 * parameters need to be changed.
 *
 * It is guaranteed that a timer interrupt immediately after resume will be
 * handled, but not if CP_Compare is exactly at @count. That case is already
 * handled by kvm_mips_freeze_timer().
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 */
static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
				    ktime_t now, uint32_t count)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	uint32_t compare;
	u64 delta;
	ktime_t expire;

	/* Calculate timeout (wrap 0 to 2^32) */
	compare = kvm_read_c0_guest_compare(cop0);
	delta = (u64)(uint32_t)(compare - count - 1) + 1;
	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
	expire = ktime_add_ns(now, delta);

	/* Update hrtimer to use new timeout */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);
	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
}

/**
 * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
 * @vcpu:	Virtual CPU.
 *
 * Recalculates and updates the expiry time of the hrtimer. This can be used
 * after timer parameters have been altered which do not depend on the time that
 * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
 * kvm_mips_resume_hrtimer() are used directly).
 *
 * It is guaranteed that no timer interrupts will be lost in the process.
 *
 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 */
static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
{
	ktime_t now;
	uint32_t count;

	/*
	 * freeze_hrtimer takes care of a timer interrupts <= count, and
	 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
	 */
	now = kvm_mips_freeze_hrtimer(vcpu, &count);
	kvm_mips_resume_hrtimer(vcpu, now, count);
}

/**
 * kvm_mips_write_count() - Modify the count and update timer.
 * @vcpu:	Virtual CPU.
 * @count:	Guest CP0_Count value to set.
 *
 * Sets the CP0_Count value and updates the timer accordingly.
 */
void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	ktime_t now;

	/* Calculate bias */
	now = kvm_mips_count_time(vcpu);
	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);

	if (kvm_mips_count_disabled(vcpu))
		/* The timer's disabled, adjust the static count */
		kvm_write_c0_guest_count(cop0, count);
	else
		/* Update timeout */
		kvm_mips_resume_hrtimer(vcpu, now, count);
}

/**
 * kvm_mips_init_count() - Initialise timer.
 * @vcpu:	Virtual CPU.
 *
 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
 * it going if it's enabled.
 */
void kvm_mips_init_count(struct kvm_vcpu *vcpu)
{
	/* 100 MHz */
	vcpu->arch.count_hz = 100*1000*1000;
	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
					  vcpu->arch.count_hz);
	vcpu->arch.count_dyn_bias = 0;

	/* Starting at 0 */
	kvm_mips_write_count(vcpu, 0);
}

/**
 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 * @vcpu:	Virtual CPU.
 * @count_hz:	Frequency of CP0_Count timer in Hz.
 *
 * Change the frequency of the CP0_Count timer. This is done atomically so that
 * CP0_Count is continuous and no timer interrupt is lost.
 *
 * Returns:	-EINVAL if @count_hz is out of range.
 *		0 on success.
 */
int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	int dc;
	ktime_t now;
	u32 count;

	/* ensure the frequency is in a sensible range... */
	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
		return -EINVAL;
	/* ... and has actually changed */
	if (vcpu->arch.count_hz == count_hz)
		return 0;

	/* Safely freeze timer so we can keep it continuous */
	dc = kvm_mips_count_disabled(vcpu);
	if (dc) {
		now = kvm_mips_count_time(vcpu);
		count = kvm_read_c0_guest_count(cop0);
	} else {
		now = kvm_mips_freeze_hrtimer(vcpu, &count);
	}

	/* Update the frequency */
	vcpu->arch.count_hz = count_hz;
	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
	vcpu->arch.count_dyn_bias = 0;

	/* Calculate adjusted bias so dynamic count is unchanged */
	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);

	/* Update and resume hrtimer */
	if (!dc)
		kvm_mips_resume_hrtimer(vcpu, now, count);
	return 0;
}

/**
 * kvm_mips_write_compare() - Modify compare and update timer.
 * @vcpu:	Virtual CPU.
 * @compare:	New CP0_Compare value.
 *
 * Update CP0_Compare to a new value and update the timeout.
 */
void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;

	/* if unchanged, must just be an ack */
	if (kvm_read_c0_guest_compare(cop0) == compare)
		return;

	/* Update compare */
	kvm_write_c0_guest_compare(cop0, compare);

	/* Update timeout if count enabled */
	if (!kvm_mips_count_disabled(vcpu))
		kvm_mips_update_hrtimer(vcpu);
}

/**
 * kvm_mips_count_disable() - Disable count.
 * @vcpu:	Virtual CPU.
 *
 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 * time will be handled but not after.
 *
 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 * count_ctl.DC has been set (count disabled).
 *
 * Returns:	The time that the timer was stopped.
 */
static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	uint32_t count;
	ktime_t now;

	/* Stop hrtimer */
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	/* Set the static count from the dynamic count, handling pending TI */
	now = ktime_get();
	count = kvm_mips_read_count_running(vcpu, now);
	kvm_write_c0_guest_count(cop0, count);

	return now;
}

/**
 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 * @vcpu:	Virtual CPU.
 *
 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
 * before the final stop time will be handled if the timer isn't disabled by
 * count_ctl.DC, but not after.
 *
 * Assumes CP0_Cause.DC is clear (count enabled).
 */
void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;

	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
		kvm_mips_count_disable(vcpu);
}

/**
 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 * @vcpu:	Virtual CPU.
 *
 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 * potentially before even returning, so the caller should be careful with
 * ordering of CP0_Cause modifications so as not to lose it.
 *
 * Assumes CP0_Cause.DC is set (count disabled).
 */
void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	uint32_t count;

	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);

	/*
	 * Set the dynamic count to match the static count.
	 * This starts the hrtimer if count_ctl.DC allows it.
	 * Otherwise it conveniently updates the biases.
	 */
	count = kvm_read_c0_guest_count(cop0);
	kvm_mips_write_count(vcpu, count);
}

/**
 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 * @vcpu:	Virtual CPU.
 * @count_ctl:	Count control register new value.
 *
 * Set the count control KVM register. The timer is updated accordingly.
 *
 * Returns:	-EINVAL if reserved bits are set.
 *		0 on success.
 */
int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
	s64 delta;
	ktime_t expire, now;
	uint32_t count, compare;

	/* Only allow defined bits to be changed */
	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
		return -EINVAL;

	/* Apply new value */
	vcpu->arch.count_ctl = count_ctl;

	/* Master CP0_Count disable */
	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
		/* Is CP0_Cause.DC already disabling CP0_Count? */
		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
				/* Just record the current time */
				vcpu->arch.count_resume = ktime_get();
		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
			/* disable timer and record current time */
			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
		} else {
			/*
			 * Calculate timeout relative to static count at resume
			 * time (wrap 0 to 2^32).
			 */
			count = kvm_read_c0_guest_count(cop0);
			compare = kvm_read_c0_guest_compare(cop0);
			delta = (u64)(uint32_t)(compare - count - 1) + 1;
			delta = div_u64(delta * NSEC_PER_SEC,
					vcpu->arch.count_hz);
			expire = ktime_add_ns(vcpu->arch.count_resume, delta);

			/* Handle pending interrupt */
			now = ktime_get();
			if (ktime_compare(now, expire) >= 0)
				/* Nothing should be waiting on the timeout */
				kvm_mips_callbacks->queue_timer_int(vcpu);

			/* Resume hrtimer without changing bias */
			count = kvm_mips_read_count_running(vcpu, now);
			kvm_mips_resume_hrtimer(vcpu, now, count);
		}
	}

	return 0;
}

/**
 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 * @vcpu:		Virtual CPU.
 * @count_resume:	Count resume register new value.
 *
 * Set the count resume KVM register.
 *
 * Returns:	-EINVAL if out of valid range (0..now).
 *		0 on success.
 */
int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
{
	/*
	 * It doesn't make sense for the resume time to be in the future, as it
	 * would be possible for the next interrupt to be more than a full
	 * period in the future.
	 */
	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
		return -EINVAL;

	vcpu->arch.count_resume = ns_to_ktime(count_resume);
	return 0;
}

/**
 * kvm_mips_count_timeout() - Push timer forward on timeout.
 * @vcpu:	Virtual CPU.
 *
 * Handle an hrtimer event by push the hrtimer forward a period.
 *
 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
 */
enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
{
	/* Add the Count period to the current expiry time */
	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
			       vcpu->arch.count_period);
	return HRTIMER_RESTART;
}

enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;

	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
			  kvm_read_c0_guest_epc(cop0));
		kvm_clear_c0_guest_status(cop0, ST0_EXL);
		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);

	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
		kvm_clear_c0_guest_status(cop0, ST0_ERL);
		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
	} else {
		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
			vcpu->arch.pc);
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
{
	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
		  vcpu->arch.pending_exceptions);

	++vcpu->stat.wait_exits;
	trace_kvm_exit(vcpu, WAIT_EXITS);
	if (!vcpu->arch.pending_exceptions) {
		vcpu->arch.wait = 1;
		kvm_vcpu_block(vcpu);

		/*
		 * We we are runnable, then definitely go off to user space to
		 * check if any I/O interrupts are pending.
		 */
		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
		}
	}

	return EMULATE_DONE;
}

/*
 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
 * we can catch this, if things ever change
 */
enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	uint32_t pc = vcpu->arch.pc;

	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
	return EMULATE_FAIL;
}

/* Write Guest TLB Entry @ Index */
enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	int index = kvm_read_c0_guest_index(cop0);
	struct kvm_mips_tlb *tlb = NULL;
	uint32_t pc = vcpu->arch.pc;

	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
		kvm_debug("%s: illegal index: %d\n", __func__, index);
		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
			  pc, index, kvm_read_c0_guest_entryhi(cop0),
			  kvm_read_c0_guest_entrylo0(cop0),
			  kvm_read_c0_guest_entrylo1(cop0),
			  kvm_read_c0_guest_pagemask(cop0));
		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
	}

	tlb = &vcpu->arch.guest_tlb[index];
	/*
	 * Probe the shadow host TLB for the entry being overwritten, if one
	 * matches, invalidate it
	 */
	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);

	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);

	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
		  pc, index, kvm_read_c0_guest_entryhi(cop0),
		  kvm_read_c0_guest_entrylo0(cop0),
		  kvm_read_c0_guest_entrylo1(cop0),
		  kvm_read_c0_guest_pagemask(cop0));

	return EMULATE_DONE;
}

/* Write Guest TLB Entry @ Random Index */
enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_mips_tlb *tlb = NULL;
	uint32_t pc = vcpu->arch.pc;
	int index;

	get_random_bytes(&index, sizeof(index));
	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);

	tlb = &vcpu->arch.guest_tlb[index];

	/*
	 * Probe the shadow host TLB for the entry being overwritten, if one
	 * matches, invalidate it
	 */
	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);

	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);

	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
		  pc, index, kvm_read_c0_guest_entryhi(cop0),
		  kvm_read_c0_guest_entrylo0(cop0),
		  kvm_read_c0_guest_entrylo1(cop0));

	return EMULATE_DONE;
}

enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	long entryhi = kvm_read_c0_guest_entryhi(cop0);
	uint32_t pc = vcpu->arch.pc;
	int index = -1;

	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);

	kvm_write_c0_guest_index(cop0, index);

	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
		  index);

	return EMULATE_DONE;
}

/**
 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config1 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
{
	unsigned int mask = 0;

	/* Permit FPU to be present if FPU is supported */
	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
		mask |= MIPS_CONF1_FP;

	return mask;
}

/**
 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config3 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
{
	/* Config4 is optional */
	unsigned int mask = MIPS_CONF_M;

	/* Permit MSA to be present if MSA is supported */
	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
		mask |= MIPS_CONF3_MSA;

	return mask;
}

/**
 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config4 CP0
 * register, by userland (currently read-only to the guest).
 */
unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
{
	/* Config5 is optional */
	return MIPS_CONF_M;
}

/**
 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
 * @vcpu:	Virtual CPU.
 *
 * Finds the mask of bits which are writable in the guest's Config5 CP0
 * register, by the guest itself.
 */
unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
{
	unsigned int mask = 0;

	/* Permit MSAEn changes if MSA supported and enabled */
	if (kvm_mips_guest_has_msa(&vcpu->arch))
		mask |= MIPS_CONF5_MSAEN;

	/*
	 * Permit guest FPU mode changes if FPU is enabled and the relevant
	 * feature exists according to FIR register.
	 */
	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
		if (cpu_has_fre)
			mask |= MIPS_CONF5_FRE;
		/* We don't support UFR or UFE */
	}

	return mask;
}

enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
					   uint32_t cause, struct kvm_run *run,
					   struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;
	int32_t rt, rd, copz, sel, co_bit, op;
	uint32_t pc = vcpu->arch.pc;
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

	copz = (inst >> 21) & 0x1f;
	rt = (inst >> 16) & 0x1f;
	rd = (inst >> 11) & 0x1f;
	sel = inst & 0x7;
	co_bit = (inst >> 25) & 1;

	if (co_bit) {
		op = (inst) & 0xff;

		switch (op) {
		case tlbr_op:	/*  Read indexed TLB entry  */
			er = kvm_mips_emul_tlbr(vcpu);
			break;
		case tlbwi_op:	/*  Write indexed  */
			er = kvm_mips_emul_tlbwi(vcpu);
			break;
		case tlbwr_op:	/*  Write random  */
			er = kvm_mips_emul_tlbwr(vcpu);
			break;
		case tlbp_op:	/* TLB Probe */
			er = kvm_mips_emul_tlbp(vcpu);
			break;
		case rfe_op:
			kvm_err("!!!COP0_RFE!!!\n");
			break;
		case eret_op:
			er = kvm_mips_emul_eret(vcpu);
			goto dont_update_pc;
			break;
		case wait_op:
			er = kvm_mips_emul_wait(vcpu);
			break;
		}
	} else {
		switch (copz) {
		case mfc_op:
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[rd][sel]++;
#endif
			/* Get reg */
			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
				vcpu->arch.gprs[rt] = 0x0;
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mfc0(inst, opc, vcpu);
#endif
			} else {
				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mfc0(inst, opc, vcpu);
#endif
			}

			kvm_debug
			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);

			break;

		case dmfc_op:
			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
			break;

		case mtc_op:
#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[rd][sel]++;
#endif
			if ((rd == MIPS_CP0_TLB_INDEX)
			    && (vcpu->arch.gprs[rt] >=
				KVM_MIPS_GUEST_TLB_SIZE)) {
				kvm_err("Invalid TLB Index: %ld",
					vcpu->arch.gprs[rt]);
				er = EMULATE_FAIL;
				break;
			}
#define C0_EBASE_CORE_MASK 0xff
			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
				/* Preserve CORE number */
				kvm_change_c0_guest_ebase(cop0,
							  ~(C0_EBASE_CORE_MASK),
							  vcpu->arch.gprs[rt]);
				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
					kvm_read_c0_guest_ebase(cop0));
			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
				uint32_t nasid =
					vcpu->arch.gprs[rt] & ASID_MASK;
				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
				    ((kvm_read_c0_guest_entryhi(cop0) &
				      ASID_MASK) != nasid)) {
					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
						kvm_read_c0_guest_entryhi(cop0)
						& ASID_MASK,
						vcpu->arch.gprs[rt]
						& ASID_MASK);

					/* Blow away the shadow host TLBs */
					kvm_mips_flush_host_tlb(1);
				}
				kvm_write_c0_guest_entryhi(cop0,
							   vcpu->arch.gprs[rt]);
			}
			/* Are we writing to COUNT */
			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
				goto done;
			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
					  pc, kvm_read_c0_guest_compare(cop0),
					  vcpu->arch.gprs[rt]);

				/* If we are writing to COMPARE */
				/* Clear pending timer interrupt, if any */
				kvm_mips_callbacks->dequeue_timer_int(vcpu);
				kvm_mips_write_compare(vcpu,
						       vcpu->arch.gprs[rt]);
			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
				unsigned int old_val, val, change;

				old_val = kvm_read_c0_guest_status(cop0);
				val = vcpu->arch.gprs[rt];
				change = val ^ old_val;

				/* Make sure that the NMI bit is never set */
				val &= ~ST0_NMI;

				/*
				 * Don't allow CU1 or FR to be set unless FPU
				 * capability enabled and exists in guest
				 * configuration.
				 */
				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
					val &= ~(ST0_CU1 | ST0_FR);

				/*
				 * Also don't allow FR to be set if host doesn't
				 * support it.
				 */
				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
					val &= ~ST0_FR;


				/* Handle changes in FPU mode */
				preempt_disable();

				/*
				 * FPU and Vector register state is made
				 * UNPREDICTABLE by a change of FR, so don't
				 * even bother saving it.
				 */
				if (change & ST0_FR)
					kvm_drop_fpu(vcpu);

				/*
				 * If MSA state is already live, it is undefined
				 * how it interacts with FR=0 FPU state, and we
				 * don't want to hit reserved instruction
				 * exceptions trying to save the MSA state later
				 * when CU=1 && FR=1, so play it safe and save
				 * it first.
				 */
				if (change & ST0_CU1 && !(val & ST0_FR) &&
				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
					kvm_lose_fpu(vcpu);

				/*
				 * Propagate CU1 (FPU enable) changes
				 * immediately if the FPU context is already
				 * loaded. When disabling we leave the context
				 * loaded so it can be quickly enabled again in
				 * the near future.
				 */
				if (change & ST0_CU1 &&
				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
					change_c0_status(ST0_CU1, val);

				preempt_enable();

				kvm_write_c0_guest_status(cop0, val);

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				/*
				 * If FPU present, we need CU1/FR bits to take
				 * effect fairly soon.
				 */
				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
					kvm_mips_trans_mtc0(inst, opc, vcpu);
#endif
			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
				unsigned int old_val, val, change, wrmask;

				old_val = kvm_read_c0_guest_config5(cop0);
				val = vcpu->arch.gprs[rt];

				/* Only a few bits are writable in Config5 */
				wrmask = kvm_mips_config5_wrmask(vcpu);
				change = (val ^ old_val) & wrmask;
				val = old_val ^ change;


				/* Handle changes in FPU/MSA modes */
				preempt_disable();

				/*
				 * Propagate FRE changes immediately if the FPU
				 * context is already loaded.
				 */
				if (change & MIPS_CONF5_FRE &&
				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
					change_c0_config5(MIPS_CONF5_FRE, val);

				/*
				 * Propagate MSAEn changes immediately if the
				 * MSA context is already loaded. When disabling
				 * we leave the context loaded so it can be
				 * quickly enabled again in the near future.
				 */
				if (change & MIPS_CONF5_MSAEN &&
				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
					change_c0_config5(MIPS_CONF5_MSAEN,
							  val);

				preempt_enable();

				kvm_write_c0_guest_config5(cop0, val);
			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
				uint32_t old_cause, new_cause;

				old_cause = kvm_read_c0_guest_cause(cop0);
				new_cause = vcpu->arch.gprs[rt];
				/* Update R/W bits */
				kvm_change_c0_guest_cause(cop0, 0x08800300,
							  new_cause);
				/* DC bit enabling/disabling timer? */
				if ((old_cause ^ new_cause) & CAUSEF_DC) {
					if (new_cause & CAUSEF_DC)
						kvm_mips_count_disable_cause(vcpu);
					else
						kvm_mips_count_enable_cause(vcpu);
				}
			} else {
				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
#ifdef CONFIG_KVM_MIPS_DYN_TRANS
				kvm_mips_trans_mtc0(inst, opc, vcpu);
#endif
			}

			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
				  rd, sel, cop0->reg[rd][sel]);
			break;

		case dmtc_op:
			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
				vcpu->arch.pc, rt, rd, sel);
			er = EMULATE_FAIL;
			break;

		case mfmcz_op:
#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
			cop0->stat[MIPS_CP0_STATUS][0]++;
#endif
			if (rt != 0) {
				vcpu->arch.gprs[rt] =
				    kvm_read_c0_guest_status(cop0);
			}
			/* EI */
			if (inst & 0x20) {
				kvm_debug("[%#lx] mfmcz_op: EI\n",
					  vcpu->arch.pc);
				kvm_set_c0_guest_status(cop0, ST0_IE);
			} else {
				kvm_debug("[%#lx] mfmcz_op: DI\n",
					  vcpu->arch.pc);
				kvm_clear_c0_guest_status(cop0, ST0_IE);
			}

			break;

		case wrpgpr_op:
			{
				uint32_t css =
				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
				uint32_t pss =
				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
				/*
				 * We don't support any shadow register sets, so
				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
				 */
				if (css || pss) {
					er = EMULATE_FAIL;
					break;
				}
				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
					  vcpu->arch.gprs[rt]);
				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
			}
			break;
		default:
			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
				vcpu->arch.pc, copz);
			er = EMULATE_FAIL;
			break;
		}
	}

done:
	/* Rollback PC only if emulation was unsuccessful */
	if (er == EMULATE_FAIL)
		vcpu->arch.pc = curr_pc;

dont_update_pc:
	/*
	 * This is for special instructions whose emulation
	 * updates the PC, so do not overwrite the PC under
	 * any circumstances
	 */

	return er;
}

enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
{
	enum emulation_result er = EMULATE_DO_MMIO;
	int32_t op, base, rt, offset;
	uint32_t bytes;
	void *data = run->mmio.data;
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

	rt = (inst >> 16) & 0x1f;
	base = (inst >> 21) & 0x1f;
	offset = inst & 0xffff;
	op = (inst >> 26) & 0x3f;

	switch (op) {
	case sb_op:
		bytes = 1;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
		*(u8 *) data = vcpu->arch.gprs[rt];
		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
			  *(uint8_t *) data);

		break;

	case sw_op:
		bytes = 4;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
		*(uint32_t *) data = vcpu->arch.gprs[rt];

		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
			  vcpu->arch.gprs[rt], *(uint32_t *) data);
		break;

	case sh_op:
		bytes = 2;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 1;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 1;
		*(uint16_t *) data = vcpu->arch.gprs[rt];

		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
			  vcpu->arch.gprs[rt], *(uint32_t *) data);
		break;

	default:
		kvm_err("Store not yet supported");
		er = EMULATE_FAIL;
		break;
	}

	/* Rollback PC if emulation was unsuccessful */
	if (er == EMULATE_FAIL)
		vcpu->arch.pc = curr_pc;

	return er;
}

enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
					    struct kvm_run *run,
					    struct kvm_vcpu *vcpu)
{
	enum emulation_result er = EMULATE_DO_MMIO;
	int32_t op, base, rt, offset;
	uint32_t bytes;

	rt = (inst >> 16) & 0x1f;
	base = (inst >> 21) & 0x1f;
	offset = inst & 0xffff;
	op = (inst >> 26) & 0x3f;

	vcpu->arch.pending_load_cause = cause;
	vcpu->arch.io_gpr = rt;

	switch (op) {
	case lw_op:
		bytes = 4;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 0;
		break;

	case lh_op:
	case lhu_op:
		bytes = 2;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_needed = 1;
		vcpu->mmio_is_write = 0;

		if (op == lh_op)
			vcpu->mmio_needed = 2;
		else
			vcpu->mmio_needed = 1;

		break;

	case lbu_op:
	case lb_op:
		bytes = 1;
		if (bytes > sizeof(run->mmio.data)) {
			kvm_err("%s: bad MMIO length: %d\n", __func__,
			       run->mmio.len);
			er = EMULATE_FAIL;
			break;
		}
		run->mmio.phys_addr =
		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
						   host_cp0_badvaddr);
		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
			er = EMULATE_FAIL;
			break;
		}

		run->mmio.len = bytes;
		run->mmio.is_write = 0;
		vcpu->mmio_is_write = 0;

		if (op == lb_op)
			vcpu->mmio_needed = 2;
		else
			vcpu->mmio_needed = 1;

		break;

	default:
		kvm_err("Load not yet supported");
		er = EMULATE_FAIL;
		break;
	}

	return er;
}

int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
{
	unsigned long offset = (va & ~PAGE_MASK);
	struct kvm *kvm = vcpu->kvm;
	unsigned long pa;
	gfn_t gfn;
	pfn_t pfn;

	gfn = va >> PAGE_SHIFT;

	if (gfn >= kvm->arch.guest_pmap_npages) {
		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
		kvm_mips_dump_host_tlbs();
		kvm_arch_vcpu_dump_regs(vcpu);
		return -1;
	}
	pfn = kvm->arch.guest_pmap[gfn];
	pa = (pfn << PAGE_SHIFT) | offset;

	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
		  CKSEG0ADDR(pa));

	local_flush_icache_range(CKSEG0ADDR(pa), 32);
	return 0;
}

#define MIPS_CACHE_OP_INDEX_INV         0x0
#define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
#define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
#define MIPS_CACHE_OP_IMP               0x3
#define MIPS_CACHE_OP_HIT_INV           0x4
#define MIPS_CACHE_OP_FILL_WB_INV       0x5
#define MIPS_CACHE_OP_HIT_HB            0x6
#define MIPS_CACHE_OP_FETCH_LOCK        0x7

#define MIPS_CACHE_ICACHE               0x0
#define MIPS_CACHE_DCACHE               0x1
#define MIPS_CACHE_SEC                  0x3

enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
					     uint32_t cause,
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	enum emulation_result er = EMULATE_DONE;
	int32_t offset, cache, op_inst, op, base;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long va;
	unsigned long curr_pc;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

	base = (inst >> 21) & 0x1f;
	op_inst = (inst >> 16) & 0x1f;
	offset = (int16_t)inst;
	cache = (inst >> 16) & 0x3;
	op = (inst >> 18) & 0x7;

	va = arch->gprs[base] + offset;

	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
		  cache, op, base, arch->gprs[base], offset);

	/*
	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
	 * invalidate the caches entirely by stepping through all the
	 * ways/indexes
	 */
	if (op == MIPS_CACHE_OP_INDEX_INV) {
		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
			  arch->gprs[base], offset);

		if (cache == MIPS_CACHE_DCACHE)
			r4k_blast_dcache();
		else if (cache == MIPS_CACHE_ICACHE)
			r4k_blast_icache();
		else {
			kvm_err("%s: unsupported CACHE INDEX operation\n",
				__func__);
			return EMULATE_FAIL;
		}

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
		kvm_mips_trans_cache_index(inst, opc, vcpu);
#endif
		goto done;
	}

	preempt_disable();
	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
		int index;

		/* If an entry already exists then skip */
		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
			goto skip_fault;

		/*
		 * If address not in the guest TLB, then give the guest a fault,
		 * the resulting handler will do the right thing
		 */
		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
						  (kvm_read_c0_guest_entryhi
						   (cop0) & ASID_MASK));

		if (index < 0) {
			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
			vcpu->arch.host_cp0_badvaddr = va;
			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
							 vcpu);
			preempt_enable();
			goto dont_update_pc;
		} else {
			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
			/*
			 * Check if the entry is valid, if not then setup a TLB
			 * invalid exception to the guest
			 */
			if (!TLB_IS_VALID(*tlb, va)) {
				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
								run, vcpu);
				preempt_enable();
				goto dont_update_pc;
			} else {
				/*
				 * We fault an entry from the guest tlb to the
				 * shadow host TLB
				 */
				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
								     NULL,
								     NULL);
			}
		}
	} else {
		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			cache, op, base, arch->gprs[base], offset);
		er = EMULATE_FAIL;
		preempt_enable();
		goto dont_update_pc;

	}

skip_fault:
	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
	if (cache == MIPS_CACHE_DCACHE
	    && (op == MIPS_CACHE_OP_FILL_WB_INV
		|| op == MIPS_CACHE_OP_HIT_INV)) {
		flush_dcache_line(va);

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
		/*
		 * Replace the CACHE instruction, with a SYNCI, not the same,
		 * but avoids a trap
		 */
		kvm_mips_trans_cache_va(inst, opc, vcpu);
#endif
	} else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
		flush_dcache_line(va);
		flush_icache_line(va);

#ifdef CONFIG_KVM_MIPS_DYN_TRANS
		/* Replace the CACHE instruction, with a SYNCI */
		kvm_mips_trans_cache_va(inst, opc, vcpu);
#endif
	} else {
		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
			cache, op, base, arch->gprs[base], offset);
		er = EMULATE_FAIL;
		preempt_enable();
		goto dont_update_pc;
	}

	preempt_enable();

dont_update_pc:
	/* Rollback PC */
	vcpu->arch.pc = curr_pc;
done:
	return er;
}

enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
					    struct kvm_run *run,
					    struct kvm_vcpu *vcpu)
{
	enum emulation_result er = EMULATE_DONE;
	uint32_t inst;

	/* Fetch the instruction. */
	if (cause & CAUSEF_BD)
		opc += 1;

	inst = kvm_get_inst(opc, vcpu);

	switch (((union mips_instruction)inst).r_format.opcode) {
	case cop0_op:
		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
		break;
	case sb_op:
	case sh_op:
	case sw_op:
		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
		break;
	case lb_op:
	case lbu_op:
	case lhu_op:
	case lh_op:
	case lw_op:
		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
		break;

	case cache_op:
		++vcpu->stat.cache_exits;
		trace_kvm_exit(vcpu, CACHE_EXITS);
		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
		break;

	default:
		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
			inst);
		kvm_arch_vcpu_dump_regs(vcpu);
		er = EMULATE_FAIL;
		break;
	}

	return er;
}

enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
					       uint32_t *opc,
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (T_SYSCALL << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
						  uint32_t *opc,
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* set pc to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x0;

	} else {
		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

	return EMULATE_DONE;
}

enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
						 uint32_t *opc,
						 struct kvm_run *run,
						 struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi =
		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
			  arch->pc);

		/* set pc to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

	return EMULATE_DONE;
}

enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
						  uint32_t *opc,
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x0;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

	return EMULATE_DONE;
}

enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
						 uint32_t *opc,
						 struct kvm_run *run,
						 struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff),
				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

	return EMULATE_DONE;
}

/* TLBMOD: store into address matching TLB with Dirty bit off */
enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
					     struct kvm_run *run,
					     struct kvm_vcpu *vcpu)
{
	enum emulation_result er = EMULATE_DONE;
#ifdef DEBUG
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
	int index;

	/* If address not in the guest TLB, then we are in trouble */
	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
	if (index < 0) {
		/* XXXKYMA Invalidate and retry */
		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
		     __func__, entryhi);
		kvm_mips_dump_guest_tlbs(vcpu);
		kvm_mips_dump_host_tlbs();
		return EMULATE_FAIL;
	}
#endif

	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
	return er;
}

enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
					      uint32_t *opc,
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
	struct kvm_vcpu_arch *arch = &vcpu->arch;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
			  arch->pc);

		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	} else {
		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
			  arch->pc);
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
	}

	kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));

	/* setup badvaddr, context and entryhi registers for the guest */
	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
	/* XXXKYMA: is the context register used by linux??? */
	kvm_write_c0_guest_entryhi(cop0, entryhi);
	/* Blow away the shadow host TLBs */
	kvm_mips_flush_host_tlb(1);

	return EMULATE_DONE;
}

enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
					       uint32_t *opc,
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

	}

	arch->pc = KVM_GUEST_KSEG0 + 0x180;

	kvm_change_c0_guest_cause(cop0, (0xff),
				  (T_COP_UNUSABLE << CAUSEB_EXCCODE));
	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));

	return EMULATE_DONE;
}

enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
					      uint32_t *opc,
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (T_RES_INST << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver RI when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
					      uint32_t *opc,
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (T_BREAK << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver BP when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
						uint32_t *opc,
						struct kvm_run *run,
						struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (T_TRAP << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver TRAP when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
						  uint32_t *opc,
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (T_MSAFPE << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
					       uint32_t *opc,
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (T_FPE << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver FPE when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
						  uint32_t *opc,
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (T_MSADIS << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;

	} else {
		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

/* ll/sc, rdhwr, sync emulation */

#define OPCODE 0xfc000000
#define BASE   0x03e00000
#define RT     0x001f0000
#define OFFSET 0x0000ffff
#define LL     0xc0000000
#define SC     0xe0000000
#define SPEC0  0x00000000
#define SPEC3  0x7c000000
#define RD     0x0000f800
#define FUNC   0x0000003f
#define SYNC   0x0000000f
#define RDHWR  0x0000003b

enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
					 struct kvm_run *run,
					 struct kvm_vcpu *vcpu)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;
	unsigned long curr_pc;
	uint32_t inst;

	/*
	 * Update PC and hold onto current PC in case there is
	 * an error and we want to rollback the PC
	 */
	curr_pc = vcpu->arch.pc;
	er = update_pc(vcpu, cause);
	if (er == EMULATE_FAIL)
		return er;

	/* Fetch the instruction. */
	if (cause & CAUSEF_BD)
		opc += 1;

	inst = kvm_get_inst(opc, vcpu);

	if (inst == KVM_INVALID_INST) {
		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
		return EMULATE_FAIL;
	}

	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
		int rd = (inst & RD) >> 11;
		int rt = (inst & RT) >> 16;
		/* If usermode, check RDHWR rd is allowed by guest HWREna */
		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
				  rd, opc);
			goto emulate_ri;
		}
		switch (rd) {
		case 0:	/* CPU number */
			arch->gprs[rt] = 0;
			break;
		case 1:	/* SYNCI length */
			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
					     current_cpu_data.icache.linesz);
			break;
		case 2:	/* Read count register */
			arch->gprs[rt] = kvm_mips_read_count(vcpu);
			break;
		case 3:	/* Count register resolution */
			switch (current_cpu_data.cputype) {
			case CPU_20KC:
			case CPU_25KF:
				arch->gprs[rt] = 1;
				break;
			default:
				arch->gprs[rt] = 2;
			}
			break;
		case 29:
			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
			break;

		default:
			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
			goto emulate_ri;
		}
	} else {
		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
		goto emulate_ri;
	}

	return EMULATE_DONE;

emulate_ri:
	/*
	 * Rollback PC (if in branch delay slot then the PC already points to
	 * branch target), and pass the RI exception to the guest OS.
	 */
	vcpu->arch.pc = curr_pc;
	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
}

enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
						  struct kvm_run *run)
{
	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
	enum emulation_result er = EMULATE_DONE;

	if (run->mmio.len > sizeof(*gpr)) {
		kvm_err("Bad MMIO length: %d", run->mmio.len);
		er = EMULATE_FAIL;
		goto done;
	}

	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
	if (er == EMULATE_FAIL)
		return er;

	switch (run->mmio.len) {
	case 4:
		*gpr = *(int32_t *) run->mmio.data;
		break;

	case 2:
		if (vcpu->mmio_needed == 2)
			*gpr = *(int16_t *) run->mmio.data;
		else
			*gpr = *(uint16_t *)run->mmio.data;

		break;
	case 1:
		if (vcpu->mmio_needed == 2)
			*gpr = *(int8_t *) run->mmio.data;
		else
			*gpr = *(u8 *) run->mmio.data;
		break;
	}

	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
			  vcpu->mmio_needed);

done:
	return er;
}

static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
						  uint32_t *opc,
						  struct kvm_run *run,
						  struct kvm_vcpu *vcpu)
{
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	struct kvm_vcpu_arch *arch = &vcpu->arch;
	enum emulation_result er = EMULATE_DONE;

	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
		/* save old pc */
		kvm_write_c0_guest_epc(cop0, arch->pc);
		kvm_set_c0_guest_status(cop0, ST0_EXL);

		if (cause & CAUSEF_BD)
			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
		else
			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);

		kvm_change_c0_guest_cause(cop0, (0xff),
					  (exccode << CAUSEB_EXCCODE));

		/* Set PC to the exception entry point */
		arch->pc = KVM_GUEST_KSEG0 + 0x180;
		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);

		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
			  exccode, kvm_read_c0_guest_epc(cop0),
			  kvm_read_c0_guest_badvaddr(cop0));
	} else {
		kvm_err("Trying to deliver EXC when EXL is already set\n");
		er = EMULATE_FAIL;
	}

	return er;
}

enum emulation_result kvm_mips_check_privilege(unsigned long cause,
					       uint32_t *opc,
					       struct kvm_run *run,
					       struct kvm_vcpu *vcpu)
{
	enum emulation_result er = EMULATE_DONE;
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;

	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);

	if (usermode) {
		switch (exccode) {
		case T_INT:
		case T_SYSCALL:
		case T_BREAK:
		case T_RES_INST:
		case T_TRAP:
		case T_MSAFPE:
		case T_FPE:
		case T_MSADIS:
			break;

		case T_COP_UNUSABLE:
			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
				er = EMULATE_PRIV_FAIL;
			break;

		case T_TLB_MOD:
			break;

		case T_TLB_LD_MISS:
			/*
			 * We we are accessing Guest kernel space, then send an
			 * address error exception to the guest
			 */
			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
					  badvaddr);
				cause &= ~0xff;
				cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
				er = EMULATE_PRIV_FAIL;
			}
			break;

		case T_TLB_ST_MISS:
			/*
			 * We we are accessing Guest kernel space, then send an
			 * address error exception to the guest
			 */
			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
					  badvaddr);
				cause &= ~0xff;
				cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
				er = EMULATE_PRIV_FAIL;
			}
			break;

		case T_ADDR_ERR_ST:
			kvm_debug("%s: address error ST @ %#lx\n", __func__,
				  badvaddr);
			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
				cause &= ~0xff;
				cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
			}
			er = EMULATE_PRIV_FAIL;
			break;
		case T_ADDR_ERR_LD:
			kvm_debug("%s: address error LD @ %#lx\n", __func__,
				  badvaddr);
			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
				cause &= ~0xff;
				cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
			}
			er = EMULATE_PRIV_FAIL;
			break;
		default:
			er = EMULATE_PRIV_FAIL;
			break;
		}
	}

	if (er == EMULATE_PRIV_FAIL)
		kvm_mips_emulate_exc(cause, opc, run, vcpu);

	return er;
}

/*
 * User Address (UA) fault, this could happen if
 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
 *     case we pass on the fault to the guest kernel and let it handle it.
 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
 *     case we inject the TLB from the Guest TLB into the shadow host TLB
 */
enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
					      uint32_t *opc,
					      struct kvm_run *run,
					      struct kvm_vcpu *vcpu)
{
	enum emulation_result er = EMULATE_DONE;
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	unsigned long va = vcpu->arch.host_cp0_badvaddr;
	int index;

	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);

	/*
	 * KVM would not have got the exception if this entry was valid in the
	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
	 * send the guest an exception. The guest exc handler should then inject
	 * an entry into the guest TLB.
	 */
	index = kvm_mips_guest_tlb_lookup(vcpu,
					  (va & VPN2_MASK) |
					  (kvm_read_c0_guest_entryhi
					   (vcpu->arch.cop0) & ASID_MASK));
	if (index < 0) {
		if (exccode == T_TLB_LD_MISS) {
			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
		} else if (exccode == T_TLB_ST_MISS) {
			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
		} else {
			kvm_err("%s: invalid exc code: %d\n", __func__,
				exccode);
			er = EMULATE_FAIL;
		}
	} else {
		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];

		/*
		 * Check if the entry is valid, if not then setup a TLB invalid
		 * exception to the guest
		 */
		if (!TLB_IS_VALID(*tlb, va)) {
			if (exccode == T_TLB_LD_MISS) {
				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
								vcpu);
			} else if (exccode == T_TLB_ST_MISS) {
				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
								vcpu);
			} else {
				kvm_err("%s: invalid exc code: %d\n", __func__,
					exccode);
				er = EMULATE_FAIL;
			}
		} else {
			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
			/*
			 * OK we have a Guest TLB entry, now inject it into the
			 * shadow host TLB
			 */
			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
							     NULL);
		}
	}

	return er;
}