1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
/*
* Copyright (C) 2014 Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
* Copyright (C) 2017 Stafford Horne <shorne@gmail.com>
*
* Based on arm64 and arc implementations
* Copyright (C) 2013 ARM Ltd.
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <asm/cpuinfo.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/cacheflush.h>
#include <asm/time.h>
static void (*smp_cross_call)(const struct cpumask *, unsigned int);
unsigned long secondary_release = -1;
struct thread_info *secondary_thread_info;
enum ipi_msg_type {
IPI_WAKEUP,
IPI_RESCHEDULE,
IPI_CALL_FUNC,
IPI_CALL_FUNC_SINGLE,
};
static DEFINE_SPINLOCK(boot_lock);
static void boot_secondary(unsigned int cpu, struct task_struct *idle)
{
/*
* set synchronisation state between this boot processor
* and the secondary one
*/
spin_lock(&boot_lock);
secondary_release = cpu;
smp_cross_call(cpumask_of(cpu), IPI_WAKEUP);
/*
* now the secondary core is starting up let it run its
* calibrations, then wait for it to finish
*/
spin_unlock(&boot_lock);
}
void __init smp_prepare_boot_cpu(void)
{
}
void __init smp_init_cpus(void)
{
struct device_node *cpu;
u32 cpu_id;
for_each_of_cpu_node(cpu) {
if (of_property_read_u32(cpu, "reg", &cpu_id)) {
pr_warn("%s missing reg property", cpu->full_name);
continue;
}
if (cpu_id < NR_CPUS)
set_cpu_possible(cpu_id, true);
}
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int cpu;
/*
* Initialise the present map, which describes the set of CPUs
* actually populated at the present time.
*/
for_each_possible_cpu(cpu) {
if (cpu < max_cpus)
set_cpu_present(cpu, true);
}
}
void __init smp_cpus_done(unsigned int max_cpus)
{
}
static DECLARE_COMPLETION(cpu_running);
int __cpu_up(unsigned int cpu, struct task_struct *idle)
{
if (smp_cross_call == NULL) {
pr_warn("CPU%u: failed to start, IPI controller missing",
cpu);
return -EIO;
}
secondary_thread_info = task_thread_info(idle);
current_pgd[cpu] = init_mm.pgd;
boot_secondary(cpu, idle);
if (!wait_for_completion_timeout(&cpu_running,
msecs_to_jiffies(1000))) {
pr_crit("CPU%u: failed to start\n", cpu);
return -EIO;
}
synchronise_count_master(cpu);
return 0;
}
asmlinkage __init void secondary_start_kernel(void)
{
struct mm_struct *mm = &init_mm;
unsigned int cpu = smp_processor_id();
/*
* All kernel threads share the same mm context; grab a
* reference and switch to it.
*/
mmgrab(mm);
current->active_mm = mm;
cpumask_set_cpu(cpu, mm_cpumask(mm));
pr_info("CPU%u: Booted secondary processor\n", cpu);
setup_cpuinfo();
openrisc_clockevent_init();
notify_cpu_starting(cpu);
/*
* OK, now it's safe to let the boot CPU continue
*/
complete(&cpu_running);
synchronise_count_slave(cpu);
set_cpu_online(cpu, true);
local_irq_enable();
preempt_disable();
/*
* OK, it's off to the idle thread for us
*/
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}
void handle_IPI(unsigned int ipi_msg)
{
unsigned int cpu = smp_processor_id();
switch (ipi_msg) {
case IPI_WAKEUP:
break;
case IPI_RESCHEDULE:
scheduler_ipi();
break;
case IPI_CALL_FUNC:
generic_smp_call_function_interrupt();
break;
case IPI_CALL_FUNC_SINGLE:
generic_smp_call_function_single_interrupt();
break;
default:
WARN(1, "CPU%u: Unknown IPI message 0x%x\n", cpu, ipi_msg);
break;
}
}
void smp_send_reschedule(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
}
static void stop_this_cpu(void *dummy)
{
/* Remove this CPU */
set_cpu_online(smp_processor_id(), false);
local_irq_disable();
/* CPU Doze */
if (mfspr(SPR_UPR) & SPR_UPR_PMP)
mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
/* If that didn't work, infinite loop */
while (1)
;
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 0);
}
/* not supported, yet */
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}
void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
{
smp_cross_call = fn;
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_CALL_FUNC);
}
/* TLB flush operations - Performed on each CPU*/
static inline void ipi_flush_tlb_all(void *ignored)
{
local_flush_tlb_all();
}
static inline void ipi_flush_tlb_mm(void *info)
{
struct mm_struct *mm = (struct mm_struct *)info;
local_flush_tlb_mm(mm);
}
static void smp_flush_tlb_mm(struct cpumask *cmask, struct mm_struct *mm)
{
unsigned int cpuid;
if (cpumask_empty(cmask))
return;
cpuid = get_cpu();
if (cpumask_any_but(cmask, cpuid) >= nr_cpu_ids) {
/* local cpu is the only cpu present in cpumask */
local_flush_tlb_mm(mm);
} else {
on_each_cpu_mask(cmask, ipi_flush_tlb_mm, mm, 1);
}
put_cpu();
}
struct flush_tlb_data {
unsigned long addr1;
unsigned long addr2;
};
static inline void ipi_flush_tlb_page(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
local_flush_tlb_page(NULL, fd->addr1);
}
static inline void ipi_flush_tlb_range(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
local_flush_tlb_range(NULL, fd->addr1, fd->addr2);
}
static void smp_flush_tlb_range(struct cpumask *cmask, unsigned long start,
unsigned long end)
{
unsigned int cpuid;
if (cpumask_empty(cmask))
return;
cpuid = get_cpu();
if (cpumask_any_but(cmask, cpuid) >= nr_cpu_ids) {
/* local cpu is the only cpu present in cpumask */
if ((end - start) <= PAGE_SIZE)
local_flush_tlb_page(NULL, start);
else
local_flush_tlb_range(NULL, start, end);
} else {
struct flush_tlb_data fd;
fd.addr1 = start;
fd.addr2 = end;
if ((end - start) <= PAGE_SIZE)
on_each_cpu_mask(cmask, ipi_flush_tlb_page, &fd, 1);
else
on_each_cpu_mask(cmask, ipi_flush_tlb_range, &fd, 1);
}
put_cpu();
}
void flush_tlb_all(void)
{
on_each_cpu(ipi_flush_tlb_all, NULL, 1);
}
void flush_tlb_mm(struct mm_struct *mm)
{
smp_flush_tlb_mm(mm_cpumask(mm), mm);
}
void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
{
smp_flush_tlb_range(mm_cpumask(vma->vm_mm), uaddr, uaddr + PAGE_SIZE);
}
void flush_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
smp_flush_tlb_range(mm_cpumask(vma->vm_mm), start, end);
}
/* Instruction cache invalidate - performed on each cpu */
static void ipi_icache_page_inv(void *arg)
{
struct page *page = arg;
local_icache_page_inv(page);
}
void smp_icache_page_inv(struct page *page)
{
on_each_cpu(ipi_icache_page_inv, page, 1);
}
EXPORT_SYMBOL(smp_icache_page_inv);
|