1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
#ifndef _ASM_X86_SYSTEM_H
#define _ASM_X86_SYSTEM_H
#include <asm/asm.h>
#include <asm/segment.h>
#include <asm/cpufeature.h>
#include <asm/cmpxchg.h>
#include <asm/nops.h>
#include <linux/kernel.h>
#include <linux/irqflags.h>
/* entries in ARCH_DLINFO: */
#ifdef CONFIG_IA32_EMULATION
# define AT_VECTOR_SIZE_ARCH 2
#else
# define AT_VECTOR_SIZE_ARCH 1
#endif
struct task_struct; /* one of the stranger aspects of C forward declarations */
struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *next);
struct tss_struct;
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
struct tss_struct *tss);
extern void show_regs_common(void);
#ifdef CONFIG_X86_32
#ifdef CONFIG_CC_STACKPROTECTOR
#define __switch_canary \
"movl %P[task_canary](%[next]), %%ebx\n\t" \
"movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
#define __switch_canary_oparam \
, [stack_canary] "=m" (stack_canary.canary)
#define __switch_canary_iparam \
, [task_canary] "i" (offsetof(struct task_struct, stack_canary))
#else /* CC_STACKPROTECTOR */
#define __switch_canary
#define __switch_canary_oparam
#define __switch_canary_iparam
#endif /* CC_STACKPROTECTOR */
/*
* Saving eflags is important. It switches not only IOPL between tasks,
* it also protects other tasks from NT leaking through sysenter etc.
*/
#define switch_to(prev, next, last) \
do { \
/* \
* Context-switching clobbers all registers, so we clobber \
* them explicitly, via unused output variables. \
* (EAX and EBP is not listed because EBP is saved/restored \
* explicitly for wchan access and EAX is the return value of \
* __switch_to()) \
*/ \
unsigned long ebx, ecx, edx, esi, edi; \
\
asm volatile("pushfl\n\t" /* save flags */ \
"pushl %%ebp\n\t" /* save EBP */ \
"movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
"movl %[next_sp],%%esp\n\t" /* restore ESP */ \
"movl $1f,%[prev_ip]\n\t" /* save EIP */ \
"pushl %[next_ip]\n\t" /* restore EIP */ \
__switch_canary \
"jmp __switch_to\n" /* regparm call */ \
"1:\t" \
"popl %%ebp\n\t" /* restore EBP */ \
"popfl\n" /* restore flags */ \
\
/* output parameters */ \
: [prev_sp] "=m" (prev->thread.sp), \
[prev_ip] "=m" (prev->thread.ip), \
"=a" (last), \
\
/* clobbered output registers: */ \
"=b" (ebx), "=c" (ecx), "=d" (edx), \
"=S" (esi), "=D" (edi) \
\
__switch_canary_oparam \
\
/* input parameters: */ \
: [next_sp] "m" (next->thread.sp), \
[next_ip] "m" (next->thread.ip), \
\
/* regparm parameters for __switch_to(): */ \
[prev] "a" (prev), \
[next] "d" (next) \
\
__switch_canary_iparam \
\
: /* reloaded segment registers */ \
"memory"); \
} while (0)
/*
* disable hlt during certain critical i/o operations
*/
#define HAVE_DISABLE_HLT
#else
#define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
#define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
/* frame pointer must be last for get_wchan */
#define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
#define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
#define __EXTRA_CLOBBER \
, "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
"r12", "r13", "r14", "r15"
#ifdef CONFIG_CC_STACKPROTECTOR
#define __switch_canary \
"movq %P[task_canary](%%rsi),%%r8\n\t" \
"movq %%r8,"__percpu_arg([gs_canary])"\n\t"
#define __switch_canary_oparam \
, [gs_canary] "=m" (irq_stack_union.stack_canary)
#define __switch_canary_iparam \
, [task_canary] "i" (offsetof(struct task_struct, stack_canary))
#else /* CC_STACKPROTECTOR */
#define __switch_canary
#define __switch_canary_oparam
#define __switch_canary_iparam
#endif /* CC_STACKPROTECTOR */
/* Save restore flags to clear handle leaking NT */
#define switch_to(prev, next, last) \
asm volatile(SAVE_CONTEXT \
"movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
"movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
"call __switch_to\n\t" \
"movq "__percpu_arg([current_task])",%%rsi\n\t" \
__switch_canary \
"movq %P[thread_info](%%rsi),%%r8\n\t" \
"movq %%rax,%%rdi\n\t" \
"testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
"jnz ret_from_fork\n\t" \
RESTORE_CONTEXT \
: "=a" (last) \
__switch_canary_oparam \
: [next] "S" (next), [prev] "D" (prev), \
[threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
[ti_flags] "i" (offsetof(struct thread_info, flags)), \
[_tif_fork] "i" (_TIF_FORK), \
[thread_info] "i" (offsetof(struct task_struct, stack)), \
[current_task] "m" (current_task) \
__switch_canary_iparam \
: "memory", "cc" __EXTRA_CLOBBER)
#endif
#ifdef __KERNEL__
extern void native_load_gs_index(unsigned);
/*
* Load a segment. Fall back on loading the zero
* segment if something goes wrong..
*/
#define loadsegment(seg, value) \
do { \
unsigned short __val = (value); \
\
asm volatile(" \n" \
"1: movl %k0,%%" #seg " \n" \
\
".section .fixup,\"ax\" \n" \
"2: xorl %k0,%k0 \n" \
" jmp 1b \n" \
".previous \n" \
\
_ASM_EXTABLE(1b, 2b) \
\
: "+r" (__val) : : "memory"); \
} while (0)
/*
* Save a segment register away
*/
#define savesegment(seg, value) \
asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
/*
* x86_32 user gs accessors.
*/
#ifdef CONFIG_X86_32
#ifdef CONFIG_X86_32_LAZY_GS
#define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
#define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
#define task_user_gs(tsk) ((tsk)->thread.gs)
#define lazy_save_gs(v) savesegment(gs, (v))
#define lazy_load_gs(v) loadsegment(gs, (v))
#else /* X86_32_LAZY_GS */
#define get_user_gs(regs) (u16)((regs)->gs)
#define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
#define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
#define lazy_save_gs(v) do { } while (0)
#define lazy_load_gs(v) do { } while (0)
#endif /* X86_32_LAZY_GS */
#endif /* X86_32 */
static inline unsigned long get_limit(unsigned long segment)
{
unsigned long __limit;
asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
return __limit + 1;
}
static inline void native_clts(void)
{
asm volatile("clts");
}
/*
* Volatile isn't enough to prevent the compiler from reordering the
* read/write functions for the control registers and messing everything up.
* A memory clobber would solve the problem, but would prevent reordering of
* all loads stores around it, which can hurt performance. Solution is to
* use a variable and mimic reads and writes to it to enforce serialization
*/
static unsigned long __force_order;
static inline unsigned long native_read_cr0(void)
{
unsigned long val;
asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
return val;
}
static inline void native_write_cr0(unsigned long val)
{
asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
}
static inline unsigned long native_read_cr2(void)
{
unsigned long val;
asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
return val;
}
static inline void native_write_cr2(unsigned long val)
{
asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
}
static inline unsigned long native_read_cr3(void)
{
unsigned long val;
asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
return val;
}
static inline void native_write_cr3(unsigned long val)
{
asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
}
static inline unsigned long native_read_cr4(void)
{
unsigned long val;
asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
return val;
}
static inline unsigned long native_read_cr4_safe(void)
{
unsigned long val;
/* This could fault if %cr4 does not exist. In x86_64, a cr4 always
* exists, so it will never fail. */
#ifdef CONFIG_X86_32
asm volatile("1: mov %%cr4, %0\n"
"2:\n"
_ASM_EXTABLE(1b, 2b)
: "=r" (val), "=m" (__force_order) : "0" (0));
#else
val = native_read_cr4();
#endif
return val;
}
static inline void native_write_cr4(unsigned long val)
{
asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
}
#ifdef CONFIG_X86_64
static inline unsigned long native_read_cr8(void)
{
unsigned long cr8;
asm volatile("movq %%cr8,%0" : "=r" (cr8));
return cr8;
}
static inline void native_write_cr8(unsigned long val)
{
asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
}
#endif
static inline void native_wbinvd(void)
{
asm volatile("wbinvd": : :"memory");
}
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
#define read_cr0() (native_read_cr0())
#define write_cr0(x) (native_write_cr0(x))
#define read_cr2() (native_read_cr2())
#define write_cr2(x) (native_write_cr2(x))
#define read_cr3() (native_read_cr3())
#define write_cr3(x) (native_write_cr3(x))
#define read_cr4() (native_read_cr4())
#define read_cr4_safe() (native_read_cr4_safe())
#define write_cr4(x) (native_write_cr4(x))
#define wbinvd() (native_wbinvd())
#ifdef CONFIG_X86_64
#define read_cr8() (native_read_cr8())
#define write_cr8(x) (native_write_cr8(x))
#define load_gs_index native_load_gs_index
#endif
/* Clear the 'TS' bit */
#define clts() (native_clts())
#endif/* CONFIG_PARAVIRT */
#define stts() write_cr0(read_cr0() | X86_CR0_TS)
#endif /* __KERNEL__ */
static inline void clflush(volatile void *__p)
{
asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
}
#define nop() asm volatile ("nop")
void disable_hlt(void);
void enable_hlt(void);
void cpu_idle_wait(void);
extern unsigned long arch_align_stack(unsigned long sp);
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
void default_idle(void);
void stop_this_cpu(void *dummy);
/*
* Force strict CPU ordering.
* And yes, this is required on UP too when we're talking
* to devices.
*/
#ifdef CONFIG_X86_32
/*
* Some non-Intel clones support out of order store. wmb() ceases to be a
* nop for these.
*/
#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
#else
#define mb() asm volatile("mfence":::"memory")
#define rmb() asm volatile("lfence":::"memory")
#define wmb() asm volatile("sfence" ::: "memory")
#endif
/**
* read_barrier_depends - Flush all pending reads that subsequents reads
* depend on.
*
* No data-dependent reads from memory-like regions are ever reordered
* over this barrier. All reads preceding this primitive are guaranteed
* to access memory (but not necessarily other CPUs' caches) before any
* reads following this primitive that depend on the data return by
* any of the preceding reads. This primitive is much lighter weight than
* rmb() on most CPUs, and is never heavier weight than is
* rmb().
*
* These ordering constraints are respected by both the local CPU
* and the compiler.
*
* Ordering is not guaranteed by anything other than these primitives,
* not even by data dependencies. See the documentation for
* memory_barrier() for examples and URLs to more information.
*
* For example, the following code would force ordering (the initial
* value of "a" is zero, "b" is one, and "p" is "&a"):
*
* <programlisting>
* CPU 0 CPU 1
*
* b = 2;
* memory_barrier();
* p = &b; q = p;
* read_barrier_depends();
* d = *q;
* </programlisting>
*
* because the read of "*q" depends on the read of "p" and these
* two reads are separated by a read_barrier_depends(). However,
* the following code, with the same initial values for "a" and "b":
*
* <programlisting>
* CPU 0 CPU 1
*
* a = 2;
* memory_barrier();
* b = 3; y = b;
* read_barrier_depends();
* x = a;
* </programlisting>
*
* does not enforce ordering, since there is no data dependency between
* the read of "a" and the read of "b". Therefore, on some CPUs, such
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
* in cases like this where there are no data dependencies.
**/
#define read_barrier_depends() do { } while (0)
#ifdef CONFIG_SMP
#define smp_mb() mb()
#ifdef CONFIG_X86_PPRO_FENCE
# define smp_rmb() rmb()
#else
# define smp_rmb() barrier()
#endif
#ifdef CONFIG_X86_OOSTORE
# define smp_wmb() wmb()
#else
# define smp_wmb() barrier()
#endif
#define smp_read_barrier_depends() read_barrier_depends()
#define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
#else
#define smp_mb() barrier()
#define smp_rmb() barrier()
#define smp_wmb() barrier()
#define smp_read_barrier_depends() do { } while (0)
#define set_mb(var, value) do { var = value; barrier(); } while (0)
#endif
/*
* Stop RDTSC speculation. This is needed when you need to use RDTSC
* (or get_cycles or vread that possibly accesses the TSC) in a defined
* code region.
*
* (Could use an alternative three way for this if there was one.)
*/
static inline void rdtsc_barrier(void)
{
alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
}
#endif /* _ASM_X86_SYSTEM_H */
|