aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/lguest/head_32.S
blob: d5ae63f5ec5d8d8836a4391c29cca8ecc9742c9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#include <linux/linkage.h>
#include <linux/lguest.h>
#include <asm/lguest_hcall.h>
#include <asm/asm-offsets.h>
#include <asm/thread_info.h>
#include <asm/processor-flags.h>

/*G:020

 * Our story starts with the bzImage: booting starts at startup_32 in
 * arch/x86/boot/compressed/head_32.S.  This merely uncompresses the real
 * kernel in place and then jumps into it: startup_32 in
 * arch/x86/kernel/head_32.S.  Both routines expects a boot header in the %esi
 * register, which is created by the bootloader (the Launcher in our case).
 *
 * The startup_32 function does very little: it clears the uninitialized global
 * C variables which we expect to be zero (ie. BSS) and then copies the boot
 * header and kernel command line somewhere safe, and populates some initial
 * page tables.  Finally it checks the 'hardware_subarch' field.  This was
 * introduced in 2.6.24 for lguest and Xen: if it's set to '1' (lguest's
 * assigned number), then it calls us here.
 *
 * WARNING: be very careful here!  We're running at addresses equal to physical
 * addresses (around 0), not above PAGE_OFFSET as most code expects
 * (eg. 0xC0000000).  Jumps are relative, so they're OK, but we can't touch any
 * data without remembering to subtract __PAGE_OFFSET!
 *
 * The .section line puts this code in .init.text so it will be discarded after
 * boot.
 */
.section .init.text, "ax", @progbits
ENTRY(lguest_entry)
	/*
	 * We make the "initialization" hypercall now to tell the Host where
	 * our lguest_data struct is.
	 */
	movl $LHCALL_LGUEST_INIT, %eax
	movl $lguest_data - __PAGE_OFFSET, %ebx
	int $LGUEST_TRAP_ENTRY

	/* Now turn our pagetables on; setup by arch/x86/kernel/head_32.S. */
	movl $LHCALL_NEW_PGTABLE, %eax
	movl $(initial_page_table - __PAGE_OFFSET), %ebx
	int $LGUEST_TRAP_ENTRY

	/* Set up the initial stack so we can run C code. */
	movl $(init_thread_union+THREAD_SIZE),%esp

	/* Jumps are relative: we're running __PAGE_OFFSET too low. */
	jmp lguest_init+__PAGE_OFFSET

/*G:055
 * We create a macro which puts the assembler code between lgstart_ and lgend_
 * markers.  These templates are put in the .text section: they can't be
 * discarded after boot as we may need to patch modules, too.
 */
.text
#define LGUEST_PATCH(name, insns...)			\
	lgstart_##name:	insns; lgend_##name:;		\
	.globl lgstart_##name; .globl lgend_##name

LGUEST_PATCH(cli, movl $0, lguest_data+LGUEST_DATA_irq_enabled)
LGUEST_PATCH(pushf, movl lguest_data+LGUEST_DATA_irq_enabled, %eax)

/*G:033
 * But using those wrappers is inefficient (we'll see why that doesn't matter
 * for save_fl and irq_disable later).  If we write our routines carefully in
 * assembler, we can avoid clobbering any registers and avoid jumping through
 * the wrapper functions.
 *
 * I skipped over our first piece of assembler, but this one is worth studying
 * in a bit more detail so I'll describe in easy stages.  First, the routine to
 * enable interrupts:
 */
ENTRY(lg_irq_enable)
	/*
	 * The reverse of irq_disable, this sets lguest_data.irq_enabled to
	 * X86_EFLAGS_IF (ie. "Interrupts enabled").
	 */
	movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled
	/*
	 * But now we need to check if the Host wants to know: there might have
	 * been interrupts waiting to be delivered, in which case it will have
	 * set lguest_data.irq_pending to X86_EFLAGS_IF.  If it's not zero, we
	 * jump to send_interrupts, otherwise we're done.
	 */
	cmpl $0, lguest_data+LGUEST_DATA_irq_pending
	jnz send_interrupts
	/*
	 * One cool thing about x86 is that you can do many things without using
	 * a register.  In this case, the normal path hasn't needed to save or
	 * restore any registers at all!
	 */
	ret
send_interrupts:
	/*
	 * OK, now we need a register: eax is used for the hypercall number,
	 * which is LHCALL_SEND_INTERRUPTS.
	 *
	 * We used not to bother with this pending detection at all, which was
	 * much simpler.  Sooner or later the Host would realize it had to
	 * send us an interrupt.  But that turns out to make performance 7
	 * times worse on a simple tcp benchmark.  So now we do this the hard
	 * way.
	 */
	pushl %eax
	movl $LHCALL_SEND_INTERRUPTS, %eax
	/* This is the actual hypercall trap. */
	int  $LGUEST_TRAP_ENTRY
	/* Put eax back the way we found it. */
	popl %eax
	ret

/*
 * Finally, the "popf" or "restore flags" routine.  The %eax register holds the
 * flags (in practice, either X86_EFLAGS_IF or 0): if it's X86_EFLAGS_IF we're
 * enabling interrupts again, if it's 0 we're leaving them off.
 */
ENTRY(lg_restore_fl)
	/* This is just "lguest_data.irq_enabled = flags;" */
	movl %eax, lguest_data+LGUEST_DATA_irq_enabled
	/*
	 * Now, if the %eax value has enabled interrupts and
	 * lguest_data.irq_pending is set, we want to tell the Host so it can
	 * deliver any outstanding interrupts.  Fortunately, both values will
	 * be X86_EFLAGS_IF (ie. 512) in that case, and the "testl"
	 * instruction will AND them together for us.  If both are set, we
	 * jump to send_interrupts.
	 */
	testl lguest_data+LGUEST_DATA_irq_pending, %eax
	jnz send_interrupts
	/* Again, the normal path has used no extra registers.  Clever, huh? */
	ret
/*:*/

/* These demark the EIP where host should never deliver interrupts. */
.global lguest_noirq_iret

/*M:004
 * When the Host reflects a trap or injects an interrupt into the Guest, it
 * sets the eflags interrupt bit on the stack based on lguest_data.irq_enabled,
 * so the Guest iret logic does the right thing when restoring it.  However,
 * when the Host sets the Guest up for direct traps, such as system calls, the
 * processor is the one to push eflags onto the stack, and the interrupt bit
 * will be 1 (in reality, interrupts are always enabled in the Guest).
 *
 * This turns out to be harmless: the only trap which should happen under Linux
 * with interrupts disabled is Page Fault (due to our lazy mapping of vmalloc
 * regions), which has to be reflected through the Host anyway.  If another
 * trap *does* go off when interrupts are disabled, the Guest will panic, and
 * we'll never get to this iret!
:*/

/*G:045
 * There is one final paravirt_op that the Guest implements, and glancing at it
 * you can see why I left it to last.  It's *cool*!  It's in *assembler*!
 *
 * The "iret" instruction is used to return from an interrupt or trap.  The
 * stack looks like this:
 *   old address
 *   old code segment & privilege level
 *   old processor flags ("eflags")
 *
 * The "iret" instruction pops those values off the stack and restores them all
 * at once.  The only problem is that eflags includes the Interrupt Flag which
 * the Guest can't change: the CPU will simply ignore it when we do an "iret".
 * So we have to copy eflags from the stack to lguest_data.irq_enabled before
 * we do the "iret".
 *
 * There are two problems with this: firstly, we can't clobber any registers
 * and secondly, the whole thing needs to be atomic.  The first problem
 * is solved by using "push memory"/"pop memory" instruction pair for copying.
 *
 * The second is harder: copying eflags to lguest_data.irq_enabled will turn
 * interrupts on before we're finished, so we could be interrupted before we
 * return to userspace or wherever.  Our solution to this is to tell the
 * Host that it is *never* to interrupt us there, even if interrupts seem to be
 * enabled. (It's not necessary to protect pop instruction, since
 * data gets updated only after it completes, so we only need to protect
 * one instruction, iret).
 */
ENTRY(lguest_iret)
	pushl	2*4(%esp)
	/*
	 * Note the %ss: segment prefix here.  Normal data accesses use the
	 * "ds" segment, but that will have already been restored for whatever
	 * we're returning to (such as userspace): we can't trust it.  The %ss:
	 * prefix makes sure we use the stack segment, which is still valid.
	 */
	popl	%ss:lguest_data+LGUEST_DATA_irq_enabled
lguest_noirq_iret:
	iret