aboutsummaryrefslogtreecommitdiff
path: root/drivers/dma-buf/heaps/system_heap.c
blob: ee7059399e9c7a31b25551e93e5c5339b3454004 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// SPDX-License-Identifier: GPL-2.0
/*
 * DMABUF System heap exporter
 *
 * Copyright (C) 2011 Google, Inc.
 * Copyright (C) 2019, 2020 Linaro Ltd.
 *
 * Portions based off of Andrew Davis' SRAM heap:
 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
 *	Andrew F. Davis <afd@ti.com>
 */

#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/dma-heap.h>
#include <linux/dma-resv.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>

static struct dma_heap *sys_heap;

struct system_heap_buffer {
	struct dma_heap *heap;
	struct list_head attachments;
	struct mutex lock;
	unsigned long len;
	struct sg_table sg_table;
	int vmap_cnt;
	void *vaddr;
};

struct dma_heap_attachment {
	struct device *dev;
	struct sg_table *table;
	struct list_head list;
	bool mapped;
};

#define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO)
#define HIGH_ORDER_GFP  (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
				| __GFP_NORETRY) & ~__GFP_RECLAIM) \
				| __GFP_COMP)
static gfp_t order_flags[] = {HIGH_ORDER_GFP, HIGH_ORDER_GFP, LOW_ORDER_GFP};
/*
 * The selection of the orders used for allocation (1MB, 64K, 4K) is designed
 * to match with the sizes often found in IOMMUs. Using order 4 pages instead
 * of order 0 pages can significantly improve the performance of many IOMMUs
 * by reducing TLB pressure and time spent updating page tables.
 */
static const unsigned int orders[] = {8, 4, 0};
#define NUM_ORDERS ARRAY_SIZE(orders)

static struct sg_table *dup_sg_table(struct sg_table *table)
{
	struct sg_table *new_table;
	int ret, i;
	struct scatterlist *sg, *new_sg;

	new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
	if (!new_table)
		return ERR_PTR(-ENOMEM);

	ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
	if (ret) {
		kfree(new_table);
		return ERR_PTR(-ENOMEM);
	}

	new_sg = new_table->sgl;
	for_each_sgtable_sg(table, sg, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
		new_sg = sg_next(new_sg);
	}

	return new_table;
}

static int system_heap_attach(struct dma_buf *dmabuf,
			      struct dma_buf_attachment *attachment)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct dma_heap_attachment *a;
	struct sg_table *table;

	a = kzalloc(sizeof(*a), GFP_KERNEL);
	if (!a)
		return -ENOMEM;

	table = dup_sg_table(&buffer->sg_table);
	if (IS_ERR(table)) {
		kfree(a);
		return -ENOMEM;
	}

	a->table = table;
	a->dev = attachment->dev;
	INIT_LIST_HEAD(&a->list);
	a->mapped = false;

	attachment->priv = a;

	mutex_lock(&buffer->lock);
	list_add(&a->list, &buffer->attachments);
	mutex_unlock(&buffer->lock);

	return 0;
}

static void system_heap_detach(struct dma_buf *dmabuf,
			       struct dma_buf_attachment *attachment)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct dma_heap_attachment *a = attachment->priv;

	mutex_lock(&buffer->lock);
	list_del(&a->list);
	mutex_unlock(&buffer->lock);

	sg_free_table(a->table);
	kfree(a->table);
	kfree(a);
}

static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
						enum dma_data_direction direction)
{
	struct dma_heap_attachment *a = attachment->priv;
	struct sg_table *table = a->table;
	int ret;

	ret = dma_map_sgtable(attachment->dev, table, direction, 0);
	if (ret)
		return ERR_PTR(ret);

	a->mapped = true;
	return table;
}

static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
				      struct sg_table *table,
				      enum dma_data_direction direction)
{
	struct dma_heap_attachment *a = attachment->priv;

	a->mapped = false;
	dma_unmap_sgtable(attachment->dev, table, direction, 0);
}

static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
						enum dma_data_direction direction)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct dma_heap_attachment *a;

	mutex_lock(&buffer->lock);

	if (buffer->vmap_cnt)
		invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);

	list_for_each_entry(a, &buffer->attachments, list) {
		if (!a->mapped)
			continue;
		dma_sync_sgtable_for_cpu(a->dev, a->table, direction);
	}
	mutex_unlock(&buffer->lock);

	return 0;
}

static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
					      enum dma_data_direction direction)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct dma_heap_attachment *a;

	mutex_lock(&buffer->lock);

	if (buffer->vmap_cnt)
		flush_kernel_vmap_range(buffer->vaddr, buffer->len);

	list_for_each_entry(a, &buffer->attachments, list) {
		if (!a->mapped)
			continue;
		dma_sync_sgtable_for_device(a->dev, a->table, direction);
	}
	mutex_unlock(&buffer->lock);

	return 0;
}

static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct sg_table *table = &buffer->sg_table;
	unsigned long addr = vma->vm_start;
	struct sg_page_iter piter;
	int ret;

	dma_resv_assert_held(dmabuf->resv);

	for_each_sgtable_page(table, &piter, vma->vm_pgoff) {
		struct page *page = sg_page_iter_page(&piter);

		ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE,
				      vma->vm_page_prot);
		if (ret)
			return ret;
		addr += PAGE_SIZE;
		if (addr >= vma->vm_end)
			return 0;
	}
	return 0;
}

static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
{
	struct sg_table *table = &buffer->sg_table;
	int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
	struct page **pages = vmalloc(sizeof(struct page *) * npages);
	struct page **tmp = pages;
	struct sg_page_iter piter;
	void *vaddr;

	if (!pages)
		return ERR_PTR(-ENOMEM);

	for_each_sgtable_page(table, &piter, 0) {
		WARN_ON(tmp - pages >= npages);
		*tmp++ = sg_page_iter_page(&piter);
	}

	vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
	vfree(pages);

	if (!vaddr)
		return ERR_PTR(-ENOMEM);

	return vaddr;
}

static int system_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	void *vaddr;
	int ret = 0;

	mutex_lock(&buffer->lock);
	if (buffer->vmap_cnt) {
		buffer->vmap_cnt++;
		iosys_map_set_vaddr(map, buffer->vaddr);
		goto out;
	}

	vaddr = system_heap_do_vmap(buffer);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto out;
	}

	buffer->vaddr = vaddr;
	buffer->vmap_cnt++;
	iosys_map_set_vaddr(map, buffer->vaddr);
out:
	mutex_unlock(&buffer->lock);

	return ret;
}

static void system_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
{
	struct system_heap_buffer *buffer = dmabuf->priv;

	mutex_lock(&buffer->lock);
	if (!--buffer->vmap_cnt) {
		vunmap(buffer->vaddr);
		buffer->vaddr = NULL;
	}
	mutex_unlock(&buffer->lock);
	iosys_map_clear(map);
}

static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
{
	struct system_heap_buffer *buffer = dmabuf->priv;
	struct sg_table *table;
	struct scatterlist *sg;
	int i;

	table = &buffer->sg_table;
	for_each_sgtable_sg(table, sg, i) {
		struct page *page = sg_page(sg);

		__free_pages(page, compound_order(page));
	}
	sg_free_table(table);
	kfree(buffer);
}

static const struct dma_buf_ops system_heap_buf_ops = {
	.attach = system_heap_attach,
	.detach = system_heap_detach,
	.map_dma_buf = system_heap_map_dma_buf,
	.unmap_dma_buf = system_heap_unmap_dma_buf,
	.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
	.end_cpu_access = system_heap_dma_buf_end_cpu_access,
	.mmap = system_heap_mmap,
	.vmap = system_heap_vmap,
	.vunmap = system_heap_vunmap,
	.release = system_heap_dma_buf_release,
};

static struct page *alloc_largest_available(unsigned long size,
					    unsigned int max_order)
{
	struct page *page;
	int i;

	for (i = 0; i < NUM_ORDERS; i++) {
		if (size <  (PAGE_SIZE << orders[i]))
			continue;
		if (max_order < orders[i])
			continue;

		page = alloc_pages(order_flags[i], orders[i]);
		if (!page)
			continue;
		return page;
	}
	return NULL;
}

static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
					    unsigned long len,
					    unsigned long fd_flags,
					    unsigned long heap_flags)
{
	struct system_heap_buffer *buffer;
	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
	unsigned long size_remaining = len;
	unsigned int max_order = orders[0];
	struct dma_buf *dmabuf;
	struct sg_table *table;
	struct scatterlist *sg;
	struct list_head pages;
	struct page *page, *tmp_page;
	int i, ret = -ENOMEM;

	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
	if (!buffer)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&buffer->attachments);
	mutex_init(&buffer->lock);
	buffer->heap = heap;
	buffer->len = len;

	INIT_LIST_HEAD(&pages);
	i = 0;
	while (size_remaining > 0) {
		/*
		 * Avoid trying to allocate memory if the process
		 * has been killed by SIGKILL
		 */
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			goto free_buffer;
		}

		page = alloc_largest_available(size_remaining, max_order);
		if (!page)
			goto free_buffer;

		list_add_tail(&page->lru, &pages);
		size_remaining -= page_size(page);
		max_order = compound_order(page);
		i++;
	}

	table = &buffer->sg_table;
	if (sg_alloc_table(table, i, GFP_KERNEL))
		goto free_buffer;

	sg = table->sgl;
	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
		sg_set_page(sg, page, page_size(page), 0);
		sg = sg_next(sg);
		list_del(&page->lru);
	}

	/* create the dmabuf */
	exp_info.exp_name = dma_heap_get_name(heap);
	exp_info.ops = &system_heap_buf_ops;
	exp_info.size = buffer->len;
	exp_info.flags = fd_flags;
	exp_info.priv = buffer;
	dmabuf = dma_buf_export(&exp_info);
	if (IS_ERR(dmabuf)) {
		ret = PTR_ERR(dmabuf);
		goto free_pages;
	}
	return dmabuf;

free_pages:
	for_each_sgtable_sg(table, sg, i) {
		struct page *p = sg_page(sg);

		__free_pages(p, compound_order(p));
	}
	sg_free_table(table);
free_buffer:
	list_for_each_entry_safe(page, tmp_page, &pages, lru)
		__free_pages(page, compound_order(page));
	kfree(buffer);

	return ERR_PTR(ret);
}

static const struct dma_heap_ops system_heap_ops = {
	.allocate = system_heap_allocate,
};

static int system_heap_create(void)
{
	struct dma_heap_export_info exp_info;

	exp_info.name = "system";
	exp_info.ops = &system_heap_ops;
	exp_info.priv = NULL;

	sys_heap = dma_heap_add(&exp_info);
	if (IS_ERR(sys_heap))
		return PTR_ERR(sys_heap);

	return 0;
}
module_init(system_heap_create);