aboutsummaryrefslogtreecommitdiff
path: root/drivers/dma/fsl-edma.c
blob: 09e2842d15ecfffbe02f3fd726f972194dd122a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
/*
 * drivers/dma/fsl-edma.c
 *
 * Copyright 2013-2014 Freescale Semiconductor, Inc.
 *
 * Driver for the Freescale eDMA engine with flexible channel multiplexing
 * capability for DMA request sources. The eDMA block can be found on some
 * Vybrid and Layerscape SoCs.
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_dma.h>

#include "virt-dma.h"

#define EDMA_CR			0x00
#define EDMA_ES			0x04
#define EDMA_ERQ		0x0C
#define EDMA_EEI		0x14
#define EDMA_SERQ		0x1B
#define EDMA_CERQ		0x1A
#define EDMA_SEEI		0x19
#define EDMA_CEEI		0x18
#define EDMA_CINT		0x1F
#define EDMA_CERR		0x1E
#define EDMA_SSRT		0x1D
#define EDMA_CDNE		0x1C
#define EDMA_INTR		0x24
#define EDMA_ERR		0x2C

#define EDMA_TCD_SADDR(x)	(0x1000 + 32 * (x))
#define EDMA_TCD_SOFF(x)	(0x1004 + 32 * (x))
#define EDMA_TCD_ATTR(x)	(0x1006 + 32 * (x))
#define EDMA_TCD_NBYTES(x)	(0x1008 + 32 * (x))
#define EDMA_TCD_SLAST(x)	(0x100C + 32 * (x))
#define EDMA_TCD_DADDR(x)	(0x1010 + 32 * (x))
#define EDMA_TCD_DOFF(x)	(0x1014 + 32 * (x))
#define EDMA_TCD_CITER_ELINK(x)	(0x1016 + 32 * (x))
#define EDMA_TCD_CITER(x)	(0x1016 + 32 * (x))
#define EDMA_TCD_DLAST_SGA(x)	(0x1018 + 32 * (x))
#define EDMA_TCD_CSR(x)		(0x101C + 32 * (x))
#define EDMA_TCD_BITER_ELINK(x)	(0x101E + 32 * (x))
#define EDMA_TCD_BITER(x)	(0x101E + 32 * (x))

#define EDMA_CR_EDBG		BIT(1)
#define EDMA_CR_ERCA		BIT(2)
#define EDMA_CR_ERGA		BIT(3)
#define EDMA_CR_HOE		BIT(4)
#define EDMA_CR_HALT		BIT(5)
#define EDMA_CR_CLM		BIT(6)
#define EDMA_CR_EMLM		BIT(7)
#define EDMA_CR_ECX		BIT(16)
#define EDMA_CR_CX		BIT(17)

#define EDMA_SEEI_SEEI(x)	((x) & 0x1F)
#define EDMA_CEEI_CEEI(x)	((x) & 0x1F)
#define EDMA_CINT_CINT(x)	((x) & 0x1F)
#define EDMA_CERR_CERR(x)	((x) & 0x1F)

#define EDMA_TCD_ATTR_DSIZE(x)		(((x) & 0x0007))
#define EDMA_TCD_ATTR_DMOD(x)		(((x) & 0x001F) << 3)
#define EDMA_TCD_ATTR_SSIZE(x)		(((x) & 0x0007) << 8)
#define EDMA_TCD_ATTR_SMOD(x)		(((x) & 0x001F) << 11)
#define EDMA_TCD_ATTR_SSIZE_8BIT	(0x0000)
#define EDMA_TCD_ATTR_SSIZE_16BIT	(0x0100)
#define EDMA_TCD_ATTR_SSIZE_32BIT	(0x0200)
#define EDMA_TCD_ATTR_SSIZE_64BIT	(0x0300)
#define EDMA_TCD_ATTR_SSIZE_32BYTE	(0x0500)
#define EDMA_TCD_ATTR_DSIZE_8BIT	(0x0000)
#define EDMA_TCD_ATTR_DSIZE_16BIT	(0x0001)
#define EDMA_TCD_ATTR_DSIZE_32BIT	(0x0002)
#define EDMA_TCD_ATTR_DSIZE_64BIT	(0x0003)
#define EDMA_TCD_ATTR_DSIZE_32BYTE	(0x0005)

#define EDMA_TCD_SOFF_SOFF(x)		(x)
#define EDMA_TCD_NBYTES_NBYTES(x)	(x)
#define EDMA_TCD_SLAST_SLAST(x)		(x)
#define EDMA_TCD_DADDR_DADDR(x)		(x)
#define EDMA_TCD_CITER_CITER(x)		((x) & 0x7FFF)
#define EDMA_TCD_DOFF_DOFF(x)		(x)
#define EDMA_TCD_DLAST_SGA_DLAST_SGA(x)	(x)
#define EDMA_TCD_BITER_BITER(x)		((x) & 0x7FFF)

#define EDMA_TCD_CSR_START		BIT(0)
#define EDMA_TCD_CSR_INT_MAJOR		BIT(1)
#define EDMA_TCD_CSR_INT_HALF		BIT(2)
#define EDMA_TCD_CSR_D_REQ		BIT(3)
#define EDMA_TCD_CSR_E_SG		BIT(4)
#define EDMA_TCD_CSR_E_LINK		BIT(5)
#define EDMA_TCD_CSR_ACTIVE		BIT(6)
#define EDMA_TCD_CSR_DONE		BIT(7)

#define EDMAMUX_CHCFG_DIS		0x0
#define EDMAMUX_CHCFG_ENBL		0x80
#define EDMAMUX_CHCFG_SOURCE(n)		((n) & 0x3F)

#define DMAMUX_NR	2

#define FSL_EDMA_BUSWIDTHS	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
				BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)

struct fsl_edma_hw_tcd {
	__le32	saddr;
	__le16	soff;
	__le16	attr;
	__le32	nbytes;
	__le32	slast;
	__le32	daddr;
	__le16	doff;
	__le16	citer;
	__le32	dlast_sga;
	__le16	csr;
	__le16	biter;
};

struct fsl_edma_sw_tcd {
	dma_addr_t			ptcd;
	struct fsl_edma_hw_tcd		*vtcd;
};

struct fsl_edma_slave_config {
	enum dma_transfer_direction	dir;
	enum dma_slave_buswidth		addr_width;
	u32				dev_addr;
	u32				burst;
	u32				attr;
};

struct fsl_edma_chan {
	struct virt_dma_chan		vchan;
	enum dma_status			status;
	struct fsl_edma_engine		*edma;
	struct fsl_edma_desc		*edesc;
	struct fsl_edma_slave_config	fsc;
	struct dma_pool			*tcd_pool;
};

struct fsl_edma_desc {
	struct virt_dma_desc		vdesc;
	struct fsl_edma_chan		*echan;
	bool				iscyclic;
	unsigned int			n_tcds;
	struct fsl_edma_sw_tcd		tcd[];
};

struct fsl_edma_engine {
	struct dma_device	dma_dev;
	void __iomem		*membase;
	void __iomem		*muxbase[DMAMUX_NR];
	struct clk		*muxclk[DMAMUX_NR];
	struct mutex		fsl_edma_mutex;
	u32			n_chans;
	int			txirq;
	int			errirq;
	bool			big_endian;
	struct fsl_edma_chan	chans[];
};

/*
 * R/W functions for big- or little-endian registers:
 * The eDMA controller's endian is independent of the CPU core's endian.
 * For the big-endian IP module, the offset for 8-bit or 16-bit registers
 * should also be swapped opposite to that in little-endian IP.
 */

static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr)
{
	if (edma->big_endian)
		return ioread32be(addr);
	else
		return ioread32(addr);
}

static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr)
{
	/* swap the reg offset for these in big-endian mode */
	if (edma->big_endian)
		iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3));
	else
		iowrite8(val, addr);
}

static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr)
{
	/* swap the reg offset for these in big-endian mode */
	if (edma->big_endian)
		iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2));
	else
		iowrite16(val, addr);
}

static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr)
{
	if (edma->big_endian)
		iowrite32be(val, addr);
	else
		iowrite32(val, addr);
}

static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct fsl_edma_chan, vchan.chan);
}

static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd)
{
	return container_of(vd, struct fsl_edma_desc, vdesc);
}

static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
{
	void __iomem *addr = fsl_chan->edma->membase;
	u32 ch = fsl_chan->vchan.chan.chan_id;

	edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI);
	edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ);
}

static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
{
	void __iomem *addr = fsl_chan->edma->membase;
	u32 ch = fsl_chan->vchan.chan.chan_id;

	edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ);
	edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI);
}

static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
			unsigned int slot, bool enable)
{
	u32 ch = fsl_chan->vchan.chan.chan_id;
	void __iomem *muxaddr;
	unsigned chans_per_mux, ch_off;

	chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR;
	ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
	muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
	slot = EDMAMUX_CHCFG_SOURCE(slot);

	if (enable)
		iowrite8(EDMAMUX_CHCFG_ENBL | slot, muxaddr + ch_off);
	else
		iowrite8(EDMAMUX_CHCFG_DIS, muxaddr + ch_off);
}

static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
{
	switch (addr_width) {
	case 1:
		return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
	case 2:
		return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
	case 4:
		return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
	case 8:
		return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
	default:
		return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
	}
}

static void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
{
	struct fsl_edma_desc *fsl_desc;
	int i;

	fsl_desc = to_fsl_edma_desc(vdesc);
	for (i = 0; i < fsl_desc->n_tcds; i++)
		dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
			      fsl_desc->tcd[i].ptcd);
	kfree(fsl_desc);
}

static int fsl_edma_terminate_all(struct dma_chan *chan)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
	fsl_edma_disable_request(fsl_chan);
	fsl_chan->edesc = NULL;
	vchan_get_all_descriptors(&fsl_chan->vchan, &head);
	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
	vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
	return 0;
}

static int fsl_edma_pause(struct dma_chan *chan)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
	if (fsl_chan->edesc) {
		fsl_edma_disable_request(fsl_chan);
		fsl_chan->status = DMA_PAUSED;
	}
	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
	return 0;
}

static int fsl_edma_resume(struct dma_chan *chan)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
	if (fsl_chan->edesc) {
		fsl_edma_enable_request(fsl_chan);
		fsl_chan->status = DMA_IN_PROGRESS;
	}
	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
	return 0;
}

static int fsl_edma_slave_config(struct dma_chan *chan,
				 struct dma_slave_config *cfg)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);

	fsl_chan->fsc.dir = cfg->direction;
	if (cfg->direction == DMA_DEV_TO_MEM) {
		fsl_chan->fsc.dev_addr = cfg->src_addr;
		fsl_chan->fsc.addr_width = cfg->src_addr_width;
		fsl_chan->fsc.burst = cfg->src_maxburst;
		fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width);
	} else if (cfg->direction == DMA_MEM_TO_DEV) {
		fsl_chan->fsc.dev_addr = cfg->dst_addr;
		fsl_chan->fsc.addr_width = cfg->dst_addr_width;
		fsl_chan->fsc.burst = cfg->dst_maxburst;
		fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width);
	} else {
			return -EINVAL;
	}
	return 0;
}

static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
		struct virt_dma_desc *vdesc, bool in_progress)
{
	struct fsl_edma_desc *edesc = fsl_chan->edesc;
	void __iomem *addr = fsl_chan->edma->membase;
	u32 ch = fsl_chan->vchan.chan.chan_id;
	enum dma_transfer_direction dir = fsl_chan->fsc.dir;
	dma_addr_t cur_addr, dma_addr;
	size_t len, size;
	int i;

	/* calculate the total size in this desc */
	for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
		len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
			* le16_to_cpu(edesc->tcd[i].vtcd->biter);

	if (!in_progress)
		return len;

	if (dir == DMA_MEM_TO_DEV)
		cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch));
	else
		cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch));

	/* figure out the finished and calculate the residue */
	for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
		size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
			* le16_to_cpu(edesc->tcd[i].vtcd->biter);
		if (dir == DMA_MEM_TO_DEV)
			dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
		else
			dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);

		len -= size;
		if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
			len += dma_addr + size - cur_addr;
			break;
		}
	}

	return len;
}

static enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status status;
	unsigned long flags;

	status = dma_cookie_status(chan, cookie, txstate);
	if (status == DMA_COMPLETE)
		return status;

	if (!txstate)
		return fsl_chan->status;

	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
	vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
	if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
		txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true);
	else if (vdesc)
		txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false);
	else
		txstate->residue = 0;

	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);

	return fsl_chan->status;
}

static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
				  struct fsl_edma_hw_tcd *tcd)
{
	struct fsl_edma_engine *edma = fsl_chan->edma;
	void __iomem *addr = fsl_chan->edma->membase;
	u32 ch = fsl_chan->vchan.chan.chan_id;

	/*
	 * TCD parameters are stored in struct fsl_edma_hw_tcd in little
	 * endian format. However, we need to load the TCD registers in
	 * big- or little-endian obeying the eDMA engine model endian.
	 */
	edma_writew(edma, 0, addr + EDMA_TCD_CSR(ch));
	edma_writel(edma, le32_to_cpu(tcd->saddr), addr + EDMA_TCD_SADDR(ch));
	edma_writel(edma, le32_to_cpu(tcd->daddr), addr + EDMA_TCD_DADDR(ch));

	edma_writew(edma, le16_to_cpu(tcd->attr), addr + EDMA_TCD_ATTR(ch));
	edma_writew(edma, le16_to_cpu(tcd->soff), addr + EDMA_TCD_SOFF(ch));

	edma_writel(edma, le32_to_cpu(tcd->nbytes), addr + EDMA_TCD_NBYTES(ch));
	edma_writel(edma, le32_to_cpu(tcd->slast), addr + EDMA_TCD_SLAST(ch));

	edma_writew(edma, le16_to_cpu(tcd->citer), addr + EDMA_TCD_CITER(ch));
	edma_writew(edma, le16_to_cpu(tcd->biter), addr + EDMA_TCD_BITER(ch));
	edma_writew(edma, le16_to_cpu(tcd->doff), addr + EDMA_TCD_DOFF(ch));

	edma_writel(edma, le32_to_cpu(tcd->dlast_sga), addr + EDMA_TCD_DLAST_SGA(ch));

	edma_writew(edma, le16_to_cpu(tcd->csr), addr + EDMA_TCD_CSR(ch));
}

static inline
void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
		       u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
		       u16 biter, u16 doff, u32 dlast_sga, bool major_int,
		       bool disable_req, bool enable_sg)
{
	u16 csr = 0;

	/*
	 * eDMA hardware SGs require the TCDs to be stored in little
	 * endian format irrespective of the register endian model.
	 * So we put the value in little endian in memory, waiting
	 * for fsl_edma_set_tcd_regs doing the swap.
	 */
	tcd->saddr = cpu_to_le32(src);
	tcd->daddr = cpu_to_le32(dst);

	tcd->attr = cpu_to_le16(attr);

	tcd->soff = cpu_to_le16(EDMA_TCD_SOFF_SOFF(soff));

	tcd->nbytes = cpu_to_le32(EDMA_TCD_NBYTES_NBYTES(nbytes));
	tcd->slast = cpu_to_le32(EDMA_TCD_SLAST_SLAST(slast));

	tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
	tcd->doff = cpu_to_le16(EDMA_TCD_DOFF_DOFF(doff));

	tcd->dlast_sga = cpu_to_le32(EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga));

	tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
	if (major_int)
		csr |= EDMA_TCD_CSR_INT_MAJOR;

	if (disable_req)
		csr |= EDMA_TCD_CSR_D_REQ;

	if (enable_sg)
		csr |= EDMA_TCD_CSR_E_SG;

	tcd->csr = cpu_to_le16(csr);
}

static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
		int sg_len)
{
	struct fsl_edma_desc *fsl_desc;
	int i;

	fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len,
				GFP_NOWAIT);
	if (!fsl_desc)
		return NULL;

	fsl_desc->echan = fsl_chan;
	fsl_desc->n_tcds = sg_len;
	for (i = 0; i < sg_len; i++) {
		fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
					GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
		if (!fsl_desc->tcd[i].vtcd)
			goto err;
	}
	return fsl_desc;

err:
	while (--i >= 0)
		dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
				fsl_desc->tcd[i].ptcd);
	kfree(fsl_desc);
	return NULL;
}

static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
		size_t period_len, enum dma_transfer_direction direction,
		unsigned long flags)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
	struct fsl_edma_desc *fsl_desc;
	dma_addr_t dma_buf_next;
	int sg_len, i;
	u32 src_addr, dst_addr, last_sg, nbytes;
	u16 soff, doff, iter;

	if (!is_slave_direction(fsl_chan->fsc.dir))
		return NULL;

	sg_len = buf_len / period_len;
	fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
	if (!fsl_desc)
		return NULL;
	fsl_desc->iscyclic = true;

	dma_buf_next = dma_addr;
	nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
	iter = period_len / nbytes;

	for (i = 0; i < sg_len; i++) {
		if (dma_buf_next >= dma_addr + buf_len)
			dma_buf_next = dma_addr;

		/* get next sg's physical address */
		last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;

		if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
			src_addr = dma_buf_next;
			dst_addr = fsl_chan->fsc.dev_addr;
			soff = fsl_chan->fsc.addr_width;
			doff = 0;
		} else {
			src_addr = fsl_chan->fsc.dev_addr;
			dst_addr = dma_buf_next;
			soff = 0;
			doff = fsl_chan->fsc.addr_width;
		}

		fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
				  fsl_chan->fsc.attr, soff, nbytes, 0, iter,
				  iter, doff, last_sg, true, false, true);
		dma_buf_next += period_len;
	}

	return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}

static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_transfer_direction direction,
		unsigned long flags, void *context)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
	struct fsl_edma_desc *fsl_desc;
	struct scatterlist *sg;
	u32 src_addr, dst_addr, last_sg, nbytes;
	u16 soff, doff, iter;
	int i;

	if (!is_slave_direction(fsl_chan->fsc.dir))
		return NULL;

	fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
	if (!fsl_desc)
		return NULL;
	fsl_desc->iscyclic = false;

	nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
	for_each_sg(sgl, sg, sg_len, i) {
		/* get next sg's physical address */
		last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;

		if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
			src_addr = sg_dma_address(sg);
			dst_addr = fsl_chan->fsc.dev_addr;
			soff = fsl_chan->fsc.addr_width;
			doff = 0;
		} else {
			src_addr = fsl_chan->fsc.dev_addr;
			dst_addr = sg_dma_address(sg);
			soff = 0;
			doff = fsl_chan->fsc.addr_width;
		}

		iter = sg_dma_len(sg) / nbytes;
		if (i < sg_len - 1) {
			last_sg = fsl_desc->tcd[(i + 1)].ptcd;
			fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
					  dst_addr, fsl_chan->fsc.attr, soff,
					  nbytes, 0, iter, iter, doff, last_sg,
					  false, false, true);
		} else {
			last_sg = 0;
			fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
					  dst_addr, fsl_chan->fsc.attr, soff,
					  nbytes, 0, iter, iter, doff, last_sg,
					  true, true, false);
		}
	}

	return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}

static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
{
	struct virt_dma_desc *vdesc;

	vdesc = vchan_next_desc(&fsl_chan->vchan);
	if (!vdesc)
		return;
	fsl_chan->edesc = to_fsl_edma_desc(vdesc);
	fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
	fsl_edma_enable_request(fsl_chan);
	fsl_chan->status = DMA_IN_PROGRESS;
}

static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id)
{
	struct fsl_edma_engine *fsl_edma = dev_id;
	unsigned int intr, ch;
	void __iomem *base_addr;
	struct fsl_edma_chan *fsl_chan;

	base_addr = fsl_edma->membase;

	intr = edma_readl(fsl_edma, base_addr + EDMA_INTR);
	if (!intr)
		return IRQ_NONE;

	for (ch = 0; ch < fsl_edma->n_chans; ch++) {
		if (intr & (0x1 << ch)) {
			edma_writeb(fsl_edma, EDMA_CINT_CINT(ch),
				base_addr + EDMA_CINT);

			fsl_chan = &fsl_edma->chans[ch];

			spin_lock(&fsl_chan->vchan.lock);
			if (!fsl_chan->edesc->iscyclic) {
				list_del(&fsl_chan->edesc->vdesc.node);
				vchan_cookie_complete(&fsl_chan->edesc->vdesc);
				fsl_chan->edesc = NULL;
				fsl_chan->status = DMA_COMPLETE;
			} else {
				vchan_cyclic_callback(&fsl_chan->edesc->vdesc);
			}

			if (!fsl_chan->edesc)
				fsl_edma_xfer_desc(fsl_chan);

			spin_unlock(&fsl_chan->vchan.lock);
		}
	}
	return IRQ_HANDLED;
}

static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id)
{
	struct fsl_edma_engine *fsl_edma = dev_id;
	unsigned int err, ch;

	err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR);
	if (!err)
		return IRQ_NONE;

	for (ch = 0; ch < fsl_edma->n_chans; ch++) {
		if (err & (0x1 << ch)) {
			fsl_edma_disable_request(&fsl_edma->chans[ch]);
			edma_writeb(fsl_edma, EDMA_CERR_CERR(ch),
				fsl_edma->membase + EDMA_CERR);
			fsl_edma->chans[ch].status = DMA_ERROR;
		}
	}
	return IRQ_HANDLED;
}

static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id)
{
	if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED)
		return IRQ_HANDLED;

	return fsl_edma_err_handler(irq, dev_id);
}

static void fsl_edma_issue_pending(struct dma_chan *chan)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);

	if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
		fsl_edma_xfer_desc(fsl_chan);

	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
}

static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec,
		struct of_dma *ofdma)
{
	struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data;
	struct dma_chan *chan, *_chan;
	unsigned long chans_per_mux = fsl_edma->n_chans / DMAMUX_NR;

	if (dma_spec->args_count != 2)
		return NULL;

	mutex_lock(&fsl_edma->fsl_edma_mutex);
	list_for_each_entry_safe(chan, _chan, &fsl_edma->dma_dev.channels, device_node) {
		if (chan->client_count)
			continue;
		if ((chan->chan_id / chans_per_mux) == dma_spec->args[0]) {
			chan = dma_get_slave_channel(chan);
			if (chan) {
				chan->device->privatecnt++;
				fsl_edma_chan_mux(to_fsl_edma_chan(chan),
					dma_spec->args[1], true);
				mutex_unlock(&fsl_edma->fsl_edma_mutex);
				return chan;
			}
		}
	}
	mutex_unlock(&fsl_edma->fsl_edma_mutex);
	return NULL;
}

static int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);

	fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
				sizeof(struct fsl_edma_hw_tcd),
				32, 0);
	return 0;
}

static void fsl_edma_free_chan_resources(struct dma_chan *chan)
{
	struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
	fsl_edma_disable_request(fsl_chan);
	fsl_edma_chan_mux(fsl_chan, 0, false);
	fsl_chan->edesc = NULL;
	vchan_get_all_descriptors(&fsl_chan->vchan, &head);
	spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);

	vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
	dma_pool_destroy(fsl_chan->tcd_pool);
	fsl_chan->tcd_pool = NULL;
}

static int
fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma)
{
	int ret;

	fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx");
	if (fsl_edma->txirq < 0) {
		dev_err(&pdev->dev, "Can't get edma-tx irq.\n");
		return fsl_edma->txirq;
	}

	fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err");
	if (fsl_edma->errirq < 0) {
		dev_err(&pdev->dev, "Can't get edma-err irq.\n");
		return fsl_edma->errirq;
	}

	if (fsl_edma->txirq == fsl_edma->errirq) {
		ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
				fsl_edma_irq_handler, 0, "eDMA", fsl_edma);
		if (ret) {
			dev_err(&pdev->dev, "Can't register eDMA IRQ.\n");
			 return  ret;
		}
	} else {
		ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
				fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma);
		if (ret) {
			dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n");
			return  ret;
		}

		ret = devm_request_irq(&pdev->dev, fsl_edma->errirq,
				fsl_edma_err_handler, 0, "eDMA err", fsl_edma);
		if (ret) {
			dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n");
			return  ret;
		}
	}

	return 0;
}

static int fsl_edma_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct fsl_edma_engine *fsl_edma;
	struct fsl_edma_chan *fsl_chan;
	struct resource *res;
	int len, chans;
	int ret, i;

	ret = of_property_read_u32(np, "dma-channels", &chans);
	if (ret) {
		dev_err(&pdev->dev, "Can't get dma-channels.\n");
		return ret;
	}

	len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans;
	fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
	if (!fsl_edma)
		return -ENOMEM;

	fsl_edma->n_chans = chans;
	mutex_init(&fsl_edma->fsl_edma_mutex);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(fsl_edma->membase))
		return PTR_ERR(fsl_edma->membase);

	for (i = 0; i < DMAMUX_NR; i++) {
		char clkname[32];

		res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i);
		fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res);
		if (IS_ERR(fsl_edma->muxbase[i]))
			return PTR_ERR(fsl_edma->muxbase[i]);

		sprintf(clkname, "dmamux%d", i);
		fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname);
		if (IS_ERR(fsl_edma->muxclk[i])) {
			dev_err(&pdev->dev, "Missing DMAMUX block clock.\n");
			return PTR_ERR(fsl_edma->muxclk[i]);
		}

		ret = clk_prepare_enable(fsl_edma->muxclk[i]);
		if (ret) {
			dev_err(&pdev->dev, "DMAMUX clk block failed.\n");
			return ret;
		}

	}

	ret = fsl_edma_irq_init(pdev, fsl_edma);
	if (ret)
		return ret;

	fsl_edma->big_endian = of_property_read_bool(np, "big-endian");

	INIT_LIST_HEAD(&fsl_edma->dma_dev.channels);
	for (i = 0; i < fsl_edma->n_chans; i++) {
		struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i];

		fsl_chan->edma = fsl_edma;

		fsl_chan->vchan.desc_free = fsl_edma_free_desc;
		vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev);

		edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i));
		fsl_edma_chan_mux(fsl_chan, 0, false);
	}

	dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask);
	dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask);
	dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask);

	fsl_edma->dma_dev.dev = &pdev->dev;
	fsl_edma->dma_dev.device_alloc_chan_resources
		= fsl_edma_alloc_chan_resources;
	fsl_edma->dma_dev.device_free_chan_resources
		= fsl_edma_free_chan_resources;
	fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status;
	fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg;
	fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic;
	fsl_edma->dma_dev.device_config = fsl_edma_slave_config;
	fsl_edma->dma_dev.device_pause = fsl_edma_pause;
	fsl_edma->dma_dev.device_resume = fsl_edma_resume;
	fsl_edma->dma_dev.device_terminate_all = fsl_edma_terminate_all;
	fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending;

	fsl_edma->dma_dev.src_addr_widths = FSL_EDMA_BUSWIDTHS;
	fsl_edma->dma_dev.dst_addr_widths = FSL_EDMA_BUSWIDTHS;
	fsl_edma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);

	platform_set_drvdata(pdev, fsl_edma);

	ret = dma_async_device_register(&fsl_edma->dma_dev);
	if (ret) {
		dev_err(&pdev->dev, "Can't register Freescale eDMA engine.\n");
		return ret;
	}

	ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma);
	if (ret) {
		dev_err(&pdev->dev, "Can't register Freescale eDMA of_dma.\n");
		dma_async_device_unregister(&fsl_edma->dma_dev);
		return ret;
	}

	/* enable round robin arbitration */
	edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR);

	return 0;
}

static int fsl_edma_remove(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev);
	int i;

	of_dma_controller_free(np);
	dma_async_device_unregister(&fsl_edma->dma_dev);

	for (i = 0; i < DMAMUX_NR; i++)
		clk_disable_unprepare(fsl_edma->muxclk[i]);

	return 0;
}

static const struct of_device_id fsl_edma_dt_ids[] = {
	{ .compatible = "fsl,vf610-edma", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids);

static struct platform_driver fsl_edma_driver = {
	.driver		= {
		.name	= "fsl-edma",
		.of_match_table = fsl_edma_dt_ids,
	},
	.probe          = fsl_edma_probe,
	.remove		= fsl_edma_remove,
};

static int __init fsl_edma_init(void)
{
	return platform_driver_register(&fsl_edma_driver);
}
subsys_initcall(fsl_edma_init);

static void __exit fsl_edma_exit(void)
{
	platform_driver_unregister(&fsl_edma_driver);
}
module_exit(fsl_edma_exit);

MODULE_ALIAS("platform:fsl-edma");
MODULE_DESCRIPTION("Freescale eDMA engine driver");
MODULE_LICENSE("GPL v2");