aboutsummaryrefslogtreecommitdiff
path: root/drivers/dma/mic_x100_dma.c
blob: 6a91e28d537de7f82e79c74a663f3019c96160c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/*
 * Intel MIC Platform Software Stack (MPSS)
 *
 * Copyright(c) 2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Intel MIC X100 DMA Driver.
 *
 * Adapted from IOAT dma driver.
 */
#include <linux/module.h>
#include <linux/io.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>

#include "mic_x100_dma.h"

#define MIC_DMA_MAX_XFER_SIZE_CARD  (1 * 1024 * 1024 -\
				       MIC_DMA_ALIGN_BYTES)
#define MIC_DMA_MAX_XFER_SIZE_HOST  (1 * 1024 * 1024 >> 1)
#define MIC_DMA_DESC_TYPE_SHIFT	60
#define MIC_DMA_MEMCPY_LEN_SHIFT 46
#define MIC_DMA_STAT_INTR_SHIFT 59

/* high-water mark for pushing dma descriptors */
static int mic_dma_pending_level = 4;

/* Status descriptor is used to write a 64 bit value to a memory location */
enum mic_dma_desc_format_type {
	MIC_DMA_MEMCPY = 1,
	MIC_DMA_STATUS,
};

static inline u32 mic_dma_hw_ring_inc(u32 val)
{
	return (val + 1) % MIC_DMA_DESC_RX_SIZE;
}

static inline u32 mic_dma_hw_ring_dec(u32 val)
{
	return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1;
}

static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch)
{
	ch->head = mic_dma_hw_ring_inc(ch->head);
}

/* Prepare a memcpy desc */
static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc,
	dma_addr_t src_phys, dma_addr_t dst_phys, u64 size)
{
	u64 qw0, qw1;

	qw0 = src_phys;
	qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT;
	qw1 = MIC_DMA_MEMCPY;
	qw1 <<= MIC_DMA_DESC_TYPE_SHIFT;
	qw1 |= dst_phys;
	desc->qw0 = qw0;
	desc->qw1 = qw1;
}

/* Prepare a status desc. with @data to be written at @dst_phys */
static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data,
	dma_addr_t dst_phys, bool generate_intr)
{
	u64 qw0, qw1;

	qw0 = data;
	qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys;
	if (generate_intr)
		qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT);
	desc->qw0 = qw0;
	desc->qw1 = qw1;
}

static void mic_dma_cleanup(struct mic_dma_chan *ch)
{
	struct dma_async_tx_descriptor *tx;
	u32 tail;
	u32 last_tail;

	spin_lock(&ch->cleanup_lock);
	tail = mic_dma_read_cmp_cnt(ch);
	/*
	 * This is the barrier pair for smp_wmb() in fn.
	 * mic_dma_tx_submit_unlock. It's required so that we read the
	 * updated cookie value from tx->cookie.
	 */
	smp_rmb();
	for (last_tail = ch->last_tail; tail != last_tail;) {
		tx = &ch->tx_array[last_tail];
		if (tx->cookie) {
			dma_cookie_complete(tx);
			dmaengine_desc_get_callback_invoke(tx, NULL);
			tx->callback = NULL;
		}
		last_tail = mic_dma_hw_ring_inc(last_tail);
	}
	/* finish all completion callbacks before incrementing tail */
	smp_mb();
	ch->last_tail = last_tail;
	spin_unlock(&ch->cleanup_lock);
}

static u32 mic_dma_ring_count(u32 head, u32 tail)
{
	u32 count;

	if (head >= tail)
		count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head);
	else
		count = tail - head;
	return count - 1;
}

/* Returns the num. of free descriptors on success, -ENOMEM on failure */
static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required)
{
	struct device *dev = mic_dma_ch_to_device(ch);
	u32 count;

	count = mic_dma_ring_count(ch->head, ch->last_tail);
	if (count < required) {
		mic_dma_cleanup(ch);
		count = mic_dma_ring_count(ch->head, ch->last_tail);
	}

	if (count < required) {
		dev_dbg(dev, "Not enough desc space");
		dev_dbg(dev, "%s %d required=%u, avail=%u\n",
			__func__, __LINE__, required, count);
		return -ENOMEM;
	} else {
		return count;
	}
}

/* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/
static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src,
				    dma_addr_t dst, size_t len)
{
	size_t current_transfer_len;
	size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size;
	/* 3 is added to make sure we have enough space for status desc */
	int num_desc = len / max_xfer_size + 3;
	int ret;

	if (len % max_xfer_size)
		num_desc++;

	ret = mic_dma_avail_desc_ring_space(ch, num_desc);
	if (ret < 0)
		return ret;
	do {
		current_transfer_len = min(len, max_xfer_size);
		mic_dma_memcpy_desc(&ch->desc_ring[ch->head],
				    src, dst, current_transfer_len);
		mic_dma_hw_ring_inc_head(ch);
		len -= current_transfer_len;
		dst = dst + current_transfer_len;
		src = src + current_transfer_len;
	} while (len > 0);
	return 0;
}

/* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */
static void mic_dma_prog_intr(struct mic_dma_chan *ch)
{
	mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
				 ch->status_dest_micpa, false);
	mic_dma_hw_ring_inc_head(ch);
	mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
				 ch->status_dest_micpa, true);
	mic_dma_hw_ring_inc_head(ch);
}

/* Wrapper function to program memcpy descriptors/status descriptors */
static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src,
			  dma_addr_t dst, size_t len)
{
	if (len && -ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len)) {
		return -ENOMEM;
	} else {
		/* 3 is the maximum number of status descriptors */
		int ret = mic_dma_avail_desc_ring_space(ch, 3);

		if (ret < 0)
			return ret;
	}

	/* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */
	if (flags & DMA_PREP_FENCE) {
		mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
					 ch->status_dest_micpa, false);
		mic_dma_hw_ring_inc_head(ch);
	}

	if (flags & DMA_PREP_INTERRUPT)
		mic_dma_prog_intr(ch);

	return 0;
}

static inline void mic_dma_issue_pending(struct dma_chan *ch)
{
	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);

	spin_lock(&mic_ch->issue_lock);
	/*
	 * Write to head triggers h/w to act on the descriptors.
	 * On MIC, writing the same head value twice causes
	 * a h/w error. On second write, h/w assumes we filled
	 * the entire ring & overwrote some of the descriptors.
	 */
	if (mic_ch->issued == mic_ch->submitted)
		goto out;
	mic_ch->issued = mic_ch->submitted;
	/*
	 * make descriptor updates visible before advancing head,
	 * this is purposefully not smp_wmb() since we are also
	 * publishing the descriptor updates to a dma device
	 */
	wmb();
	mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued);
out:
	spin_unlock(&mic_ch->issue_lock);
}

static inline void mic_dma_update_pending(struct mic_dma_chan *ch)
{
	if (mic_dma_ring_count(ch->issued, ch->submitted)
			> mic_dma_pending_level)
		mic_dma_issue_pending(&ch->api_ch);
}

static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
{
	struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan);
	dma_cookie_t cookie;

	dma_cookie_assign(tx);
	cookie = tx->cookie;
	/*
	 * We need an smp write barrier here because another CPU might see
	 * an update to submitted and update h/w head even before we
	 * assigned a cookie to this tx.
	 */
	smp_wmb();
	mic_ch->submitted = mic_ch->head;
	spin_unlock(&mic_ch->prep_lock);
	mic_dma_update_pending(mic_ch);
	return cookie;
}

static inline struct dma_async_tx_descriptor *
allocate_tx(struct mic_dma_chan *ch)
{
	u32 idx = mic_dma_hw_ring_dec(ch->head);
	struct dma_async_tx_descriptor *tx = &ch->tx_array[idx];

	dma_async_tx_descriptor_init(tx, &ch->api_ch);
	tx->tx_submit = mic_dma_tx_submit_unlock;
	return tx;
}

/* Program a status descriptor with dst as address and value to be written */
static struct dma_async_tx_descriptor *
mic_dma_prep_status_lock(struct dma_chan *ch, dma_addr_t dst, u64 src_val,
			 unsigned long flags)
{
	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
	int result;

	spin_lock(&mic_ch->prep_lock);
	result = mic_dma_avail_desc_ring_space(mic_ch, 4);
	if (result < 0)
		goto error;
	mic_dma_prep_status_desc(&mic_ch->desc_ring[mic_ch->head], src_val, dst,
				 false);
	mic_dma_hw_ring_inc_head(mic_ch);
	result = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
	if (result < 0)
		goto error;

	return allocate_tx(mic_ch);
error:
	dev_err(mic_dma_ch_to_device(mic_ch),
		"Error enqueueing dma status descriptor, error=%d\n", result);
	spin_unlock(&mic_ch->prep_lock);
	return NULL;
}

/*
 * Prepare a memcpy descriptor to be added to the ring.
 * Note that the temporary descriptor adds an extra overhead of copying the
 * descriptor to ring. So, we copy directly to the descriptor ring
 */
static struct dma_async_tx_descriptor *
mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
			 dma_addr_t dma_src, size_t len, unsigned long flags)
{
	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
	struct device *dev = mic_dma_ch_to_device(mic_ch);
	int result;

	if (!len && !flags)
		return NULL;

	spin_lock(&mic_ch->prep_lock);
	result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
	if (result >= 0)
		return allocate_tx(mic_ch);
	dev_err(dev, "Error enqueueing dma, error=%d\n", result);
	spin_unlock(&mic_ch->prep_lock);
	return NULL;
}

static struct dma_async_tx_descriptor *
mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
{
	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
	int ret;

	spin_lock(&mic_ch->prep_lock);
	ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
	if (!ret)
		return allocate_tx(mic_ch);
	spin_unlock(&mic_ch->prep_lock);
	return NULL;
}

/* Return the status of the transaction */
static enum dma_status
mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie,
		  struct dma_tx_state *txstate)
{
	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);

	if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate))
		mic_dma_cleanup(mic_ch);

	return dma_cookie_status(ch, cookie, txstate);
}

static irqreturn_t mic_dma_thread_fn(int irq, void *data)
{
	mic_dma_cleanup((struct mic_dma_chan *)data);
	return IRQ_HANDLED;
}

static irqreturn_t mic_dma_intr_handler(int irq, void *data)
{
	struct mic_dma_chan *ch = ((struct mic_dma_chan *)data);

	mic_dma_ack_interrupt(ch);
	return IRQ_WAKE_THREAD;
}

static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch)
{
	u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
	struct device *dev = &to_mbus_device(ch)->dev;

	desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
	ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL);

	if (!ch->desc_ring)
		return -ENOMEM;

	ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring,
					     desc_ring_size, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, ch->desc_ring_micpa))
		goto map_error;

	ch->tx_array = vzalloc(array_size(MIC_DMA_DESC_RX_SIZE,
					  sizeof(*ch->tx_array)));
	if (!ch->tx_array)
		goto tx_error;
	return 0;
tx_error:
	dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size,
			 DMA_BIDIRECTIONAL);
map_error:
	kfree(ch->desc_ring);
	return -ENOMEM;
}

static void mic_dma_free_desc_ring(struct mic_dma_chan *ch)
{
	u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);

	vfree(ch->tx_array);
	desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
	dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa,
			 desc_ring_size, DMA_BIDIRECTIONAL);
	kfree(ch->desc_ring);
	ch->desc_ring = NULL;
}

static void mic_dma_free_status_dest(struct mic_dma_chan *ch)
{
	dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa,
			 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
	kfree(ch->status_dest);
}

static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch)
{
	struct device *dev = &to_mbus_device(ch)->dev;

	ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL);
	if (!ch->status_dest)
		return -ENOMEM;
	ch->status_dest_micpa = dma_map_single(dev, ch->status_dest,
					L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, ch->status_dest_micpa)) {
		kfree(ch->status_dest);
		ch->status_dest = NULL;
		return -ENOMEM;
	}
	return 0;
}

static int mic_dma_check_chan(struct mic_dma_chan *ch)
{
	if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) ||
	    mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) {
		mic_dma_disable_chan(ch);
		mic_dma_chan_mask_intr(ch);
		dev_err(mic_dma_ch_to_device(ch),
			"%s %d error setting up mic dma chan %d\n",
			__func__, __LINE__, ch->ch_num);
		return -EBUSY;
	}
	return 0;
}

static int mic_dma_chan_setup(struct mic_dma_chan *ch)
{
	if (MIC_DMA_CHAN_MIC == ch->owner)
		mic_dma_chan_set_owner(ch);
	mic_dma_disable_chan(ch);
	mic_dma_chan_mask_intr(ch);
	mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0);
	mic_dma_chan_set_desc_ring(ch);
	ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR);
	ch->head = ch->last_tail;
	ch->issued = 0;
	mic_dma_chan_unmask_intr(ch);
	mic_dma_enable_chan(ch);
	return mic_dma_check_chan(ch);
}

static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
{
	mic_dma_disable_chan(ch);
	mic_dma_chan_mask_intr(ch);
}

static int mic_dma_setup_irq(struct mic_dma_chan *ch)
{
	ch->cookie =
		to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch),
			mic_dma_intr_handler, mic_dma_thread_fn,
			"mic dma_channel", ch, ch->ch_num);
	return PTR_ERR_OR_ZERO(ch->cookie);
}

static inline void mic_dma_free_irq(struct mic_dma_chan *ch)
{
	to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch);
}

static int mic_dma_chan_init(struct mic_dma_chan *ch)
{
	int ret = mic_dma_alloc_desc_ring(ch);

	if (ret)
		goto ring_error;
	ret = mic_dma_alloc_status_dest(ch);
	if (ret)
		goto status_error;
	ret = mic_dma_chan_setup(ch);
	if (ret)
		goto chan_error;
	return ret;
chan_error:
	mic_dma_free_status_dest(ch);
status_error:
	mic_dma_free_desc_ring(ch);
ring_error:
	return ret;
}

static int mic_dma_drain_chan(struct mic_dma_chan *ch)
{
	struct dma_async_tx_descriptor *tx;
	int err = 0;
	dma_cookie_t cookie;

	tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE);
	if (!tx) {
		err = -ENOMEM;
		goto error;
	}

	cookie = tx->tx_submit(tx);
	if (dma_submit_error(cookie))
		err = -ENOMEM;
	else
		err = dma_sync_wait(&ch->api_ch, cookie);
	if (err) {
		dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n",
			__func__, __LINE__, ch->ch_num);
		err = -EIO;
	}
error:
	mic_dma_cleanup(ch);
	return err;
}

static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch)
{
	mic_dma_chan_destroy(ch);
	mic_dma_cleanup(ch);
	mic_dma_free_status_dest(ch);
	mic_dma_free_desc_ring(ch);
}

static int mic_dma_init(struct mic_dma_device *mic_dma_dev,
			enum mic_dma_chan_owner owner)
{
	int i, first_chan = mic_dma_dev->start_ch;
	struct mic_dma_chan *ch;
	int ret;

	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
		ch = &mic_dma_dev->mic_ch[i];
		ch->ch_num = i;
		ch->owner = owner;
		spin_lock_init(&ch->cleanup_lock);
		spin_lock_init(&ch->prep_lock);
		spin_lock_init(&ch->issue_lock);
		ret = mic_dma_setup_irq(ch);
		if (ret)
			goto error;
	}
	return 0;
error:
	for (i = i - 1; i >= first_chan; i--)
		mic_dma_free_irq(ch);
	return ret;
}

static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev)
{
	int i, first_chan = mic_dma_dev->start_ch;
	struct mic_dma_chan *ch;

	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
		ch = &mic_dma_dev->mic_ch[i];
		mic_dma_free_irq(ch);
	}
}

static int mic_dma_alloc_chan_resources(struct dma_chan *ch)
{
	int ret = mic_dma_chan_init(to_mic_dma_chan(ch));
	if (ret)
		return ret;
	return MIC_DMA_DESC_RX_SIZE;
}

static void mic_dma_free_chan_resources(struct dma_chan *ch)
{
	struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
	mic_dma_drain_chan(mic_ch);
	mic_dma_chan_uninit(mic_ch);
}

/* Set the fn. handlers and register the dma device with dma api */
static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
				       enum mic_dma_chan_owner owner)
{
	int i, first_chan = mic_dma_dev->start_ch;

	dma_cap_zero(mic_dma_dev->dma_dev.cap_mask);
	/*
	 * This dma engine is not capable of host memory to host memory
	 * transfers
	 */
	dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask);

	if (MIC_DMA_CHAN_HOST == owner)
		dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask);
	mic_dma_dev->dma_dev.device_alloc_chan_resources =
		mic_dma_alloc_chan_resources;
	mic_dma_dev->dma_dev.device_free_chan_resources =
		mic_dma_free_chan_resources;
	mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status;
	mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock;
	mic_dma_dev->dma_dev.device_prep_dma_imm_data =
		mic_dma_prep_status_lock;
	mic_dma_dev->dma_dev.device_prep_dma_interrupt =
		mic_dma_prep_interrupt_lock;
	mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending;
	mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT;
	INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels);
	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
		mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev;
		dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch);
		list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
			      &mic_dma_dev->dma_dev.channels);
	}
	return dmaenginem_async_device_register(&mic_dma_dev->dma_dev);
}

/*
 * Initializes dma channels and registers the dma device with the
 * dma engine api.
 */
static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
					      enum mic_dma_chan_owner owner)
{
	struct mic_dma_device *mic_dma_dev;
	int ret;
	struct device *dev = &mbdev->dev;

	mic_dma_dev = devm_kzalloc(dev, sizeof(*mic_dma_dev), GFP_KERNEL);
	if (!mic_dma_dev) {
		ret = -ENOMEM;
		goto alloc_error;
	}
	mic_dma_dev->mbdev = mbdev;
	mic_dma_dev->dma_dev.dev = dev;
	mic_dma_dev->mmio = mbdev->mmio_va;
	if (MIC_DMA_CHAN_HOST == owner) {
		mic_dma_dev->start_ch = 0;
		mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST;
	} else {
		mic_dma_dev->start_ch = 4;
		mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD;
	}
	ret = mic_dma_init(mic_dma_dev, owner);
	if (ret)
		goto init_error;
	ret = mic_dma_register_dma_device(mic_dma_dev, owner);
	if (ret)
		goto reg_error;
	return mic_dma_dev;
reg_error:
	mic_dma_uninit(mic_dma_dev);
init_error:
	mic_dma_dev = NULL;
alloc_error:
	dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret);
	return mic_dma_dev;
}

static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
{
	mic_dma_uninit(mic_dma_dev);
}

/* DEBUGFS CODE */
static int mic_dma_reg_show(struct seq_file *s, void *pos)
{
	struct mic_dma_device *mic_dma_dev = s->private;
	int i, chan_num, first_chan = mic_dma_dev->start_ch;
	struct mic_dma_chan *ch;

	seq_printf(s, "SBOX_DCR: %#x\n",
		   mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan],
				     MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR));
	seq_puts(s, "DMA Channel Registers\n");
	seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s",
		   "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO");
	seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT");
	for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
		ch = &mic_dma_dev->mic_ch[i];
		chan_num = ch->ch_num;
		seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x",
			   chan_num,
			   mic_dma_read_reg(ch, MIC_DMA_REG_DCAR),
			   mic_dma_read_reg(ch, MIC_DMA_REG_DTPR),
			   mic_dma_read_reg(ch, MIC_DMA_REG_DHPR),
			   mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI));
		seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n",
			   mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO),
			   mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR),
			   mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK),
			   mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT));
	}
	return 0;
}

DEFINE_SHOW_ATTRIBUTE(mic_dma_reg);

/* Debugfs parent dir */
static struct dentry *mic_dma_dbg;

static int mic_dma_driver_probe(struct mbus_device *mbdev)
{
	struct mic_dma_device *mic_dma_dev;
	enum mic_dma_chan_owner owner;

	if (MBUS_DEV_DMA_MIC == mbdev->id.device)
		owner = MIC_DMA_CHAN_MIC;
	else
		owner = MIC_DMA_CHAN_HOST;

	mic_dma_dev = mic_dma_dev_reg(mbdev, owner);
	dev_set_drvdata(&mbdev->dev, mic_dma_dev);

	if (mic_dma_dbg) {
		mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev),
							  mic_dma_dbg);
		if (mic_dma_dev->dbg_dir)
			debugfs_create_file("mic_dma_reg", 0444,
					    mic_dma_dev->dbg_dir, mic_dma_dev,
					    &mic_dma_reg_fops);
	}
	return 0;
}

static void mic_dma_driver_remove(struct mbus_device *mbdev)
{
	struct mic_dma_device *mic_dma_dev;

	mic_dma_dev = dev_get_drvdata(&mbdev->dev);
	debugfs_remove_recursive(mic_dma_dev->dbg_dir);
	mic_dma_dev_unreg(mic_dma_dev);
}

static struct mbus_device_id id_table[] = {
	{MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID},
	{MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID},
	{0},
};

static struct mbus_driver mic_dma_driver = {
	.driver.name =	KBUILD_MODNAME,
	.driver.owner =	THIS_MODULE,
	.id_table = id_table,
	.probe = mic_dma_driver_probe,
	.remove = mic_dma_driver_remove,
};

static int __init mic_x100_dma_init(void)
{
	int rc = mbus_register_driver(&mic_dma_driver);
	if (rc)
		return rc;
	mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
	return 0;
}

static void __exit mic_x100_dma_exit(void)
{
	debugfs_remove_recursive(mic_dma_dbg);
	mbus_unregister_driver(&mic_dma_driver);
}

module_init(mic_x100_dma_init);
module_exit(mic_x100_dma_exit);

MODULE_DEVICE_TABLE(mbus, id_table);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver");
MODULE_LICENSE("GPL v2");